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American mastodon mitochondrial genomes
suggest multiple dispersal events in response to
Pleistocene climate oscillations
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Pleistocene glacial-interglacial cycles are correlated with dramatic temperature oscillations.
Examining how species responded to these natural fluctuations can provide valuable insights
into the impacts of present-day anthropogenic climate change. Here we present a phylo-
geographic study of the extinct American mastodon (Mammut americanum), based on 35
complete mitochondrial genomes. These data reveal the presence of multiple lineages within
this species, including two distinct clades from eastern Beringia. Our molecular date esti-
mates suggest that these clades arose at different times, supporting a pattern of repeated
northern expansion and local extirpation in response to glacial cycling. Consistent with this
hypothesis, we also note lower levels of genetic diversity among northern mastodons than in
endemic clades south of the continental ice sheets. The results of our study highlight the
complex relationships between population dispersals and climate change, and can provide
testable hypotheses for extant species expected to experience substantial biogeographic
impacts from rising temperatures.

TMcMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, Hamilton, ON L8S 419, Canada. 2 Department of
Biology, McMaster University, Hamilton, ON L8S 418, Canada. 3 Department of Biochemistry, McMaster University, Hamilton, ON L8S 4L8, Canada. 4Yukon
Palaeontology Program, Department of Tourism and Culture, Government of Yukon, Whitehorse, YT Y1A 2C6, Canada. 5Research and Collections, Canadian
Museum of Nature, Ottawa, ON K2P 2R1, Canada. © Center of Excellence in Paleontology and Department of Geosciences, East Tennessee State University,
Johnson City, TN 37614, USA. 7 Department of Anthropology, McMaster University, Hamilton, ON L8S 4L9, Canada. 8 Arbor Biosciences, Ann Arbor, Ml
48103, USA. ® Quaternary Palaeontology Program, Royal Alberta Museum, Edmonton T5) 0G2, Canada. '© Institute of Arctic Biology, University of Alaska
Fairbanks, Alaska, AK 99775, USA. n Department of Geosciences, University of Alaska Fairbanks, Alaska, AK 99775, USA. 12 University of Alaska Museum,
University of Alaska Fairbanks, Alaska, AK 99775, USA. 13 Laboratorio de Arqueozoologia, SLAA, Instituto Nacional de Antropologia e Historia, Ciudad de
México 06600, México. '* Gantz Family Collections Center, Field Museum of Natural History, Chicago, IL 60605, USA. > North Dakota Geological Survey,
Bismarck, ND 58505, USA. '© Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, M| 48109,
USA. 77 School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia. '® Department of Mammalogy/Vertebrate Zoology,
American Museum of Natural History, New York, NY 10024, USA. ®email: karpine@mcmaster.ca; poinarh@mcmaster.ca

| (2020)11:4048 | https://doi.org/10.1038/s41467-020-17893-z | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17893-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17893-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17893-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17893-z&domain=pdf
http://orcid.org/0000-0002-9463-2636
http://orcid.org/0000-0002-9463-2636
http://orcid.org/0000-0002-9463-2636
http://orcid.org/0000-0002-9463-2636
http://orcid.org/0000-0002-9463-2636
http://orcid.org/0000-0002-2961-0078
http://orcid.org/0000-0002-2961-0078
http://orcid.org/0000-0002-2961-0078
http://orcid.org/0000-0002-2961-0078
http://orcid.org/0000-0002-2961-0078
http://orcid.org/0000-0002-2582-2954
http://orcid.org/0000-0002-2582-2954
http://orcid.org/0000-0002-2582-2954
http://orcid.org/0000-0002-2582-2954
http://orcid.org/0000-0002-2582-2954
http://orcid.org/0000-0002-6521-8516
http://orcid.org/0000-0002-6521-8516
http://orcid.org/0000-0002-6521-8516
http://orcid.org/0000-0002-6521-8516
http://orcid.org/0000-0002-6521-8516
http://orcid.org/0000-0001-6499-5260
http://orcid.org/0000-0001-6499-5260
http://orcid.org/0000-0001-6499-5260
http://orcid.org/0000-0001-6499-5260
http://orcid.org/0000-0001-6499-5260
http://orcid.org/0000-0002-4989-3191
http://orcid.org/0000-0002-4989-3191
http://orcid.org/0000-0002-4989-3191
http://orcid.org/0000-0002-4989-3191
http://orcid.org/0000-0002-4989-3191
http://orcid.org/0000-0001-5137-8378
http://orcid.org/0000-0001-5137-8378
http://orcid.org/0000-0001-5137-8378
http://orcid.org/0000-0001-5137-8378
http://orcid.org/0000-0001-5137-8378
http://orcid.org/0000-0002-9095-489X
http://orcid.org/0000-0002-9095-489X
http://orcid.org/0000-0002-9095-489X
http://orcid.org/0000-0002-9095-489X
http://orcid.org/0000-0002-9095-489X
http://orcid.org/0000-0003-3507-8919
http://orcid.org/0000-0003-3507-8919
http://orcid.org/0000-0003-3507-8919
http://orcid.org/0000-0003-3507-8919
http://orcid.org/0000-0003-3507-8919
http://orcid.org/0000-0001-5378-0520
http://orcid.org/0000-0001-5378-0520
http://orcid.org/0000-0001-5378-0520
http://orcid.org/0000-0001-5378-0520
http://orcid.org/0000-0001-5378-0520
http://orcid.org/0000-0002-0361-2307
http://orcid.org/0000-0002-0361-2307
http://orcid.org/0000-0002-0361-2307
http://orcid.org/0000-0002-0361-2307
http://orcid.org/0000-0002-0361-2307
http://orcid.org/0000-0002-0314-4160
http://orcid.org/0000-0002-0314-4160
http://orcid.org/0000-0002-0314-4160
http://orcid.org/0000-0002-0314-4160
http://orcid.org/0000-0002-0314-4160
mailto:karpine@mcmaster.ca
mailto:poinarh@mcmaster.ca
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

nthropogenic climate change is causing considerable

increases to the earth’s mean surface temperatures! and

ecological stress®>. As a consequence, many species are
experiencing demographic declines or extinction, or are shifting
their ranges into regions that have become more habitable given
new environmental conditions®-®. Although human practices
have been the primary cause of global temperature changes over
the past century, the phenomenon of large-scale, climatically
driven environmental change has occurred numerous times, at
varying temporal scales, during the Quaternary period (the last
2.6 million years). The largest changes involved the alternation of
glacial and interglacial intervals, which for the past 800 thousand
years (ky) have operated on cycles of ~100 ky’. These cycles
resulted in periodic ice-sheet expansion across ~50% of the
habitable land in North America® and fluctuations in global mean
annual temperatures of greater than 10 °C%-11.

The high-magnitude climate changes associated with
glacial-interglacial cycles also resulted in dramatic rearrangement
of North American terrestrial ecosystems and vegetation zona-
tion!2. Furthermore, these climate changes had substantial
impacts on the amount of habitable land available as glacial
formation and advance, coupled with global sea level drop,
enabled new continental shelf lands to emerge during Pleistocene
cold periods. Inversely, periods of climatic warming, such as those
during previous interglaciations, resulted in climatic and bio-
geographic configurations across the continent similar to those
experienced today. Examining the phylogeographic and demo-
graphic impacts of these major climatic oscillations on ancient
populations can inform our understanding of how species
respond to this scale of change and aid in the construction of
predictive frameworks.

Ancient DNA recovered from fossil bones and teeth enables us
to directly examine the genetics of extinct species over long
periods of time. These methods can provide a nuanced under-
standing of responses (e.g., migration and extinction) to climatic
stressors during the Pleistocene, and have already revealed
demographic trends that are not easily recovered with traditional
palaeontological techniques!3-16. Most phylogeographic studies
of North American Pleistocene taxa have focused on species
adapted to grassland or steppe-tundra, and their responses to the
arrival of humans and terminal Pleistocene warming!317-19, Yet
past climate change, particularly intervals of sharply increasing
temperatures such as that which occurred during Marine Isotope
Stage (MIS) 5e (Sangamon interglacial) ~125,000 years ago (kya),
is also likely to have had substantial impacts on megafaunal
populations!42021, This kind of climate-driven pressure would
have especially applied to species adapted to forests and mixed
woodland habitats, because these biomes, which greatly expanded
during warmer interglacial intervals, were subsequently replaced
or rendered inaccessible during subsequent glaciations!2-20.

American mastodons (Mammut americanum) were an iconic
part of wooded and swampy habitats in Pleistocene North
America??-24, with remains recovered from the Central American
subtropics to the Arctic latitudes of Alaska and Yukon2%-23, Stable
isotope data, dental morphology, and microwear analyses reveal
some regional and chronological variation or flexibility in diet,
although C; woody browse vegetation (e.g., spruce trees) seems to
have been preferred?>-28. Like most proboscideans, the mastodon
was a keystone species and served an important role in main-
taining the integrity and diversity of its preferred habitats?>2%30,

According to recent palaeontological investigations, mastodons
and mammoths displayed contrasting responses to cyclical
glacial-interglacial climatic shifts. Temporal analyses of masto-
don distribution patterns within the American midcontinent3!
and eastern Beringia (present-day unglaciated areas of Alaska and
Yukon)?? have inferred that American mastodons briefly

expanded into high latitudes during the last interglaciation (MIS
5), but underwent regional extirpation when climates became
much colder during the last glaciation (i.e., MIS 4 to MIS 2),
surviving thereafter only in lower-latitude temperate regions in
North America. These extirpations were likely caused by climate-
driven changes in vegetation at the onset of glaciation, which, by
contrast, favoured the spatial expansion of mammoths and other
grazing species adapted to steppe-tundra. However, these argu-
ments remain difficult to test empirically. This is particularly the
case for eastern Beringia where there is often little or no chron-
ostratigraphic context for mastodon fossils, and which regularly
return age estimates greater than the effective limit of radiocarbon
(14C) analysis (i.e., >50,000 years ago)20. Alternative dating
methods, such as optically stimulated luminescence, may even-
tually prove useful but have yet to be applied to questions
like these.

Here, we present an alternative approach to testing models of
expansion—-extirpation due to glacial-interglacial cycling, using
detailed phylogeographic analysis and Bayesian clock dating of
American mastodon mitochondrial genomes. Our findings sug-
gest that American mastodons repeatedly expanded into northern
latitudes in response to interglacial warming. However, we also
note that northern clades have extremely low levels of genetic
diversity, highlighting an important consideration for the con-
servation of modern species exhibiting similar dispersal patterns.

Results

Mastodon phylogeography. Subsamples from fossil bones and
teeth of American mastodons were obtained from museums,
universities, and government institutions across North America
(Supplementary Data 1). Complete mitochondrial genomes were
sequenced from 33 of 122 specimens (~27% success rate), with
completeness defined as >80% sequence coverage of the M.
americanum mitochondrial reference (GenBank accession
NC_035800), at a minimum coverage depth of 3x (Fig. 1la;
Supplementary Fig. 2). Alignments contained 1492-51,113
uniquely mapped reads, with the short inserts (mean fragment
sizes 37.26-76.63 bp) and terminal cytosine deamination that are
characteristic of authentic ancient DNA (Supplementary Methods
—Sequence Authenticity and Map Damage). Partial sequences
were also obtained from another 12 specimens, ranging from 46
to 580 uniquely mapped reads, but these were excluded from all
subsequent analyses (Supplementary Table 31).

We identified five well supported major clades in the
mitogenomic phylogeny (Fig. 1b), through a combination of
maximum-likelihood and Bayesian methods (Supplementary
Methods—Phylogenetic Analyses). We named the five clades by
the approximate geographic provenance of their constituent
specimens (i.e., A Alaska, Y Yukon, G Great Lakes, M Mexico, L
Alberta/Missouri). We included two specimens from Virginia
(southeastern USA; ETMNH 19334 and ETMNH 19335) in Clade
G, due to the lower support for their monophyly. We also
tentatively assigned a single specimen, NSM092GF182.011 from
Nova Scotia (eastern Canada), dated to 74.9+5.0ky32 to a
separate Clade N. This specimen is geographically and temporally
distinct; given the deep divergence that we estimate for this
lineage, it is likely to represent a separate group of east coast
mastodons from the Sangamon interglacial of MIS 5.

The phylogenies inferred by Bayesian and maximum-
likelihood methods were consistent, except for the placements
of the two specimens in Clade M (DP1296 and RAM P97.7.1).
When the tree is rooted with a Mammuthus (mammoth)
outgroup, Clade M is rendered paraphyletic, albeit with low
bootstrap support (79%). However, the monophyly of this clade is
supported by midpoint-rooted trees inferred using maximum
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Fig. 1 Phylogeographic relationships of American mastodons. a Locations of specimens included in this study. Circles indicate specimens for which
complete mitochondrial genomes were obtained, coloured according to their clade assignment. Stars indicate previously sequenced specimens (EF632344,
Alaska; NC_035800, Massachusetts). The locations of specimens from Alberta and eastern Beringia have been jittered to aid visualisation (see
Supplementary Fig. 2 for an unmodified version). b Phylogenetic tree inferred by the Joint analysis. Median posterior ages are given for major nodes in the
tree. Support values for each node represent posterior probabilities from the Joint (PP,1) and Individually Dated (PP,p) analyses. The 8'80 record for the
last 3.5 million years is shown below the tree’, with the approximate extent of the MIS 5 interglacial period shaded in grey. Clades identified in this study
are designated by colour and named where possible by the geographic provenance of their members (i.e., A Alaska, Y Yukon, G Great Lakes, M Mexico, N
Nova Scotia, L Alberta/Missouri). Specimens with finite radiometric or geological ages are indicated with asterisks.

likelihood, as well as by Bayesian methods (Fig. 1b; Supplemen-
tary Methods—Phylogenetic Analyses).

We find evidence of broad phylogeographic structure, with
mastodons from neighbouring localities generally being more
closely related. This trend is also observed in North American
mammoths33, as well as in African3* and Asian elephants3?, and
is due to the matrilocal nature of proboscidean herds. A
matrilocal herd structure for mastodons has also previously been
argued based on difference in tusk growth profiles between males
and females upon reaching sexual maturity>°, and relationships in
preserved trackways37. Notably, female proboscidean philopatry
also results in deep divergences between clades®® and possibly
explains the deep divergences that we observe in mastodons.

Despite the limited geographic dispersal expected within
proboscidean matrilines, we identify two independent and
genetically divergent clades (A and Y) that consist primarily of
specimens from eastern Beringia. Clade Y is grouped with Clades
G, L, and N, and diverged from Clade A between 1.37 million
years ago (95% HPD interval: 857-1881 kya, when the ages of all

undated ancient samples are estimated simultaneously in a “Joint”
analysis) and 609 kya (95% HPD interval: 335-998 kya, when the
ages of undated ancient samples are “Individually Dated”).

Specimens from Alberta are found in three of the five well-
defined clades (L, M, and Y; Fig. 1), highlighting a complex
ecological and biogeographical history that could not have been
recovered from the palacontological record alone. Notably, central
Alberta was the site of maximum convergence of the Laurentide
and Cordilleran ice sheets, and contained the earliest deglaciated
corridor connecting areas north and south of the ice sheets
following latest Pleistocene deglaciation8. Previous work on Bison
has shown that this region was also the site of dynamic range
changes in response to this last deglaciation episode, with rapid
population expansions into the region from both Beringian and
southern areas coinciding with glacial retreat!®!%. While further
research is required to determine whether these findings also apply
to other taxa and time periods, the phylogenetically divergent
placements of Alberta mastodons suggest that this region was one
of immense biological fluidity for this species as well.
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Mastodon sample-age estimation. To explain the extirpation of
American mastodons in eastern Beringia during the last glacia-
tion, Zazula et al.20 proposed a palaeoecological model that tied
mastodon occupation generally to the MIS 5 interglacial, when
the regional vegetation would have been dominated by mixed
boreal forests and wetlands3®. Assuming that mastodon presence
in Beringia varied with vegetation type, the question becomes
whether there was a repeated pattern of mastodon expansion and
extirpation corresponding to the ~100 ky glacial-interglacial cycle
(Fig. 2). Evidence for extending the palaeoecological model in this
way should include both a temporal signal (i.e., high-latitude
mastodon presence should correlate with known interglacial
intervals) and a biogeographic signal (i.e., high-latitude popula-
tions ought to display lower levels of genetic diversity than
southern populations, as a consequence of restricted subsets of
matrilocal herds expanding northward as environmental condi-
tions ameliorated).

Mastodon specimens from eastern Beringia and Alberta were
determined by radiocarbon analysis to be greater than 50,000
years old, or analytically nonfinite, and are often found out of
stratigraphic context?>40, In the absence of any other applicable
direct-dating method associated with a large date archive, we used
a molecular clock analysis*!#? to estimate the ages of high-
latitude specimens. Although molecular dating tends to produce
date estimates that are less precise than those of some radiometric
or geological methods, its accuracy has been demonstrated in
studies of simulated and molecular data?! as well as morpholo-
gical data*?. Additionally, in cases where little to no temporal
information is available, estimating the ages of undated specimens
allows the inclusion of these specimens when they would
otherwise need to be excluded from molecular dating analyses.
We used two separate approaches to estimate the ages of the
undated specimens: one where the dates of all specimens were
estimated simultaneously (Joint; JT), and one where we estimated
the dates of specimens individually before analysing all of the
samples together (Individually Dated; ID).

Median posterior ages for the east Beringian Clade Y
mastodons ranged between 98-130ky (JT) and 74-91ky (ID)
(Fig. 3), falling within the boundaries of the MIS 5 interglacial, the
last major extended warm period prior to the Holocene’.
Although the 95% HPD intervals of the age estimates for
individual samples are wide (combined Beringian mastodon 95%
HPD range—]JT: 50-219 ky; ID: 50-125 ky), their probability
density is concentrated around times that correspond well with
MIS 5, with the mode of each distribution also being located
within the timespan of the MIS 5 interglaciation (Supplementary
Table 42). Additionally, while the Joint analysis also includes a
small subset of ages corresponding to the previous interglacial
(MIS 7; ~191-243kya)” within some specimens’ 95% HPD
interval, these ages are not recovered in the Individually Dated
analysis. These findings strongly suggest that mastodon habita-
tion in Eastern Beringia coincided with interglacial periods, as
expected under our palaeocological model.

East Beringian mastodons in Clade A had much older posterior
age estimates than Beringian mastodons in Clade Y. Median ages
for UAMES 11095 were 586 ky (JT 95% HPD interval: 329-800
ky) and 267 ky (ID 95% HPD interval: 152-410 ky), and median
ages for UAMES 30197 were 558 ky (JT 95% HPD interval:
292-784 ky) and 254 ky (ID 95% HPD interval: 142-397 ky).
However, the 95% HPD intervals of the ages of these specimens
were much wider than those of specimens in Clade Y, spanning
many more glacial and interglacial periods, and making it difficult
to tie them to any specific marine isotope stage. Nevertheless, the
ages of both specimens have 95% HPD intervals that do not
overlap with those of east Beringian mastodons in Clade Y, which
suggests that mastodons in these two clades are temporally

distinct. Combined with their divergent positions in the
phylogeny, these results are consistent with Clade A mastodons
being part of a separate colonisation event during an earlier
interglaciation.

The Joint and Individually Dated analyses both estimate young
ages for two mastodon individuals in Clade G. AMNH 988 has a
median posterior age of 28 ky (JT 95% HPD interval: 13-71 ky)
and 17 ky (ID 95% HPD interval: 13-27 ky), while UM13909 has
median posterior ages of 43 ky (JT 95% HPD interval: 13-94 ky)
and 21 ky (ID 95% HPD interval: 14-38 ky). In all analyses,
however, the posterior age densities for these specimens have
greater probability mass toward younger values and abut the
lower bound at 13ky, a hard limit based on the age of the
youngest specimen in the dataset, INSM 71.3.261. These results
are broadly consistent with the expected ages of these two
specimens, given the radiometric and geological ages of other
mastodons in this clade. Nevertheless, the shapes of the posterior
age distributions suggest that these specimens might actually be
younger than 13 ky.

Alberta mastodons were estimated at a range of ages,
congruent with an interpretation of highly dynamic biogeo-
graphic landscape characterised by population turnover. How-
ever, we note that the limited number of specimens from this
region, the wide 95% HPD intervals of their ages, and their
scattered positions across the phylogeny make it difficult to tie
them to specific periods. Specimen RAM P94.16.1B had a greater
median posterior age (JT: 208 ky; ID: 117 ky) than other
mastodons within its clade, although its 95% HPD interval
overlapped those of other Clade Y mastodons (JT: 119-311 ky;
ID: 82-163 ky). The widths of the 95% HPD intervals and their
overlap also varied between the two analyses, and in their
association with either the MIS 5 or MIS 7 interglacial. However,
should this specimen ultimately be shown to date to MIS 7, it
would suggest successive colonisation events from the same or a
similar source population.

The Alberta sample RAM P94.5.7 had a median posterior age
estimate similar to those of mastodons in Clade A (JT: 474 ky; ID:
221 ky), but also with a wide 95% HPD interval that makes it
difficult to associate with any particular marine isotope stage.
However, unlike the separation between Beringian mastodons in
Clade Y and Clade A, the 95% HPD intervals of the ages of RAM
P94.16.1B and RAM P94.5.7 do overlap by 37 ky (JT) and 35 ky
(ID), making their separation more uncertain.

The posterior density of the age of sample RAM P97.7.1 had a
mode within the MIS 5 interglacial age boundaries (Supplemen-
tary Table 42), but with a very wide 95% HPD interval (JT:
50-467 ky; ID: 50-763 ky). As with mastodons in Clades A and L,
this pattern is likely to be due to its phylogenetic position and
deep divergence from the majority of calibration points in the
dataset.

Genetic diversity within Mastodon clades. Under a model of
repeated expansion and extirpation, northern clades of masto-
dons would be expected to have lower levels of genetic diversity.
This pattern would be consistent with repeated expansion of
small founder matriarchal herds in response to climatic warming
during interglaciations, and the transient nature of their occu-
pation of northern latitudes. Genetic diversity is expected to be
higher among samples from regions south of the continental ice
sheets that were likely to have been inhabited by populations of
mastodons throughout the Pleistocene. We examined levels of
nucleotide diversity within our dataset to test this hypothesis.
Clade Y had a low nucleotide diversity () of m=8.79 x 107>
substitutions per site (standard deviation (SD)=8.9x 107>
substitutions per site) or 1.01 x 10~% substitutions per site (SD
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Fig. 2 Model of mastodon extirpation and expansion in response to glacial cycles. a Global stack of benthic foraminifera §'80 for the last 1 million years,
which tracks changes in deep-water temperature and global ice volume. The y-axis has been inverted so that periods of low ice buildup (and higher
temperatures—red) are at the top of the graph, and periods of greater ice buildup (and lower temperatures—blue) are at the bottom. Marine Isotope Stage
(MIS) extents are indicated with black bars above (interglacials) or below (glacials) the §'80 record. §'80 values and MIS terminations can be found in
Lisiecki and Raymo’. One full glacial cycle is represented, showing the change from glacial (b) to interglacial (€) conditions, followed by a fall back into
another glaciation (d). North American ice-sheet cover at each stage (¢, d) is approximated from recorded 880 to similar conditions during the transition
out of the last glaciation8, or from published simulations where available (b)6>. The ecological implications of these transitions are summarised in (e, f),
with mastodons being able to occupy most of eastern Beringia and Canada during interglacials (e), but progressively extirpated from these regions as
conditions descend into the next glacial period (f). Populations would either need to retract to unglaciated regions south of the ice sheets or north to

temporarily unglaciated refugia which would be unlikely to support mastodon populations throughout long glaciations.

=9.38 x 10> substitutions per site) when including the poten- in clade G, which contains mastodons from south of the ice
tially temporally distinct Alberta specimen (RAM P94.16.1B)  sheets, their endemic range. This was the case when either
(Fig. 4). The genetic distance between the two mastodons in clade  including (7 = 1.17 x 10~3 substitutions per site; SD = 7.87 x 10
A was also quite small (1.24 x 10~ substitutions per site). By ~—4 substitutions per site) or excluding (7 = 8.09 x 10~ substitu-
comparison, there were much higher levels of nucleotide diversity  tions per site; SD = 5.31 x 10~4 substitutions per site) the two
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mastodons from Virginia. This is consistent with expectations of
small numbers of matrilocal mastodons expanding northward in
response to glacial retreat, and also supports previous palaeoe-
cological models of environments inhabited by northern
mastodons.

Discussion

Our sequencing and analysis of 33 mitochondrial genomes of the
American mastodon, Mammut americanum, provides a frame-
work for interpreting the genetic diversity of the species across
space and time. We have identified six mitochondrial clades that
span nearly the entire North American continent, from Alaska to
Mexico. The two predominantly eastern Beringian clades are
likely to have originated from separate expansions of mastodons
into the region. We also note that the individuals from Alberta
are distributed across the phylogenetic tree, highlighting the
dynamic nature of American mastodon dispersal between
southern and northern latitudes. Our proposed clade nomen-
clature may need revision as further mitochondrial genomes are
sequenced, and as geographic and temporal gaps are filled. This
applies especially to specimens in Clade M, which have a deep
coalescence time and may stand as sole representatives of mul-
tiple lineages that are deeply divergent from the remaining
mastodons.

Our analyses add further support for the model?? that pro-
posed that American mastodons only occupied higher latitudes
(i.e., Canada and Alaska) during interglacials, when prevailing
warm climatic conditions supported the establishment of forests

and wetlands. The presence of temporally distinct clades in
Alaska and Yukon indicates that the inferred pattern of expansion
during warm interglaciations, followed by local extirpations and
range contraction to the south during colder times, was likely to
have been a recurring scenario. We infer that this was a major,
and perhaps widespread, biological response to global glacial-
interglacial cycling that affected many species in eastern Beringia
(e.g., western camel Camelops hesternus;?! giant beaver Castor-
oides ohioensis*3). Similar processes presumably occurred in
Eurasia, with warm-adapted species such as hippopotamuses and
hyaenas episodically expanding their ranges northward during
earlier interglaciations into previously ice-dominated areas like
the British Isles and Scandinavia®4-46, However, this pattern also
poses further questions: for example, why were species that had
managed to repeatedly expand into the northernmost parts of
North America during previous interglacials unable to do so
following the return to interglacial conditions after the last glacial
maximum (~21 kya)? Were they already in severe decline? More
critically, will similar trends be seen in extant browsers?

At present, numerous bird®, fish, and mammal
communities*’# in northern North America are undergoing
rapid restructuring in response to climatic warming. Moose*’ and
beavers*3, iconic members of present-day northern boreal forest,
have expanded their ranges northward by hundreds of kilometres
in the last few decades alone. Our data suggest that regional
expansion of at least some southern, temperate populations into
northern latitudes is a probable outcome of the warmer and
wetter conditions of today. However, populations at the
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expansion front are likely to be a subset of the current global
diversity of these species, leaving them vulnerable if more
genetically diverse southern populations are eventually lost. The
phylogeographical history of Pleistocene megafauna can serve as a
useful example for understanding the ecological responses of
present-day species, and can generate testable hypotheses about
the consequences of anthropogenic environmental impacts.

Methods

Sample acquisition and subsampling. Mastodons were subsampled at each of the
institutions that contributed specimens to this study (Supplementary Data 1).
Subsamples were then sent to the McMaster University Ancient DNA Centre, with
all further processing conducted in dedicated ancient DNA clean rooms.

DNA extraction and processing. Specimens were processed using a variety of
wet-lab methodologies in an attempt to maximise the probability of successful
DNA extraction, and as new techniques were developed and modified to overcome
issues with DNA recovery, inhibition, and poor endogenous preservation. Between
30 and 349.9 mg of material were demineralised and digested in successive rounds
with 0.5 M EDTA or a Proteinase K digestion buffer. Supernatants were pooled and
extracted using either organic or two different guanidinium-silica based extraction
methods#?>0. UDG-treated and non-UDG-treated libraries were prepared using
double-stranded®!>2 or single-stranded methodologies®>*%, with some modifica-
tions from in-house optimisation. Following indexing, all libraries underwent 1-2
rounds of in-solution enrichment with a comprehensive proboscidean bait set33, to
increase the relative abundance of the degraded endogenous fraction. Full methods
for each sample are given in Supplementary Data 1 and the Supplementary
Methods.
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Sequence mapping and curation. Demultiplexed reads were trimmed and merged
with leeHom?>, using the ancient DNA flag, and the double-stranded or single-
stranded library adaptor sequences as appropriate. Reads were then mapped against
the M. americanum mitochondrial reference genome (NC_035800) using a
network-aware version of BWA>® (https://github.com/mpieva/network-aware-bwa)
with common ancient DNA settings: maximum edit distance of 0.01 (—n 0.01), a
maximum of two gap openings (—o 2), and seeding effectively disabled (-1 16500).
Mapped reads that were either merged or properly paired were extracted using the
retrieveMapped_single_and_ProperlyPair programme of libbam (https://github.
com/grenaud/libbam). Replication duplicates were then removed based on unique
5" and 3’ positions (https://bitbucket.org/ustenzel/biohazard/src/master/), and fil-
tered to remove sequences below a minimum length of 24 bp and mapping quality
of 30. Specimens with multiple libraries were combined at this point, and underwent
additional duplicate removal if they contained the same index pair (Supplementary
Methods—Reference Guided Mapping).

Alignments were imported into Geneious v6.1.5 and manually curated to
remove any sequencing artefacts. Regions below our requirement of 3x minimum
depth coverage were masked with Ns. Due to stacking observed in conserved
mitochondrial regions (e.g., 16S rRNA, D-loop), we further masked any positions
with coverage depths greater than three standard deviations from the mean that
displayed multiallelic variants (Supplementary Methods—Sequence Curation). The
variable number tandem repeat (VNTR) region of each sequence was masked with
Ns in accordance with the NC_035800 reference. Final consensus sequences were
obtained using the majority base call at each position.

Model selection and phylogenetic analyses. The 33 new mitochondrial genomes
were aligned with the only two mastodon mitochondrial genomes previously
published, MAS1 (NC_035800) and IK-99-237 (EF632344), using MUSCLE
v3.8.31°7. Model selection was performed using jModelTest v2.1.4°8 with the
corrected Akaike information criterion. The HKY + G model was chosen for all
subsequent analyses.
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The phylogeny was inferred by maximum-likelihood analysis using IQ-TREE
v1.6.6°°. We used two approaches to root the tree, either by midpoint-rooting or by
including an outgroup comprising two mammoth mitochondrial genomes
(NC_007596 and NC_015529). In each case, node support was estimated using
1000 bootstrap replicates.

Both of the sequence alignments were also used for Bayesian phylogenetic
inference in BEAST v.1.8.0°% using an HKY + G4 model, a constant population
size tree prior, a strict clock model, and default specifications for all priors
(Supplementary Methods—Phylogenetic Analyses). The analysis was run for 10
million steps sampling every 1000 states.

Sample-age estimation. We compared coalescent tree priors and clock models by
calculating their marginal likelihoods using generalised stepping-stone sampling®!
(Supplementary Methods—Model Testing With GSS) in BEAST v.1.10.5%2. We ran
two separate age-estimation analyses. In the first approach, we jointly estimated the
ages of all of the undated specimens in a single analysis (Joint; JT). We specified
gamma prior distributions (shape = 1; scale = 200,000) for the ages of the undated
samples. The ages of these samples were also bounded at 800 ky (the upper limit of
successful ancient DNA recovery) and at 50 ky (the approximate limit of radio-
carbon dating), with the exception of AMNH 988 and UM13909 which had a lower
limit of 0 ky. In all cases, bounds were scaled relative to the age of the youngest
specimen in the dataset (INSM 71.3.261 at 13 ky). Samples with known radio-
carbon ages were calibrated using Calib v7.0.493, then the ages of these specimens
were treated as point values based on their median ages.

In our second approach, we estimated the age of each specimen individually in
an analysis that included the dated specimens. We then used the marginal posterior
densities of the ages of the individual samples to specify the priors for the ages of
these samples in a combined analysis of all samples (Individually Dated; ID).

Both analyses were run with the HKY + G substitution model and empirical
base frequencies. We chose a constant population size tree prior and a strict clock
model, with uniform distributions for the associated population size prior
(Uniform [1, 1 x 10°]) and the substitution rate prior (Uniform [4 x 10710, 8 x 10
—8]), while all other remaining priors were left at their default distributions. To
allow for more efficient sampling of unknown specimen ages, their weight was
increased to 5. The chain length was increased to 500 million steps (sampling every
10,000), and all analyses were run in duplicate.

Nucleotide diversity. Pairwise distances between all American mastodon mito-
chondrial genomes were calculated using the dist.dna() function in the R package
ape®. Distances were calculated using the F84 model. Sites with missing data were
deleted in a pairwise manner. For clades containing more than two mastodons,
nucleotide diversity was calculated as the mean of all pairwise distances between
specimens in that clade.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Mastodon specimens examined in this study were obtained from the external institutions
listed in Supplementary Data 1. All requests for access to the material should be made to
the external institution that houses the material. Final consensus sequences for all
complete mastodon specimens have been uploaded to NCBI with GenBank accessions
MN616941-MN616973 (Supplementary Table 1). Raw sequencing reads for each
complete mitochondrial genome were also uploaded to the SRA (BioProject:
PRJNA578413). New radiocarbon dates are reported in Supplementary Table 44. Two
previously published American mastodon mitochondrial genomes (GenBank accessions
NC_035800 and EF632344) were also analysed in this study. Two mammoth
mitochondrial genomes (NC_007596 and NC_015529) were used in some phylogenetic
analyses as outgroups.

Code availability
No new software was generated during the course of this study. Custom scripts used to
produce nucleotide diversity graphics are available are available at: https://github.com/
ekarpinski/MastoScripts.
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