Table 1.
Major effects | HIV pathogena | ARV | Opioids | Outcome | Model system | Citation(s) |
---|---|---|---|---|---|---|
Clinical findings (human) | ||||||
HIV progression and/or ARV adherence | HIV | cART |
• SUD • Prescription opioids for pain |
• ↑ Viral load with SUD • ↓ ARV adherence • ↑ Frequency of prescription drugs with pain + SUD |
Human | (Denis et al. 2019) |
HIV | cART | OUD |
• ↓ Lasting viral suppression • ↓ Adherence to cART for 3 years |
Human | (Lemons et al. 2019) | |
HIV | ARV naive | Injection drug use | ↓ CD4 counts | Human | (Meijerink et al. 2014) | |
HIV encephalitis (HIVE) HIV infection CNS |
HIV | ZDV | Former drug use (+ OST) |
• ↑ Multinucleated giant cells • ↑ HIV p24 |
Human, postmortem brain | (Bell et al. 1998) |
Microglial activation | HIV |
• ARV • ZDV |
OUD | ↑ CD68 microglial activation only in non-OUD HIV+ PWH | Human, postmortem brain | (Smith et al. 2014) |
HIV |
• ARV • ZDV, other monotherapies |
Injection drug use (+ OST) | ↑ Microglial activation | Human | (Bell et al. 2002) | |
HIV | No info | Drug use |
• ↑ MHC class II • ↑ CD68 |
Human, postmortem brain | (Anthony et al. 2005) | |
HIV | No info | OUD (44% methadone, 36% other opiates) |
• ↓ CD68, HLA-D in HIV and HIVE with OUD • No effect of IDU on CD68 |
Human, postmortem brain | (Byrd et al. 2012) | |
Plasma cytokines | HIV | cART | OUD (codeine, fentanyl, morphine) | ↑ sTNF-R2, not sCD14, TNF-α, sTNF-R1, in plasma | Human | (Ryan et al. 2004) |
HIV | ARV naive | Reported heroin use |
• ↓ MIP-1α, MIP-1β, MCP-2 in blood after stimulation with LPS • ↑ CCR5 expression in CD4 cells |
Human | (Meijerink et al. 2015) | |
HIVE | HIV | No info | OUD |
• ↑ Parenchymal inflammatory infiltrates • ↑ HIV PCR amplification products |
Human, postmortem brain | (Gosztonyi et al. 1993) |
Aberrant immune responses | HIV | No info | SUD (opioids, alcohol, marijuana, cocaine) (+ OST) |
• ↑ Autoantibodies and delayed hypersensitivity to neural antigens OUD only • No HIV effect/interaction |
Human | (Jankovic et al. 1991) |
Learning-memory | HIV | 50-70% on cART | Heroin, crack/cocaine |
• ↓ Total learning; ↓ Learning slope • ↓ Delayed recall |
Human, female | (Meyer et al. 2013) |
HIV | cART | Reported heroin use |
• ↓ Recall memory • ↓ Working memory |
Human | (Byrd et al. 2011) | |
HIV | No info | SUD (opioids, alcohol, marijuana, cocaine) |
• ↓ Complex figure copy • ↓ Delayed recall |
Human | (Concha et al. 1997) | |
Neuropsychological performance | cART | OST (methadone) | No effect of OST | Human | (Applebaum et al. 2010) | |
Cognitive function | HIV | cART | OUD | • ↓ Cognitive performance with anticholinergics, but not opioids, anxiolytics, or anticonvulsants | Human | (Rubin et al. 2018) |
Memory Cognitive function |
HIV | cART | SUD (alcohol, cocaine, heroin) |
• ↓ Working memory in HIV+ • ↓ Spatial and verbal response times in women, irrespective of HIV status • ↑ Response time with cocaine use |
Human | (Martin et al. 2018) |
Visual and cognitive function | HIV | No info | OUD (+ OST, methadone) |
• ↑ Pattern-shift visual evoked potential delay with methadone • No HIV effect/interaction |
Human | (Bauer 1998) |
Transmission risk | HIV | No info | OST | ↓ Frequency of injection drug use | Human | (Kwiatkowski and Booth 2001) |
HIV | cART | OST |
• ↓ Frequency of heroin injection • ↑ On ARV |
Human | (Pettes et al. 2010) | |
Motor and visual function | HIV | No info | OST |
• ↓ Digital Finger-Tapping test • ↓ Visual motor pursuit |
Human | (Silberstein et al. 1993) |
ARV adherence | HIV | cART | OST | • ↑ ARV adherence in PWH with OST vs. OUD | Human | (Mazhnaya et al. 2018) |
PENK expression | HIV | Pre- and post-cART | SUD |
• ↓ PENK in HIVE vs. HIV− • ↓ DRD2L HIV+ vs. HIVE & HIV− • ↓ DRD2L correlates with ↑ cognitive performance |
Human, post mortem brain | (Gelman et al. 2012) |
OPRM1 polymorphisms, splice variants | HIV | No info | SUD | C17T MOR polymorphism correlates with ↑ risk of cocaine, alcohol & tobacco (but not opiate) use | Human | (Crystal et al. 2012) |
HIV | cART | No | Some OPRM1 polymorphisms may alter HIV severity / response to ARV | Human | (Proudnikov et al. 2012) | |
HIV | No info | MOR-1K expression |
• ↑ MOR-1K in HIVE • ↑ CCL2, CCL6, CCL5, but not CXCR4, CCR5 or CD4 receptor in HIVE |
Human, postmortem brain | (Dever et al. 2014) | |
OPRK and PDYN polymorphisms | HIV | cART | No | Some OPRK and PDYN polymorphisms may alter HIV severity / response to ARV | Human | (Proudnikov et al. 2013) |
Sensory Neuropathy | HIV | cART | SUD | HIV sensory neuropathy- regardless of SUD (trends, not significant) | Human | (Robinson-Papp et al. 2010) |
Preclinical in vivo findings (animal) | ||||||
HIV entry into the brain | Mixture of SIV17-EFr, SHIVKU_1B, SHIV89.6P | No | Morphine (5 mg/kg i.m., b.i.d., ≤ 56 weeks) |
• ↑ CSF viral load • ↑ Viral migration through BBB for SHIVKU |
Rhesus macaques | (Kumar et al. 2006) |
SIVmacR71/17E | No | Morphine (3 mg/kg i.m., q.i.d.) |
• ↑ CD4+ and CD8+ T cells • ↑ CSF viral load • ↑ Infiltration of MDMs into the brain |
Rhesus macaques | (Bokhari et al. 2011). | |
Viral load and HIV progression | Mixture of SIV17-EFr, SHIVKU _1B, SHIV89.6P | No | Morphine (5 mg/kg, i.m., t.i.d., 20 weeks) |
• ↑ Viral load; ↓ CD4 counts • ↑ ROS with morphine + SIV |
Rhesus macaques | (Perez-Casanova et al. 2007; Perez-Casanova et al. 2008) |
SIV gene mutation/evolutiontat | Mixture of SIV17-EFr, SHIVKU _1B, SHIV89.6P | No |
Morphine (5 mg/kg, i.m., t.i.d., 20–56 weeks) |
• ↑ Viral load; ↓ CD4 counts • tat evolution—inverse correlation with SIV progression • ↓ tat diversity with morphine |
Rhesus macaques | (Noel and Kumar 2006; Noel et al. 2006b) |
nef |
• ↑ Viral load; ↓ CD4 counts • ↓ nef evolution; no correlation with SIV progression ± morphine |
(Noel et al. 2006a) | ||||
env |
• ↑ Viral load; ↓ CD4 counts • ↑ env evolution (V4 region) correlates with SIV progression + morphine • ↑ env evolution in CSF with morphine |
(Rivera-Amill et al. 2007, 2010b) | ||||
vpr |
• ↓ vpr evolution and/or Vpr R50G mutation—inverse correlation with SIV progression/mortality • ↓ vpr evolution with morphine |
(Noel and Kumar 2007; Rivera et al. 2013) | ||||
Neuronal injury, survival, oxidative stress | gp120 HIV-1LAV | No | Morphine (25 mg pellet, 5–7 days) |
• ↑ ROS during withdrawal • ↓ PSD95 during chronic and withdrawal • ↑ Sphingomyelin • ↓ Ceramide |
Mouse, gp120 tgb | (Bandaru et al. 2011) |
HIV | No | Morphine (37.5 mg s.c, 5 days) | ↓ neuron survival HIV tg + morphine | Rat, HIV-1 tg, female | (Guo et al. 2012) | |
SIV HIV Tat |
No | Morphine (3 mg/kg i.m., q.i.d., 3 weeks) |
• ↑ miR-29b, ↓ PDGF-B mRNA, ↑ PDGF-BB with morphine and SIV • ↓ PDGF-B, ↓ neuron survival with CM from morphine-treated astrocytes |
Rhesus macaques; Ratb, primary neurons, astrocytes | (Hu et al. 2012) | |
Synaptic transmission | Tat1–86 | No | Morphine ex vivo (1 μM) to the bath | ↓ mIPSC frequency | Mouse, male and female, PFC slices, ex vivo | (Xu and Fitting 2016) |
SIVmacR71/17E Tat |
No info |
• Morphine (escalating doses of 1–3 mg/kg i.m., q.i.d., 12 months) • Morphine in vitro |
• SIV ↑ Synaptic protein HSPA5 • Tat ↑ HSPA5 mRNA (in vitro) |
Rhesus macaques; Human, SH-SY5Y neuroblastoma cells in vitro |
(Pendyala et al. 2015) | |
White matter effects | SIVmacR71/17E | No | Morphine (3 mg/kg i.m., q.i.d., ≤ 59 weeks) |
• ↑ Focal, demyelinating lesions • ↑ Macrophages in areas of myelin loss |
Rhesus macaques | (Marcario et al. 2008), |
CNS metabolites | SIVsmm9 | No info | Morphine (escalating doses of 1–3 mg/kg i.m., q.i.d., ≤ 4 years) |
• ↑ Survival time • ↑ Creatine in white matter (SIV + morphine only) • ↑ Myo-inositol in putamen |
Rhesus macaques | (Cloak et al. 2011) |
Neuroinflammation | Tat1–86 | No | Morphine (10 mg/kg i.p., b.i.d., 5 days) | ↑ Iba1+ 3-NT+ microglia | Mouse, Tat tg, males | (Zou et al. 2011) |
Chemokines |
Tat1–72 (25 μg intrastriatal injection) |
No | Morphine (25 mg pellet, 5 days) |
• ↑ CCL2 in astrocytes is regulated by CCR5 • ↑ CCL2 in macrophages/microglia • CCL2-knockout blocks morphine + Tat-induced glial reactivity |
Mouse | (El-Hage et al. 2008a) |
Cytokines, Chemokines | HIV Tat (10 μg/kg i.v.) | No | Morphine (25, 75 mg pellet, 6 days) |
• Morphine ↑ death in Tat + bacterial infection • ↑ TNFα, IL-6, CCL2, • ↑ TLR2, TLR4, TLR9 |
Mouse, male, in vivo; microglia in vitro | (Dutta et al. 2012) |
MOR expression | HIV-1IIIB gp120 (X4) | No | MOR | ↑ MOR mRNA | Rats, HIV-1 tg males | (Chang et al. 2007) |
MOR-coupling efficacy to G proteins | Tat1–86 | No |
• Morphine (acute, 10 mg/kg i.p.) • Morphine, DAMGO (ex vivo) |
↓ [35S]GTPγS binding in NAc Shell, CPu, amygdala, PFC, but not hippocampus, with morphine in Tat mice | Mouse, Tat tg, males | (Hahn et al. 2016) |
Neuroinflammation; morphine tolerance (antinociception), physical withdrawal, reward | Tat1–86 | No | Morphine (75 mg pellet, 5 days) |
• ↑ Tolerance (↓ anti-nociceptive potency and ↓ withdrawal symptoms) • ↑ CPP and cytokines (24 h after withdrawal) • Above effects reduced by CCR5 blockade |
Mouse, Tat tg, males | (Gonek et al. 2018) |
Neuropathy | gp120 (0.2 μg), q.d. intrathecally | No | Morphine (3 μg, intrathecally, b.i.d., 5 days) |
• ↑ Mechanic allodynia • ↑ Brd4 mRNA |
Rat, males, gp120 | (Takahashi et al. 2018) |
Morphine efficacy, potency | Tat1–86 | No | Morphine (acute, 2–8 mg/kg s.c.) | ↓ Antinociceptive potency and efficacy (tail flick) | Mouse, Tat tg, males | (Fitting et al. 2012) |
Morphine tolerance, physical dependence | Tat1–86 | No | Morphine (75 mg pellet, 4 days) |
• ↑ Antinociceptive tolerance • ↓ Physical dependence |
Mouse, Tat tg, males | (Fitting et al. 2016) |
Locomotor function | Tat1–86 | No | Oxycodone (0–10 mg/kg, i.p., 15 min prior behavioral assay) | ↑ Locomotor activity, center entries (open field) | Mouse, Tat tg, females | (Salahuddin et al. 2020) |
SIVmacR71/17E | No | Morphine (escalating doses of 1–2.5 mg/kg i.m., q.i.d., 59 weeks) | ↓ Motor skill | Rhesus macaques | (Marcario et al. 2016) | |
Tat1–86 | No | Oxycodone (acute, 0.1–10 mg/kg, i.p.) | ↑ Psychomotor effects | Mouse, Tat tg, females | (Paris et al. 2020) | |
BBB integrity | Tat | No | Morphine (25 mg pellet, 5 days) | ↑ Dextran extravasation across the blood-brain barrier | Mouse, Tat tg females | (Leibrand et al. 2019) |
Immune cell trafficking into CNS | Tat | No | Morphine |
• ↑ Infiltration of monocytes and T cells into S. pneumoniae-infected CNS with morphine • ↑ T cell CXCR4 and CCR5 expression with morphine |
Mouse, CNS infection (S. pneumoniae), males | (Dutta and Roy 2015) |
ARV accumulation | Tat |
DTG ABC 3TC |
Morphine (2 mg/day, s.c.. osmotic pump, 5 days) | ↓ Dolutegravir and abacavir, but no change in lamivudine in brains of morphine-treated animals | Mouse, Tat tg females | (Leibrand et al. 2019) |
Circadian rhythms | Tat1–86 | No | Morphine (25 mg pellet, last 5 days) | ↓ Total wheel-running activity | Mouse, Tat tg, males | (Duncan et al. 2008) |
aassumed Clade B, unless noted otherwise; b sex not reported; c authors reported a trend that was not significant
ABC, abacavir; ARV, antiretroviral(s); BBB, blood-brain barrier; b.i.d., twice a day; Brd4, Bromodomain-containing protein 4; CPu, caudate-putamen; CNS, central nervous system; CPP, conditioned place preference; CM, conditioned medium; CSF, cerebrospinal fluid; DAMGO [D-Ala2, N-MePhe4, Gly-ol]-enkephalin; DRD2L, type 2 dopamine receptor; DTG, dolutegravir; HIVE, HIV encephalitis (typically seen pre-cART); HSPA5, heat shock 70-kDa protein A 5; IDU, injection drug use; i.m., intramuscularly; i.p., intraperitoneal; Iba1, ionized calcium-binding adapter molecule 1; 3TC, lamivudine; MHC class II, major histocompatibility class II; mIPSC, miniature inhibitory postsynaptic currents; MOR, μ-opioid receptor; No info, information not provided or uncertain; OST, opioid substitution therapy; OUD, opioid use disorder; PFC, prefrontal cortex; PENK, preproenkephalin; q.d., once a day; q.i.d., four times a day; ROS, reactive oxygen species; s.c., subcutaneous; SUD, substance use disorder; tg, transgenic; t.i.d., three times a day; ZDV, zidovudine
For practicality, Tables 1 and 2 are limited to key studies in the CNS with emphasis on neuropathological or neuroimmune rather than psychosocial outcomes. With deference toward the excellent studies we excluded: (1) on opioid and HIV effects on peripheral blood mononuclear cells (PBMCs), or on isolated lymphocytes and monocytes, not directly related to the central nervous system or BBB; (2) on HIV or opioid and ARV interactions in the peripheral nervous system; and (3) studies not directly examining opioid-HIV interactions (irrespective of whether a positive or negative interaction was found)