Skip to main content
. 2020 Jun 22;123(5):860–867. doi: 10.1038/s41416-020-0937-0

Table 3.

Comparisons of lifetime risk classification between ML-Adapt Boosting (ML-ADA) algorithm and the BOADICEA model (reference standard) for the breast cancer-free cohort.

Risk age Near-population risk BOADICEA risk < 17%, N = 21,283 Moderate risk 17% ≤ BOADICEA risk < 30%, N = 11,685 High-risk BOADICEA ≥ 30%, N = 3178
ML-ADA < 17% 17%≤ ML-ADA < 30% ML-ADA ≥ 30% ML-ADA < 17% 17%≤ ML-ADA < 30% ML-ADA ≥ 30% ML-ADA < 17% 17%≤ ML-ADA < 30% ML-ADA ≥ 30%
20–29 (n = 4 959) 2181 430 215 372 1050 233 17 41 420
30–39 (n = 5 277) 2069 645 430 407 989 256 18 34 429
40–49 (n = 6 410) 2466 832 625 442 1191 326 20 44 464
50–59 (n = 7 025) 2681 899 751 535 1243 337 25 49 505
60–69 (n = 6 436) 2037 745 849 570 1326 349 23 43 494
70–80 (n = 6 039) 2116 871 441 465 1233 361 21 48 483
Total 13,550 4422 3311 2791 7032 1862 124 259 2795
Concordance 63.67% 60.18% 87.95%
Reclassification 20.78% 15.56% 23.89% 15.93% 3.90% 8.15%

– Does not apply.

N = 36,146. ML machine learning, BOADICEA Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm, ADA adaptive boosting.