
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:14408  | https://doi.org/10.1038/s41598-020-71347-6

www.nature.com/scientificreports

Quantifying drug tissue 
biodistribution by integrating 
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Quantitatively determining in vivo achievable drug concentrations in targeted organs of animal 
models and subsequent target engagement confirmation is a challenge to drug discovery and 
translation due to lack of bioassay technologies that can discriminate drug binding with different 
mechanisms. We have developed a multiplexed and high-throughput method to quantify drug 
distribution in tissues by integrating high content screening (HCS) with U-Net based deep learning 
(DL) image analysis models. This technology combination allowed direct visualization and 
quantification of biologics drug binding in targeted tissues with cellular resolution, thus enabling 
biologists to objectively determine drug binding kinetics.

To achieve a desirable therapeutic response, a drug must first distribute to the intended tissue or organ, bind to 
the cell surface or intra-cellular proteins, and then induce a cascade of intracellular and/or intercellular reactions 
to modulate disease processes. Due to the complexity of the disease tissue microenvironment, as well as drug 
metabolism and clearance, in vitro drug-cell binding assays or ex vivo tissue lysate assays barely recapitulate 
in vivo drug distributions, thus impeding the development of predictable correlation models between drug 
dosing and therapeutic efficacy or adverse effects1–5. In vivo and ex vivo radiography or total fluorescent-based 
tissue imaging methods have been generally used to visualize and quantify drug distribution in tissues obtained 
from animal models; however, due to low resolution (millimeter scale), these technologies neither correlate 
drug binding with cell types of interest, nor differentiate specific vs. non-specific drug binding, making data 
interpretation complicated6–9.

The image resolution of multi-color confocal fluorescent microscopy is in the submicrometer scale and ren-
ders this technology an ideal tool for the study of drug distribution with cellular resolution on tissues collected 
from animal models. Furthermore, this technology would enable correlations of drug loading with therapeutic 
efficacy by co-staining with pharmacodynamics (PD) biomarkers. However, the throughput of traditional con-
focal fluorescent imaging is limited, and the development of image analysis algorithms is time consuming and 
requires considerable coding skill to develop software for each case. Therefore, multi-color confocal bioimaging 
technology has not become the main tool for quantifying drug distribution in animal models.

High content screening (HCS) or automated microscope-based screening technology10 has been broadly 
used to visualize drug binding in recombinant cell lines or primary cells with well-controlled cell density (thus 
controlled space between cells) in each well of a microtiter plate. Furthermore, a spectrum of nucleus-centric and 
automated image analysis tools have been developed and successfully applied for different biological processes, 
including quantification of drug binding11. However, these nucleus-centric, high-throughput image analysis 
methods lack the flexibility needed for complex tissues in which different cell types are tightly packed. Therefore, 
segmentation of nuclei in tissue using current HCS-based approaches is an insurmountable challenge.
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Recent advances in deep learning (DL)-based image analysis provides a path forward to more effectively 
quantify drug biodistribution by multiplexed fluorescent imaging. Without coding, a DL model can automati-
cally identify various tissue/cellular features by learning from annotated images, and then defining relevant 
structures12–16. Therefore, DL-based image analysis approach likely would allow biologists to accurately and 
objectively quantify drug distribution in specific tissues.

In this report, we detailed the applications of U-Net on quantifying drug biodistribution. U-Net is a Con-
volutional Neural Network (CNN)-based architecture developed to perform segmentation and detection tasks 
on microscopic images of cellular and tissue biosamples12,16. In addition to the conventional component (the 
encoder) of CNN that extracts various features from input images, U-Net has multiple layers of up-convolutions 
(the decoder) that increase spatial resolution at the succeeding layers. Consequently, the output images have the 
same spatial resolution as that of the input ones. Therefore, each pixel in the input images can be classified into 
different biological components by a U-Net model. This level of details allows one to determine drug binding in 
complex tissues with cellular resolution.

The present work provides a generic, high-throughput quantification method for biologics drug distribution 
in complex animal tissues by integrating HCS-based multi-color tissue imaging technology with the U-Net based 
imaging analysis algorithm.

Results
Adaptation of HCS for tissue image acquisition.  Cadherin 17 is a protein mainly expressed in the 
gastrointestinal tract. Here, we use whole slice colon and small intestine tissues obtained from mice treated with 
Alexa 647 dye labeled anti-cadherin 17 antibody (αCDH-A647) as models to illustrate the utility of a generic 
drug quantification method. Frozen whole slice tissue samples from the gastrointestinal tract represents one 
type of complex disease tissue17. First, nuclear and epithelial cell structures are highly variable due to differences 
in cell cycle, location in the tissue, disease stage and orientation in the cut tissue slice (Fig. 1e). Second, drug is 
often trapped in interstitial spaces (Fig. 1d). Finally, large-sized frozen tissues often cannot adequately adhere to 
a microscope glass slide. The “wavy” tissue slides may result in blurry images.

Prior to image acquisition by PerkinElmer’s Opera PHENIX HCS reader, tissue nuclei were stained with 
DAPI and total lumen epithelial areas were marked by anti-EpCAM antibody tagged with Alexa 488 dye. Stained 
tissues were placed in a slide holder with standard microtiter plate footprint (Fig. 1a, b). To increase image 
acquisition throughput without sacrificing image quality, Harmony PRECISCAN, a PHENIX built-in pattern 
recognition image processing software for automated pre-scan and re-scan of regions-of-interest (ROI), was used 
to streamline the process. This software first performed a low magnification (air objective lens 5X, NA = 0.16) 
tissue topography survey (x, y & z locations) based on all nuclear stains to define ROI (Fig. 1c). Based on this 
preliminary survey, a second round of multi-color image acquisition on the ROI was performed at a higher 
magnification (water objective lens 20X, NA = 1.0) (Fig. 1d). This method eliminated lengthy high magnification 
image acquisition on the entire microscope glass, and facilitated fast zoom-in to the optimal focusing plane. To 
normalize vignetting optical signals across the image of the whole tissue slice prior to image analysis, a montage 
image of the ROI was captured with 10% overlap between field-of-views (FOV) for subsequent image analysis 
processing (Fig. 1d). An advanced flat-field correction function built-in Harmony software was also applied to 
all FOVs. With this approach, it took 30 min to complete a 4-color image acquisition for one 1 cm × 1 cm tissue 
area, at least 6 times faster than a standard tissue slide scanner in its fluorescent mode.

Development of DL‑based image analysis.  Transfer learning was performed to repurpose U-Net, an 
open source DL model, for HCS-based tissue imaging analysis. In order to develop a scalable imaging annota-
tion process, ImageJ was adapted as an enabling tool for biologists to handcraft the features-of-interest. Beside 
auto contrast, no other special treatment was performed on the images prior to manual depiction on features-
of-interest. Manual image annotation was conducted using ImageJ located on a desktop computer. Guided by 
a pathologist, biologists first selected slides with the most abundant phenotypes on typical colon or intestine 
cellular and tissue structures, then annotated these slides using two methods. First, segmentation of epithelial 
regions was achieved by using “Freehand Selection” function in ImageJ to outline the EpCAM stained epithe-
lial areas. Second, each nucleus was identified by point clicking DAPI stained nuclei using the “Multi-Point” 
function. Facilitated by a U-Net ImageJ plug-in, annotated images were loaded to U-Net models12,16 hosted on 
an Amazon Web Services Elastic Compute Cloud (AWS EC2) instance with GPU. These images were used for 
model training or validation (Fig. 2a). One U-Net model was fine-tuned and validated to segment epithelial 
regions with EpCAM staining, another model was attuned and validated to detect nuclei stained with DAPI. 
For the model on epithelium segmentation, 9 colon images (3 each from distal, medial and proximal sections 
of colon) were used for fine-tuning the model, and 4 images each from colon (2 proximal, 1 distal and 1 medial 
sections) and small intestine (2 duodenum, 1 jejunum and 1 ileum sections) were used for testing and validation. 
With 6,000 iterations and a learning rate at 10–5, the model achieved an acceptable performance on the valida-
tion set. The resulting Intersection-Over-Union (IOU)12 score was 0.88 (Fig. 2b) for colon and 0.85 for small 
intestine. IOU is a commonly used metric to quantify the performance of machine learning and deep-learning 
models on object segmentation. An IOU value of 1 indicates a perfect model, and greater than 0.8 is broadly 
considered as a high quality model. For the model on nuclei counting, 5 colon images (2 proximal, 2 distal and 1 
medial sections) were used for fine-tuning and 1 image each from colon (proximal section) and small intestine 
(duodenum section) were used for testing and validation. With 10,000 iterations and a learning rate at 10–5, the 
model also achieved a satisfactory performance on the validation image. The manual and U-Net counts on nuclei 
across 16 regions of the validation image set were highly correlated (R2 = 0.70, P < 0.0001) (Fig. 2c). Overall, it is 
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determined that the DL-based nuclear detection and epithelial region segmentation was about 500 times faster 
than manual operation.

Application of DL models for quantifying drug biodistribution.  To apply the fine-tuned model for 
a production run analysis, the biologists opened new images in ImageJ and chose the model in the plug-in along 
with appropriate parameters. The plug-in then guided the images, the model name and parameters to the AWS 
EC2 host for model inference (analysis and result extrapolation). The outputs subsequently were presented by 
the plug-in as images and/or coordinates of the detected structures (Fig. 3a1–a3). After identification of nucleus 
and epithelial areas, nucleated epithelial regions were determined by dilating 7 μm in radius from the identified 
nucleus to the approximate size18 of an entire cell (Fig. 3b1). αCDH-A647 that co-localized with these nucleated 
epithelial regions was considered as specific on-target binding that would lead to desirable therapeutic efficacy 
and the rest of αCDH-A647 were non-specific binding (Fig. 3b2). The corresponding αCDH-A647 distribution 
in the nucleated epithelial regions per μm2 was visualized by a histogram (Fig. 3c). Finally, the time courses of 
αCDH-A647 occupancy were determined in whole colon proximal and small intestine duodenum tissue sec-
tions (Figs. 3d, S1 and S3). Although the time courses and degrees of αCDH-A647 occupancy were very similar 
between whole colon and small intestine tissue slices, within each tissue type, αCDH-A647’s distribution was 
highly heterogeneous (Figs. S1, S2).

Figure 1.   Automated tissue image acquisition using HCS. (a) A whole frozen colon tissue slice from a 
αCDH-A647 treated animal was mounted to a standard microscope slide and stained with anti-EpCAM and 
DAPI. (b) A slide holder with standard microtiter plate footprint was built to house 4 tissue slides in order to 
facilitate automated image acquisition using the PHENIX HCS reader. (c) A 5 × air objective lens was applied to 
localize all nuclei (blue), thus defining ROI and providing an optimal Z height starting point. Side images are 
orthogonal views of maximum nuclear intensity at different Z heights. (d) Automated multi-color (blue: nucleus; 
green: EpCAM; red: αCDH-A647) rescan on ROI guided by PRECISCAN was conducted using a 20 × water-
immersion objective lens. Images from all FOVs were then montaged for analysis. Yellow arrow points to one 
example of an area where αCDH-A647 was trapped in the interstitial space. (e) Different features of nuclei (top) 
and epithelia (bottom).
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Discussion
This quantitative and high throughput tissue image analysis method can be generalized for drug distribution 
studies in different tissue types in animal models. The high throughput and whole tissue slice imaging technol-
ogy allows one to appreciate the heterogeneity of drug binding within selected organs from different animals. 
Coupling with multiplexicity and superior resolution provided by confocal HCS technology, the deep learning 
nature of image analysis tolerates some degree of blurriness associated with frozen tissue images as well as vari-
ations from different FOVs, allows exclusion of non-specifically trapped drug in interstitial spaces, and more 
importantly, enables differentiation of drug binding to desirable and undesirable cell types.

Standard technologies, such as total fluorescent (Fig. S3) or radiography-based bioimaging8 methods could 
provide ROI-level spatial resolutions for drug biodistribution studies. However, due to image resolution limita-
tions, these technologies cannot provide cell-level spatial resolution needed for discriminating different drug 
binding modes and associated therapeutic mechanism of actions. The technology described in this manuscript 
provides significant advantages over the standard technologies by enabling cell-level quantification, thus more 
accurate interpretation of drug binding course. The multiplexed capability of HCS would allow co-detection of 
downstream cellular events, such as target engagement or pharmacodynamic biomarkers. Together with more 
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Figure 2.   U-Net based image analysis workflow. (a) Raw images of colon or small intestine with DAPI stained 
nuclei and anti-EpCAM stained epithelial were annotated separately by biologists using ImageJ. Annotated 
images were used to fine-tune or to validate U-Net models residing in AWS EC2. (b) The performance of 
epithelium segmentation was evaluated with Intersection Over Union (IOU). (c) The performance of nucleus 
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precise assessment of drug binding, this integrated technology would enable one to more accurately correlate 
drug binding with therapeutic efficacy or adverse effects.

Methods
Slide preparation.  The anti-CDH17 antibody was raised in house and fully validated. It was labeled with 
Alexa Fluor 647 dye using succinimidyl ester method following manufacturer’s instruction (ThermoFisher, 
catalog # A20006). The Alexa Fluor 647 conjugated anti-CDH17 antibody (αCDH-A647, antibody to fluoro-
phore ratio = 1:4) was injected into mice at 3 mg/Kg concentration, which was pre-selected based on balances 
between efficacy and toxicity. Colon and small intestine tissues were collected from different mice treated with 
αCDH-A647 for 2, 24 and 48 h. The tissues were then frozen, and sectioned to 5 μm slices prior to staining. A 
FITC conjugated EpCAM antibody (ThermoFisher, catalog # 11-5791-82) was used to detect epithelial cells in 
the colon and small intestine. Nuclei were labeled with DAPI.

Image acquisition.  Image acquisition of the microscope slide was conducted on the Opera PHENIX™ HCS 
imager (PerkinElmer, Waltham, MA) equipped with laser microlens confocal and a large 4.7 Mpixel CMOS cam-
era. Fluorescent dyes used for labeling tissues were matched with appropriate laser excitation light sources and 
complementary emission filters [Nucleus (DAPI): ex 375 nm, em 435–480 nm; drug (αCDH-A647): ex 640 nm, 
em 650–760 nm; epithelial cells (EpCAM-FITC): ex 488 nm, em 500–550 nm]. To increase image acquisition 
throughput, a slide holder housing four slides per run was used (Fig. 1a, b). The accompanying image acquisition 
and image analysis software called Harmony 4.9 (PerkinElmer, Waltham, MA) was used to streamline the image 
capture process. PRECISCAN, a method built-in Harmony 4.9, was used to pre-scan and re-scan ROI auto-
matically. The software first performed a low magnification (air objective lens 5 ×, NA = 0.16) tissue topography 
survey (x, y & z locations) based on all nuclear stains to define ROI. Based on this preliminary survey, a sec-
ond round of multi-color image acquisition on the ROI was performed at a higher magnification (water objec-
tive lens 20X, NA = 1.0). This method prevented lengthy image acquisition on the entire microscope slide, and 
facilitated the identification of the optimum focus plane. To minimize vignetting optical signals across the whole 
tissue slice, a montage image of the ROI was captured with 10% overlap between FOVs for subsequent image 
analysis (Fig. 1d). An advanced flat-field correction function built-in Harmony 4.9 was also applied to all FOVs.

Figure 3.   Example of applying U-Net models to determine drug biodistribution in production run. (a–c), a 
FOV on proximal section of colon tissue obtained from mouse dosed with 3 mg/Kg αCDH-A647 for 24 h. (a1) 
Full color image of the FOV acquired by HCS (red: αCDH-A647; green anti-EpCAM; blue: DAPI). (a2) Nuclei 
identified by a U-Net model (yellow cross). (a3) Epithelial region segmented by another U-Net model (grey 
color zone). (b1) Identification of nucleated epithelial region in the FOV—yellow: nuclear areas approximated 
from detected nuclei; blue: segmented epithelial regions; red: selected nucleated epithelial regions by overlapping 
yellow and blue. (b2) Image of αCDH-A647 (red) with nuclei (blue) in the FOV. (c) Histogram of αCDH-A647 
biodistribution in the FOV was obtained by overlapping αCDH-A647 in (b2) with nucleated epithelial regions 
in (b1). (d) Time courses of αCDH-A647 occupancy in nucleated epithelial cells of the whole colon proximal 
and small intestine duodenum tissue sections.
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Image analysis.  We installed the U-Net package on an AWS EC2 according to https​://lmb.infor​matik​.uni-
freib​urg.de/resou​rces/opens​ource​/unet/. The package was constructed in Caffe deep-learning framework (https​
://arxiv​.org/abs/1408.5093), using weighted soft-max cross-entropy as the loss function to optimize the network 
parameters12. It included a model trained with 2-dimentional tissue images of various modalities, 2D Cell Net 
(v0), from which our epithelial and nuclear models were fine-tuned with annotated images acquired by HCS. As 
previously described12, fine-tuning, validation and application of the U-Net model were facilitated with a GUI 
provided by an ImageJ plug-in so that a user without coding experience can carry out the entire process. For 
training, the user opened a group of annotated images in ImageJ, and assigned them as training or validating 
image sets in the plug-in. The plug-in then sent the image sets along with user-provided parameters to the AWS 
EC2 where the pre-trained models were fine-tuned and validated. To apply a fine-tuned model for production 
run analysis, the user opened a new image in ImageJ and chose the model in the plug-in along with appropri-
ate parameters. The plug-in then sent the images, the model names and parameters to the EC2 host for infer-
ence. The outputs of the inference were presented by the plug-in as images and/or coordinates of the detected 
structures. Performance of epithelial segmentation was measured by the Intersection Over Union (IOU)12,19, the 
intersection of predicted segmentation and ground-truth annotation divided by their union. To compare man-
ual and U-Net detection of nuclei, the annotated region in the testing image was divided into 16 squares of 104 
microns across. The pair of manual and U-Net counts of nuclei in each square was plotted to calculate R2 value.

Mice and ethics statement.  The animal studies were approved by the Bristol-Myers Squibb Animal Care 
and Use Committee, and all methods were performed in accordance with National Institutes of Health Guide for 
the Care and Use of Laboratory Animals (National Academies Press, Washington, DC, 8th Ed.).
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