Table 2.
REFINED-CNN performance comparison with competing models for the GDSC dataset.
Model | NRMSE (20%) | NRMSE (50%) | NRMSE (80%) | PCC (20%) | PCC (50%) | PCC (80%) | Bias (20%) | Bias (50%) | Bias (80%) |
---|---|---|---|---|---|---|---|---|---|
EN | 0.890 | 0.889 | 0.887 | 0.488 | 0.484 | 0.486 | 0.848 | 0.849 | 0.840 |
RF | 0.609 | 0.620 | 0.569 | 0.797 | 0.785 | 0.821 | 0.433 | 0.417 | 0.337 |
SVR | 0.750 | 0.742 | 0.525 | 0.847 | 0.845 | 0.853 | 0.257 | 0.273 | 0.241 |
ANN | 1.407 | 0.475 | 0.435 | 0.519 | 0.883 | 0.901 | 0.784 | 0.153 | 0.233 |
Random-CNN | 0.579 | 0.456 | 0.441 | 0.836 | 0.892 | 0.903 | 0.215 | 0.193 | 0.222 |
PCA-CNN | 0.612 | 0.461 | 0.443 | 0.820 | 0.891 | 0.901 | 0.201 | 0.228 | 0.179 |
REFINED-CNN | 0.541 | 0.439 | 0.414 | 0.845 | 0.899 | 0.911 | 0.255 | 0.173 | 0.197 |
The numbers in parentheses indicate the percentages of the available data used for training.
EN elastic net, RF random forest, SVR support vector regression, ANN artificial neural networks, Random-CNN random mapping based convolutional neural network, PCA-CNN principal component analysis based convolutional neural networks, REFINED-CNN proposed REFINED approach-based convolutional neural networks. Bold values indicate the best performances.