Table 2.
Major effects | HIV pathogena | ARV | Opioids | Outcome | Model system (in vitro) | Citation(s) |
---|---|---|---|---|---|---|
Mixed-Glia | ||||||
HIV expression | HIV | No |
• Dynorphin • U50,488 (KOR agonists) |
• ↑ HIV-1 expression, • Dynorphin (KOR agonist) ↑ TNF-α, IL-6 mRNA and protein |
Human fetal neural cells, HIV-infected promonocyte (U1) line | (Chao et al. 1995) |
HIVSF162 | No |
• U50,488 • U69,593 • Dynorphin1–17; (KOR agonists) • Morphine |
• KOR agonists ± TNF-α differentially ↓ HIV p24 | Human, primary mixed neurons and glia | (Chao et al. 1998a) | |
Chemokines | Tat1–86 | No | Morphine |
• ↑ CCL5, CCL2 • ↑ [Ca2+]i (Beclin1 dependent) • ↓ Autophagy |
Mouse, primary mixed glia | (Lapierre et al. 2018) |
HIVSF162 (R5) | No | Morphine |
• ↑ HIV-1 Tat-induced LTR expression • ↑ CCR5 expression (inhibited by bivalent ligand in astrocytes) • ↑ IL-6 • ↑ CCL5 |
Human, primary mixed glia | (El-Hage et al. 2013) | |
Glial restricted precursors: survival & MOR, DOR, KOR expression | Tat1–72 | No | Morphine (acting via DOR and/or KOR) |
• ↑ Caspase-3 activation & ↑ cell death by Tat or morphine via DOR, KOR • No opioid-Tat interactions |
Mouse, primary glial precursors | (Buch et al. 2007) |
MOR expression in NPCs; NPC survival and developmental fate |
Tat1–72 | No | Morphine |
• MOR expressed by subsets of NPCs • ↑ Astrocyte and immature glial death |
Mouse, primary mixed glia | (Khurdayan et al. 2004) |
MOR and CCR5 interactions | Tat1–86 (from HIVIIIB) | No | Morphine | • ↓ Neuronal survival via CCR5 activation in glia (rescued by BDNF treatment) | Mouse, primary neurons and glia | (Kim et al. 2018) |
HIV infectivity MOR-CCR5 dimerization | HIVSF162 (R5) | No |
Morphine CCR5-MOR bivalent ligand 1b |
• MOR-CCR5 bivalent ligand blocks HIV infection in astroglia, but not microglia, with morphine • MOR-CCR5 bivalent ligand blocks the fusion of HIV gp160 and CCR5-CD4-expressing HEK cells |
Human, primary astrocytes and microglia; HEK-293T cells | (Yuan et al. 2013; Arnatt et al. 2016) |
HIV expression and maturational fate of neurons and astroglia | HIVBaL (R5) | No | Morphine |
• ↑ HIV p24 and ↑ Tat mRNA levels with morphine after 21 days • ↓ Proliferation of neural progenitors; ↑ astroglial and ↑ neuronal differentiation |
Human, neural progenitors | (Balinang et al. 2017) |
Astrocytes | ||||||
HIV expression | HIVSF162 (R5) | No | Morphine |
• ↑ HIV p24 • ↑ CCL2 |
Human, primary astrocytes | (Rodriguez et al. 2017) |
Toll-like receptor (TLR) expression/function |
• Tat1–72 • gp120 |
No | Morphine |
• ↑ TLR2 with Tat, Tat + morphine, gp120 • ↓ TLR9 with Tat, morphine, gp120 |
Mouse, primary astrocytes | (El-Hage et al. 2011a) |
Chemokines | Tat1–72 | No | Morphine |
• ↑ CCL5, CCL2 • ↑ IL-6 • ↑ [Ca2+]i |
Mouse, primary astrocytes | (El-Hage et al. 2005) |
Tat1–72 | No | Morphine |
• ↑ CCL2 • ↑ CCL5 • ↑ Microglial migration |
Mouse, primary astrocytes | (El-Hage et al. 2006a) | |
Tat1–72 | No | Morphine |
• ↑ CCL2, ↑ IL-6, ↑ TNF-α • ↑ [Ca2+]i • ↑ NF-κB trafficking and transcription • No interaction / acceleration with morphine |
Mouse, primary astrocytes | (El-Hage et al. 2008b) | |
Tat | No |
• U50,488 (KOR agonist) • Nor-BNI (KOR antagonist) |
• U50,488 ↓ CCL2 • U50,488 ↓ NF-κB |
Human, primary astrocytes | (Sheng et al. 2003) | |
N/A | No | Morphine |
• ↑ CCR5, CCR3, CXCR2 • ↓ IL-8, CCL4 |
Human, astrocytoma U87 cell line, primary astrocytes | (Mahajan et al. 2002) | |
• Tat1–86 • gp120IIIB |
No | Morphine | Regional differences in cytokine and ROS production —differed for each insult | Mouse, primary astrocytes | (Fitting et al. 2010a) | |
Oxidative stress / damage | Tat1–72 | No |
• DPDPE • SNC-80 (DOR agonists) |
DOR agonists ↓ Tat-induced oxidative stress | Human derived brain cell line (SK-N-SH) | (Wallace et al. 2006) |
Inflammation, maturation /plasticity |
• Tat86 • Tat101 |
No | Morphine | ↓ β-catenin signaling and variably decreases TrkB, BDNF, and NLRP1 mRNA in fetal astrocytes b | Human, U87MG and fetal astrocytes | (Chen et al. 2020) |
Microglia | ||||||
HIV replication | HIVSF162 (R5) | No |
• Endomorphin-1 • Endomorphin-2 (MOR agonists) |
• ↑ HIV p24 with endomorphin-1, but not endomorphin-2 • Endomorphin-1 acts via MOR, but not DOR / KOR |
Human, primary microglia | (Peterson et al. 1999) |
HIVSF162 (R5) | No | Morphine | ↑ HIV p24 | Human, primary microglia | (El-Hage et al. 2014) | |
HIVSF162 (R5) | No |
• U50,488; U69,593 (KOR agonists) • Dynorphin Al-13 |
↓ HIV p24 | Human, primary microglia | (Chao et al. 1996b) | |
• HIVJR-FL (R5) • gp120 |
No | β-endorphin |
• ↑ HIV expression • ↑ HIV p24 (14-day post infection) • gp120 ↑ IL-1, TNF, IL-6 |
Human, fetal microglia | (Sundar et al. 1995) | |
HIVSF162 | No |
• 8-CAC, U50,488 (KOR agonists) • Cocaine |
• KOR agonist ↓ p24; blocked by KOR antagonists • KOR agonist negates cocaine-induced ↑ HIV |
Human, fetal brain microglia | (Gekker et al. 2004) | |
HIVSF162 | No |
OPRL1 antisense Nociceptin / orphanin FQ (OPRL1 agonist) |
• OPRL1 antisense (and sense) ↓ p24 • Nociceptin, no effect on p24 |
Human, fetal brain microglia and mixed neurons/glia | (Chao et al. 1998b) | |
HIV expression |
• HIVSF162 • Tat |
ZDV | U50,488 (KOR agonist) |
• ↓ p24 on day 14 with U50,488 • ↓ Neurotoxicity (U50,488) • ↓ Quinolinate by microglia |
Human, fetal microglia and neural cells | (Chao et al. 2000) |
Chemokines and Cytokines | Tat1–72 | No | Morphine |
• ↑ CCR5 • ↑ CD11b, ↑ CD40 • ↑ TNF-α, ↑ IL-6, ↑ IP-10 • ↑ iNOS |
Mouse, BV-2 and primary microglia | (Bokhari et al. 2009) |
MOR signaling | Tat1–72 | No | Morphine |
• ↑ MOR (intracellular) • ↑ MOR mRNA |
Mouse, N9 and primary microglia | (Turchan-Cholewo et al. 2008) |
Oxidative Stress | Tat1–72 | No | Morphine |
• ↑ ROS [O2− (DHE), ↑ HO2•, H2O2 (DCF)] • ↑ Protein carbonyls |
Mouse, N9 and primary microglia | (Turchan-Cholewo et al. 2009) |
Glutamate release | Tat1–72 | No | Morphine | ↑ Glutamate release via ↑ xc− cystine-glutamate antiporter expression/function | Mouse, primary microglia | (Gupta et al. 2010) |
Neurons | ||||||
HIV expression | HIV | No | Morphine | ↑ HIV expression | Human derived, SH-SY5Y neuroblastoma cells | (Squinto et al. 1990) |
Homeostasis and Injury | Tat1–86 | No | Morphine |
• ↑ [Ca2+]i, • ↑ [Na+]i • ↓ ΔΨm (mitochondrial) instability • ↑ Dendritic degeneration |
Mouse, primary neurons | (Fitting et al. 2014a) |
Mitochondrial inner membrane potential and ROS |
• Tat1–86, Tat1–72 • gp120 |
No | Morphine | ↑ ΔΨm instability and oxidative stress ↑ with Tat + morphine, ↑ neuroprotection with allopregnanolone | Human, primary neurons ; mouse, striatal medium spiny neurons; mouse, striatal medium spiny neurons, SH-SY5Y neuroblastoma cells | (Turchan-Cholewo et al. 2006; Paris et al. 2020) |
Neuronal survival | Tat1–86 | No | Morphine |
• ↓ Neuronal survival from Tat + morphine and ↓ glial CX3CL1 rescued by CX3CL • CX3CL1 (fractalkine) regulates microglial motility |
Mouse, primary neurons and mixed glia | (Suzuki et al. 2011) |
Tat1–86 | No | Morphine |
• ↓ Proliferation • ↑ ERK1/2 activation • ↑ p53 and p21 • ↓ Cyclin D1 and Akt levels |
Human, neuronal precursors | (Malik et al. 2014) | |
Tat1–72, Tat1–86 | No | Morphine |
• ↓ Neuronal survival • ↑ Neuronal survival with ibudilast (AV411) (inhibiting glial NF-κB blocks Tat ± morphine neurotoxicity) |
Mouse, primary neurons and mixed glia | (Gurwell et al. 2001; El-Hage et al. 2014) | |
White matter/oligodendroglial pathology | ||||||
Changes in OL survival and morphology | Tat1–86 | No | Morphine (25 mg pellet, 7 days); morphine (in vitro) |
• ↑ Degeneration of OLs • ↑ TUNEL reactivity • ↑ Caspase-3 activation |
Mouse, Tat tg; primary OLs | (Hauser et al. 2009) |
Blood-brain barrier and the neurovascular unit | ||||||
BBB model integrity and function | Tat1–86 | No | Morphine |
• ↑ TNF-α • ↑ IL-8 • ↓TEER • ↑ JAM-2 expression • ↑ Monocyte transmigration with CCL5 |
Human, using primary BMVEC and primary astrocytes | (Mahajan et al. 2008) |
ARV accumulation | Tat1–86 |
DTG FTC TFV |
Morphine | • ↓ Intracellular ARV concentrations | Human, primary astrocytes | (Patel et al. 2019) |
HIV-1 strain differences | ||||||
Neuronal Survival | Tat1–86 (clades B & C) | No | Morphine |
• ↓ Neuronal survival via MOR on mixed glia • ↑ ROS in astrocytes • ↑ Iba1 and 3-NT microglia with morphine |
Mouse, primary neurons and mixed glia | (Zou et al. 2011) |
• gp120IIIB • gp120MN (X4) • gp120ADA (R5) |
No | Morphine | ↓ Neuronal survival in presence of glia with gp120MN and transiently with gp120IIIB (X4), not R5-tropic gp120, in combination with morphine | Mouse, primary neurons and mixed glia | (Podhaizer et al. 2012) | |
Proliferation and maturational fate of neural progenitors and oligodendroglia |
• HIVSF162 (R5) • HIVIIIB (X4) |
No | Morphine |
• ↓ Proliferation of immature neural and OL progenitors with Tat + morphine • ↓ NPC DNA synthesis with R5-tropic HIV + morphine • ↑ NPC DNA synthesis with X4-tropic HIV + morphine |
Mouse, Tat tg; Mouse, Human, primary neural progenitors | (Hahn et al. 2012) |
GABA function |
• HIVBaL (R5) • gp120 (ADA, MN, and IIIB) • Tat1–86 |
No | Morphine |
• Tat or morphine ↓ KCC2 levels via CCR5 • ↑ KCC2 prevents Tat and R5 HIV, gp120, but not X4, gp120 neurotoxicity ± morphine |
Human, primary neurons, hNPCs | (Barbour et al. 2020) |
Astroglial CCL5 and neuroprotection |
• gp120IIIB (X4) • gp120BaL (R5) |
No |
• Morphine (10 μM) • DAMGO |
• Morphine ↑ astroglial CCL5 blocking gp120BaL neurotoxicity • Morphine (or CXCL12) does not block gp120IIIB neurotoxicity |
Rat, mixed neurons and glia; isolated neurons, astrocytes and microglia | (Avdoshina et al. 2010) |
aassumed Clade B, unless noted otherwise, b statistical findings for some results are unclear
ARV, antiretroviral(s); BMVEC, brain vascular endothelial cells; [Ca2+]i intracellular calcium concentration; 8-CAC, 8-carboxamidocyclazocine; DAMGO, D-Ala2, N-MePhe4, Gly-ol]-enkephalin; DCF, dihydro-dichlorofluorescein; DOR, δ-opioid receptor; DHE, dihydroethidium; DTG, dolutegravir; DPDPE, [D-Pen2,D-Pen5]enkephalin; FTC, emtricitabine; GABA, γ-aminobutyric acid; Iba1, ionized calcium-binding adapter molecule 1; JAM-1, junctional adhesion molecule-1; KCC2, K+-Cl− cotransporter 2; KOR, κ-opioid receptor; LTR, long terminal repeat; ΔΨm, mitochondrial inner membrane potential; MOR, μ-opioid receptor; [Na+]i, intracellular sodium concentration; nor-BNI, nor-binaltorphimine; NPCs, neural progenitor cells; OLs, oligodendroglia; ROS, reactive oxygen species; TEER, transendothelial electrical resistance; TFV, tenofovir; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; ZDV, zidovudine
For practicality, the table is limited to key studies in the CNS with emphasis on neuropathological or neuroimmune rather than psychosocial outcomes. With deference toward the excellent studies we excluded: (1) on opioid and HIV effects on PBMCs, or on isolated lymphocytes and monocytes, not directly related to the central nervous system or BBB; (2) on HIV or opioid and ARV interactions in the peripheral nervous system; and (3) studies not directly examining opioid-HIV interactions (irrespective of whether a positive or negative interaction was found)