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Imaging nodal knots in momentum space through
topolectrical circuits
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Knots are intricate structures that cannot be unambiguously distinguished with any single
topological invariant. Momentum space knots, in particular, have been elusive due to their
requisite finely tuned long-ranged hoppings. Even if constructed, probing their intricate lin-
kages and topological "drumhead” surface states will be challenging due to the high precision
needed. In this work, we overcome these practical and technical challenges with RLC circuits,
transcending existing theoretical constructions which necessarily break reciprocity, by pairing
nodal knots with their mirror image partners in a fully reciprocal setting. Our nodal knot
circuits can be characterized with impedance measurements that resolve their drumhead
states and image their 3D nodal structure. Doing so allows for reconstruction of the Seifert
surface and hence knot topological invariants like the Alexander polynomial. We illustrate our
approach with large-scale simulations of various nodal knots and an experiment which maps
out the topological drumhead region of a Hopf-link.
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ARTICLE

n the pursuit of ever more exotic topological states, con-

temporary research has witnessed a shift from established

topological insulator platforms with 7Z or Z, topology to
photonic, mechanical, and acoustic metamaterials!~3 that mimic
topological nodal semimetals*~10. The conceptual transfer from
conventional electronic materials to such artificial structures
allows for unprecedented control over individual couplings, and
further permits access to any spectral regime of the band struc-
ture without limitations, as, e.g., implied by the chemical potential
for electronic matter. The recent introduction of electric circuits
for topological engineering!!-17 brought about even greater
accessibility and fine tuning, as well as much reduced cost. Most
importantly, however, circuit connections transcend locality and
dimensionality constraints, putting the implementation of cou-
plings between distant sites of a high-dimensional system and
nearest-neighbor connections on equally accessible footing. Fur-
thermore, density of states divergences!'® and even admittance
bandstructure!>!® can be obtained with just impedance and
voltage/current measurements, respectively.

Among topological structures, knots rank as among the most
exotic, being intimately connected to Chern-Simons theory which
underlies the braiding of quasiparticles2?21. In real space, knots
are ubiquitous, being present in protein and polymer structures,
optical vortices?? and, of course, everyday-life ropes. In
momentum space, knotted configurations of band structure
crossings (nodes) demonstrate their topological intricacies even
more spectacularly, with their special “drumhead” surface modes
generalizing the Fermi arcs of ordinary nodal semimetals.

To realize and image momentum space nodal knots in RLC
circuits, two challenges have to be overcome. First, RLC circuits
are reciprocal due to their components being symmetric from
both ends, but mathematical models of nodal knots proposed
thus far23-27 imply broken reciprocity. This apparent limitation
has prevented nodal knot circuits from being developed so far,
despite successes in non-knotted nodal loop circuits and meta-
materials?8-31. Second, the momentum knots are subextensive 1D
features of the 3D Brillouin zone (BZ), and great finesse is
required in imaging them.

In this work, we show how these challenges can be overcome
via (i) a special scheme for designing nodal knots circuits with
mirror-image partners, (ii) a new robust impedance measurement
approach for imaging nodal knots and their accompanying
drumhead surface states, and (iii) an instructive experimental
demonstration of how the topological drumhead region of a
nodal knot can imaged.

Results

Designer nodal knots from braids. The most natural route to
realizing momentum space knots is via a 3D lattice with band
intersections (nodes) along particular knotted trajectories. A
generic reciprocal lattice with band intersections minimally
contains two sites per unit cell, and can be written as a reciprocal
(momentum) space graph Laplacian

J(k) =l T+ Ref(K)7, + Imf (k) (1)

where [, is a uniform offset, f(k) is an even function of k, and
T,, T, are the Pauli matrices. Nodes occur whenever its two

eigenvalues (bands) [+ \/[Ref(k)]2 + [Imf (K)]* =: I, = [f (k)]
coincide, i.e., yielding a vanishing gap 2|f(k)] = 0. This is a
complex constraint equivalent to the intersection of two level sets
given by Re f(k) = 0 and Im f(k) = 0, which hence traces out a
1D nodal line in the 3D BZ. Note that we have excluded 7, terms,
which will break the nodal line into isolated Weyl points. Gen-
erically, the locus of f{k) = 0 can correspond to broken arcs or
arbitrarily intertwined closed loops. The topologically most

interesting cases occur when a loop links nontrivially with itself,
forming a nodal knot, or when multiple loops inseparably
entangle to form a nodal link. In the following, we shall first show
how f(k) can be constructed based on a desired knot or link
structure, without restricting ourselves to any particular physical
implementation. Subsequently, we show why its corresponding
Laplacian J(k) can be most suitably implemented by an RLC
circuit.

To design f(k), the first step is to unambiguously specify a
desired knot or link. Intuitively, we can visualize a knot/link as a
braid closure®?, i.e., as a collection of intertwining strands with
their permuted ends joined together. (Fig. 1: The number of
linked components is equal to the number of cycles in the
decomposition of the permutation.) The precise sequence of the
strand crossings identifies the knot/link, and is annotated as a
braid word ¢ 05 ..., with o; indicating that the it string crosses
above the (i+1)th string from the left, and o;! if the crossing is
from below. Two non-adjacent crossings commute: 0;0; = 0;0; for
li — jl =2; less obvious is the braid relation o;0;0; = 0;0,0; which
plays a fundamental role in the Yang-Baxter equation®. Note
that due to the braid relation, as well as Markovian moves that
swap the closing strands®*, more than one braid word can
correspond to a desired knot. Nevertheless, the specification of
the braid uniquely identifies the knot. For instance, o? gives the
Hopf-link, while o3 gives the Trefoil knot (Fig. 1).

The next step is to find an explicit form of f(k) that gives the
knot/link corresponding to a desired braid. Mathematically, the
knot/link exists as the kernel of the mapping f: T° — C, which
maps k in the 3D BZ T onto a complex number f(k). To make
sure that f incorporates the information from the braid, we
decompose it into a composition of mappings

KN EN] (2)
ie, f(k) = f(F(k)) where F(k) = (z w) maps k onto two
complex numbers z(k) and w(k) in an auxiliary braiding space,
which then yields f via the braiding map f(z(k), w(k)) = f(k). To
concretely understand this decomposition, we first note that a
braid closure lives in the space Cx ', since the position of N
strands can be given by complex coordinates z,(s), z5(s), . . . , 2n(5),
where s € [0, 2] is the periodic vertical “time” coordinate
(Fig. la). Each braid operation corresponds to two half-
revolutions (windings) between two particles i.e. o;" corresponds
to ziy1 — z; — €*(z;,| — z;) with increasing s. We thus define

f(z,w) by analytical continuation to complex s = —ilogw as
sy is N
fle.e) =TT (2 - 2(5). (3)

such that points satisfying the nodal constraint f(z,w) =0 lie
exactly along the trajectories z(s). To use Eq. (3), one expresses each
zj(s) as a time Fourier series containing w = ¢”, i.e., a polynomial in
w, such that f(z, w) becomes a Laurent polynomial of z and w. For
instance, a Hopf braid can be parametrized by z;(s) = —z,(s) = e's
= w, which yields f(z,w) = (z — w)(z + w) = 2> — w?. This can
be directly generalized to a braid of a (p, g) torus knot, which
consists of p strands each of which twists for g revolutions before
closure: z;(s) = > vielding f(z,w) =z’ — wi. Next, we
need a criterion for suitable functions F(k) = (z(k), w(k)), that
express z and w in terms of k. Ideally, F(k) should be able to “curl
up” the braiding space Cx S! into a solid torus in the 3D BZ, such
that knots given by braid closures are faithfully mapped into nodal
knots in the 3D BZ* (Fig. 1). How this “curling” is accomplished is
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Fig. 1 Nodal knots from braids. a Braid operations o; and o;' represent the over/under-crossing of strand i with strand i + 1 as we travel upwards. A braid
consists of a series of braid operations, and can be closed to form a knot or link (in this case it is a link between three loops). b A braid closure can be
embedded onto the 3D BZ torus in different ways through different choices of F(k). Depending on its topological charge density distribution of Eq. (4), it
can produce different numbers of copies of the knots in the BZ, i.e. one a single copy (F;) or two mirror imaged copies (F>). c-f Various examples of simple
Nodal knots/links defined by Eq. (3), some of which we shall explicitly construct in circuits band structures later. € Hopf-link with o = ¢? and f

(z, w) = (z — w)(z + w). d) Trefoil knot with ¢ = 013 and f(z, w) = (z — w¥2)(z + w3/2). &) 3-link with o = (010201)2 and f(z, w) = z(z2 — w2). f Figure-8
knot with o = (0{101)2 and f(z,w) = 642° — 122(3 + 2(W? — w?)) — 14(W? + W) — (w* — w*)35.

quantified by the winding number

1 3
"= /Bz 'k el‘”PYNMakxNVakyNPakZNV’ )

where u, v, p, y € {1, 2, 3, 4} and z(k) = Ny(k) + iN,(k), w
(k) = N;(k) + iN4(k). It measures how many times the braid winds
around the BZ. Generically, one will choose an F(k) with winding
n ==1 to guarantee a one-to-one mapping from a specific braid
closure to a nodal knot in the BZ. An important caveat, however, is
that n =+ 1 is not possible for a passive RLC circuit implementa-
tion due to its reciprocal nature. In the discussion surrounding Eq.
(7) later, we shall explain how this seeming obstacle can be avoided
systematically.

Our approach outlined so far generalizes existing approaches in
the literature: In the approach of Ezawa23, F(k) was chosen to be
certain generalized Hopf fibrations, but there was no freedom of
choosing f(z, w) for more general knot constructions; f(z, w) was
further explored in ref. 3¢ in real space, but not in a toroidal
momentum BZ where a nodal bandstructure can be found.

Characterizing nodal knot topology. A key feature of nodal
knots is their interesting topological structure. Knotted lines of
singularities in momentum space can be viewed as generalizations
of Weyl points. In place of isolated sources of topological (Berry)
flux, there are intertwined loops of “branch cuts”. While sig-
natures of non trivial knot topology can manifest as optical non-
linearity enhancements in electronic nodal materials3”-38, we shall
see that circuit implementations allow the nodal knots themselves
to be directly reconstructed.

To mathematically characterize different knots, we first
introduce the knot group. The knot group of a given knot K is
the fundamental group 7,(T°\ K) of its complement in its
ambient space, which in our context is the 3-torus BZ T°.
Physically, the complement T°\ K is the part of the BZ
containing non-degenerate eigenmodes, and the knot group

indexes the space of non-trivial closed paths within this phase
space. In the simple case of a nodal ring (unknot), 7, (T \ K)
consists of equivalence classes of trajectories characterized by
their winding number around the ring, and is thus given by
integer-valued Berry phase windings Z. In more complicated
knots, there can be several inequivalent sets of windings,
corresponding to different unique homotopy generators of
T?\ K. For instance, the knot group of a (p, q) torus knot is
given by (x, y|xP = 1), since a path that winds p times around the
“equator” can be deformed into one that winds g times around
the “pole”. In the special case of the trefoil knot with (p, ) = (2, 3),
the knot group (x, y|x?>=y3) is also isomorphic to the braid
group with three strands: 0,0,01 =0,0,0,, as evident from
identifying x = 070,07 and y = 005. Yet, in general, the presenta-
tion for the knot group can take diverse reparametrized forms
(i.e. (x, ylxyx~lyx = yxy~1xy) for the figure-8 knot), and is hence
by itself insufficient for topological classification.

In order to faithfully distinguish topologically inequivalent
knots, various knot invariants have been developed. Simple
invariants such as the linking number or knot signature can be
easily computed by examining the crossings, but only have
limited discriminatory power. A more sophisticated approach
involves the Chern Simons path integral2, which encapsulates
topological information on the nodal singularities through certain
knot polynomials, i.e., Jones polynomials, depending on the
chosen gauge group. In our physical setup with classical circuits,
another well-established invariant known as the Alexander
polynomial will be most experimentally accessible. Starting from
the topological surface “Drumhead” modes, one can reconstruct
the Seifert surface, which is an orientable surface in the 3D BZ
whose boundary is the nodal knot/link, and compute the
Alexander polynomial from its homology properties.

Surface states of knots. Since nodal knots/links consist of closed
loops, they form the boundary of topological surface drumhead
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Fig. 2 Seifert surfaces from topological surface states. Projected surface states on the (001) surface of the a Hopf-link with o = 012, b Borromean rings
with ¢ = (02‘1(71)3 and ¢) 3-link with o = (0,0,0,)?. We can observe multiple folded layers of the surface on top of another. Note that a different
parametrization was used to plot these surfaces, as compared to Fig. 1. Interestingly, b, ¢, both contain three loops, but b is totally unlinked upon removal of
any single loop, while, ¢ still reduces to a Hopf-link upon removal of any loop. d How a Seifert surface can be obtained from the Drumhead states. By
comparing the same nodal crossings across Drumhead states from different surfaces (Left), one can deduce the over/under-crossings in a knot diagram.
The interior of this knot can then be systematically promoted into “surface layers” bounded by appropriately defined crossings (Center), which can further
be arranged into a layer arrangement where its homology loops (i.e., a;) are evident.

modes in the projected 2D surface BZ. Intuitively, drumhead
modes can be construed as Fermi arcs traced out by Weyl points
moving along the nodal lines. If a nodal structure were to be
deformed across a topological transition, i.e., till the loops of a
Hopf link intersect, the shape of the drumhead regions along
suitable projections must also transition discontinuously i.e. from
two overlapping regions to two disjoint regions. For each possible
surface termination, the drumhead regions form the surface
projections (shadow) of a tight, i.e., minimal area Seifert surface
(Fig. 2). In this sense, the drumhead modes on differently
oriented boundary surfaces are just different “holographic” pro-
jections of the same tight Seifert surface living in the 3D BZ. Note
that a Seifert surface is itself not a topological invariant, since it is
not unique: for instance, Re[f (k)]>0, Re[f (k)]<0, Im[f(k)] >0 and
Im|[f(k)] <0 are all valid Seifert surfaces, albeit not all tight.

To construct a topological invariant such as the Alexander
polynomial, we hence need information on how the Seifert
surface links with itself: we consider the linking of its 1st-
homology loops a3, ay, . . ., ay with f, ), ..., & of a lifted Seifert
surface defined from a infinitesimally shifted Laplacian
L'(k) = L(k) — ej, with j=x or z. This shift creates a parallel
Seifert surface infinitesimally displaced in a way consistent with
the knot orientation given by the vector V,Re f(k)x V,Im f (k).
The I x I Seifert matrix Sy, which captures the twisting structure of
the Seifert surface, is then given by the linking number of «; and
o, with [ being the number of homology generators>3%. From

that, one can obtain the Alexander polynomial invariant as
A(t) = t72Det[s — tS7]. (5)

For instance, as further elaborated on in the methods section, A

() = t+t1—1 for the trefoil knot. General heuristics for
constructing and visualizing the Seifert surface for a given nodal
bandstructure are outlined in Fig. 2d.

Constructing and measuring knots in circuits. Having detailed
their mathematical construction and characterization, we now
describe how nodal knots can be concretely implemented and
detected in electrical RLC circuits via both simulations and
experiments. An RLC circuit with N nodes can be represented by
an undirected network with graph nodes (junctions) =1, ..., N
connected by resistors, inductors and capacitors. Its behavior is
fully characterized by Kirchhoff's law at each junction, which
takes the matrix form

Ia :]aﬁvﬁ7 (6)

where I, is the external current entering junction « and Vj is the
potential at junction f. Physically, each entry ],z of the Laplacian
J physically represents admittance (AC conductance): in the
submatrix spanned by junctions (&, ), an element with impe-
dance r,;, contributes r;;}(1—1—11) to the Laplacian, where
s =R, iwL and (iwC)~! for the RLC components, respectively.
The strictly reciprocal (symmetric) nature of these components
constrains the possible forms of the Laplacian. In particular, for a
circuit array with two sites per unit cell, Re f(k) and Im f(k) in
the Laplacian of Eq. (1) must be even?® in powers of k. This
constraint severely restricts the prospects of faithfully “curling” a
braid into a 3D BZ, such that each desired braid crossing is
mapped one-to-one onto the resultant nodal structure. This is
because nodal knots necessarily contain unpaired 2D Chern
phase slices, which require reciprocity breaking. Mathematically,
it corresponds to the impossibility of achieving an F(k) winding
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Fig. 3 Simulated nodal structure measurements under PBCs. Points in reciprocal space corresponding to admittance eigenvalues smaller than a threshold
js are colored black, which collectively delineate their theoretically computed respective nodal links or knots (orange). a Two entangled unknots, defined as
the Hopf-link. The black dots combine the simulation results with circuit dimensions of (22x 22x16), (23x 23x 20), (16x 22x19), (22x 22x14),

(25x 20x 23) and (25 x 24 x 23). The admittance threshold is chosen to be j; = 0.00335 Q. b Depicts a trefoil knot showing the combined simulations of
circuit system sizes of (20x 20 x 20), (21x 21x 21), (24x 15x 15), (21x 20 x 25), (18 x 19x 17), (17x 18x 21), (23x 21x 19), (19x 25% 23) and (20x 20x 22).
The admittance bound is threshold j;=0.0032 Q. ¢ lllustrates a figure-8 knot with (23x 23x 23), (20x 20x 25), (20x 20x 21), (19x 16x 18),
(17x14x16), (19x 25x 25) and (25x 21x 22) unit cells in the respective directions. The admittance threshold is chosen to be j,=0.0037 Q.

of [n] =1 (Eq. (4)) without sine terms. Primarily for this reason,
nodal knots have not appeared in existing linearized reciprocial
circuit architectures, or related settings of classical topological
matter.

In this work, our key insight is to instead realize pairs of nodal
knots related by mirror symmetry, such that reciprocity does not
have to be broken. This can be achieved via a mapping F(k) = (z
(k), w(k)) such as

1
z = cos2k, + 5t i(cosk, + cosk, + cosk, — 2) )

w = sink, +isink,

which possesses opposite windings of n==+1 in each of the two
halves of the 3D BZ given by k, > 0 and k, <0 (Fig. 1b). Provided
that w is raised only to even powers in f(z, w), the Laplacian will
be even in k, and hence realizable in an RLC, and as such
reciprocal, circuit.

The overwhelming advantage of topolectrical circuit array
implementations is that nodal structures naturally manifest as
robust impedance peaks, ie., electrical resonances. Consider a
multi-terminal measurement with input currents and potentials
given by the I, and V components respectively (c.f. Eq. (6)). In
general, the impedance Z,, between modes a and b is given by

a) — vy, ()
Z“b:;w’ (8)

where j, and y, are the corresponding eigenvalues and
eigenvectors of the circuit Laplacian J. Note that the modes a, b
are not necessarily the real-space nodes «, § appearing in Eq. (6);
in the translation-invariant circuits that we consider, they can
also refer to quasi-momentum modes from the Fourier decom-
position of multiterminal measurements. Importantly, for circuits
designed such that j, =0 along the nodal loops/knots or their
drumhead regions, Z,, should signal pronounced divergences
(resonances) when either a or b coincide with the nodal regions.
More generally, Z,, should diverge strongly whenever the
Laplacian exhibits a zero-eigenvalue flat band with divergent
density of states, since j, =0 for extensively many A, unless
ya(a) = yu(b) at terminal a, b.

For the sake of concreteness, we specialize to a periodic circuit
network with a repeated unit cell structure. This allows us to
rewrite Eq. (6) as

Tty = Tiwir v Vi) (9)

with x, y labeling the unit cell positions in the circuit, while
i, j = {1, 2} labels the two sublattice nodes inside each unit cell. By

exploiting the translational invariance of unit cells in the circuit,
Jix. iy, p = Jij(X — ¥), we can find the irreducible representations
of the translational group of J by a Fourier transformation in the
real space coordinates

Jij(k) = Z]ig(r) e, (10)

In Eq. (10), we sum over all unit cell positions r in the circuit
network. We define the Fourier transformation of J to be in the
directions perpendicular to the open boundary surface. The
dimension of the resulting matrix J(k) is fixed by the number of
circuit nodes that do not transform into each other by translation.
By diagonalizing J(k), we find the admittance band structure
ju(k),ne{1,...,dim(J(k))} of the circuit network as a map-
ping of quasi-momentum k to admittance eigenvalues of J. The
fully periodic circuit network is then constructed such that the
admittance band eigenvalues are given by the absolute value of f,
j+(k) = £|f(k)|. The kernel of the fully periodic admittance band
structure features one-dimensional closed nodal loops in its 3D
BZ, that are induced by the corresponding mapping T> — C
inherited from the function f(k). In an experimental setting, it is
possible to extract the admittance band structure by performing
N linearly independent measurement steps, where N describes the
number of inequivalent nodes in the network. Each step consists
of a local excitation of the circuit network and a global
measurement of the voltage response, from which all components
of the Laplacian in reciprocal space can be extracted. Conse-
quently, the admittance band structure is found by a diagonaliza-
tion of J(k) for each k.

In the following, we show Xyce*! simulation results of the
prescribed measurement procedure with periodic (Fig. 3) as well
as open boundary conditions (Fig. 4) for circuits featuring a
Hopf-link, trefoil knot and figure-8 knot. The experimental
details for the Hopf-link are described in the Methods section.

Before proceeding to more involved nodal knots, we illustrate
our approach through the simplest example of a nontrivial linked
nodal structure—the Hopf-link (Fig. 1c). With f(k) = z(k)*> — w
(k)% (z12(s) = * €/ in Eq. (3)), it is the simplest possible nontrivial
nodal structure, with at most next-nearest neighbor (NNN) unit
cells connected by capacitors C, C/2, C/4 or inductors L, L/2, L/4
in each direction (see “Methods”). In steady-state Xyce AC
simulations, where the frequency parameter is set by the external
excitation, the impedance peaks at w* = 7% indeed accurately
delineate the two inter-linked nodal rings, as shown in Fig. 3a. Its
surface projections are even more accurately resolved as drum-
head regions when the measurements are taken on open
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Fig. 4 Simulated drumhead state measurements under various OBCs. The black diamond-shaped points indicate points in reciprocal space with
admittance eigenvalues smaller than their respectively admittance thresholds j,, j, corresponding to x, y open boundaries, as obtained from Xyce circuit
simulations. These points are contained in regions of the surface BZ which are bounded by the projected 3D theoretically computed bulk nodal structures
(colored green, red and blue). a shows two entangled unknots, defined as the Hopf-link. The black dots combine the simulation results with circuit
dimensions of (22x 22x16), (23x 23x 20), (16x22x 19), (22x 22x14), (25x 20x 23) and (25% 24 x 23). The admittance thresholds are chosen to be
jx= 0.0027Q~1 and jy=0.0020 Q1. b depicts a trefoil knot showing the combined simulations of circuit system sizes of (20x 20 x 20), (21x 21x 21),
(24x15x15), (21x 20x 25), (18x19x 17), (17 x 18 % 21), (23x 21x19), (19%x 25x 23) and (20x 20x 22). The admittance thresholds are chosen to be j, =
0.0030Q " and j,= 0.0025Q". cillustrates a figure-8 knot with (23x 23x 23), (20x 20x 25), (20x 20 21), (19x 16x 18), (17 x 14x 16), (19x 25x 25)
and (25x 21x 22) unit cells in the respective directions. The admittance thresholds are chosen to be j, =0.0028 Q' and jy=0.0032 Q.

boundary surfaces normal to X and j, as shown in Fig. 4a. No
drumheads are expected for z open boundary surfaces, since there
is another mirror-image nodal structure related by k, — — k,.

We next consider the trefoil knot, which is defined by f(k) = z
(k)2 — w(k)3. While it, even after topology-preserving real-space
truncations (see “Methods”), still necessitates longer-ranged
connections, circuit networks conveniently allow to accomodate
for such couplings. In Figs. 3b and 4b, we present the simulation
results of the detailed imaging of a nontrivially knotted nodal
loop and its drumhead surface projections, which also showed
remarkable agreement with theoretical expectations.

Our approach can also be conveniently applied to more
obscure non-torus knots where f(z, w) is not a polynomial in z
and w. For illustration, we simulate the circuit with a Figure-8 knot
nodal structure with f(k) = 64 z(k)* — 12 z(k)(3 4 2(w(k)’
—w(k)%)) — 14(w(k)* + w(k)*) — (w(k)* — w(k)*), where w(k),
w(k) = sink, tisink,. The Figure-8 knot belongs to the more
general class of knots known as lemniscate knots, where the
equivalent braid cannot be expressed the braiding of p strands with
q revolutions, and requires the appearance of both w and w in its
k)% Despite its ostensibly more complicated appearance, its nodal
structure and surface drumhead states, shown in Figs. 3¢ and 4c,
respectively, can be easily obtained from impedance measurements.

Experimental mapping of surface drumhead states. A highlight
of this work is the experimental verification of our design of
momentum-space nodal structures. Due to the topological sig-
nificance of surface drumhead states, as well as their extensively
large density of states, our experiment shall involve the mapping
of the drumhead state of the nodal Hopf Link shown in Fig. 4a,
where k, and k, are synthetic coordinates. This surface was
chosen due to the distinctive “double-loped” structure of the
drumhead state, which should prominently show up as a region
of elevated topolectrical impedance.

The first step in experimental circuit design is to simplify the
real-space lattice structure. After optimal truncation and tuning
of the x-direction couplings (see “Methods”), we obtained a
slightly modified Hopf-link with qualitatively similar double lobes
in its drumhead region (Fig. 5a). Note that unlike the topological
drumhead modes themselves, the elevated region consists of extra
“ridges and valleys” due to additional contributions from other
bands in Eq. (8). This circuit is physically implemented with an
array of connected printed circuit boards (PCBs), each

representing one unit cell, which can be adjusted to accurately
correspond to different (k,, k;) points by tuning the inductors
(Fig. 6 of Methods). Enabled by individually addressing the
nodes, our tuning approach allows each inductance to be reliably
adjusted by —50% to +25% of its original manufactured value,
realizing to our knowledge the most accurately tunable circuit in
the literature of topolectrical circuits to this date. To realize the
required variety of capacitance values, we have implemented each
logical capacitor as an appropriate parallel configuration of a few
commercially available capacitors (see “Methods”). All parametric
tunings are relegated to the inductances, since variable inductors
are more reliably tuned than variable capacitors in practice.

While the topological robustness of drumhead states increases
with the number of unit cells N, so do the destabilizing
contributions from parasitic resistances and components uncer-
tainties. As simulated in Fig. 5b for realistic component values, we
have found that a rather low N =9 already gives rise to a robustly
visible drumhead region of elevated impedance. Importantly, this
robustness is well corroborated against the experimental
impedance data presented in Fig. 5c. Even with only 14 (k,, k.)
data points, each obtained through careful tuning, we have
observed a very high fidelity between the expected and measured
impedance values, as also visually evident from the almost perfect
match of the blue/red (low/high imepdance) points between
simulation and experiment (Fig. 7 of Methods). To mitigate the
effects of parasitic resistance and component uncertainty, we have
also taken advantage of a machine learning algorithm that choses
(ks k) sampling points that remain the most impervious to these
uncertainties (Fig. 8 of Methods).

Besides conclusively demonstrating the experimental viability
of mapping out nodal drumhead states, our experiment also
pushes the state-of-the-art in tunable topolectrical circuits, where
even minute uneveness between unit cells can potentially affect
the circuit band structure significantly. As further elaborated in
the “Methods” section, further refinement of this technique
through micro-controllers can lead to even more accurate
automated tuning that can eventually realize topological pumping
in quasiperiodic (Aubry-Andre-Harper) circuits.

Discussion

We have introduced an experimentally accessible approach for
realizing generic momentum space nodal knots. Our proposed
systems can be easily implemented in RLC circuit setups, whose
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Fig. 5 Simulated impedances vs. experimental measurements. a Hopf-link (dark cyan) and the drumhead region (orange) of elevated impedance it
encloses, computed in the “clean” limit absent of parasitic resistances and component uncertainty. Simulation was performed with N =30 unit cells at
resonant frequency 795.7 kHz for the circuit Laplacian in Egs. (15) to (18) (in “Methods"), truncated from that of Fig. 4a to facilitate experimental
construction. b Impedance map of the same circuit, but simulated for our N =9 experimental setup with empirically determined parasitic inductor and
capacitor resistances Ry, = 0.11Q and R,c = 0.03 Q, and capacitor/inductor tolerances of 1%. ¢ Corresponding experimentally measured impedance
(crosses) with distinct elevated region, which agree well with simulation (lighter background contours from (b)). Frequency used is 740 kHz, offset from
the predicted 795.7 kHz to account for uncertainties in the tuning circuitry (see “Methods” and Supplementary Table 3).

a b c

XA X+ 1A
o
XB o (X+1)B

X

cgt

LECUTI

Piaghle2 3 L<o80

Shorted Wire loop (decreased inductance)

Fig. 6 Schematic and PCB implementation of Hopf-Link experiment. a Schematic of our 2-leg ladder LC circuit array, whose Laplacian takes the form of
the Hopf-link at resonance when the component admittances are chosen according to (15)-(18). b Each rectangle in (@) corresponds to a parallel
combination of an inductor and a logical capacitor whose specifications are indicated in Supplementary Table 1. As explained in the main text, each inductor
can be accurately tuned to vary ky, k, near the drumhead region. ¢ Schematic representation of one repeating unit cell of the circuit used to construct final
experiment. The switches are set to open when the inductors are being tuned, and closed when the impedance of the entire circuit is measured to map out
the drumhead region. d Experimental PCB realization of one repeating unit. Visible are the inductors equipped with ferrite rods or shorted wire loops, which
respectively increase/decrease the inductances in a tunable manner. e Renderings of the same PCB to emphasize its physical structure. Each large cylinder
represents a variable inductor, while the components prefixed by “C" represent capacitors that are connected in parallel to form the logical capacitors in
Fig. 9. Detailed specifications of these components are given in Supplementary Tables 1 and 2.
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Fig. 7 Experimental vs. simulations with ideal/nonideal components. a Simulated impedance map for N =9 with ideal components specified by

Supplementary Table 1 with no parasitic resistance or uncertainty, with an elevated drumhead region clearly visible. White regions denote impedance
values above 600 Q. b Contour plot of simulated impedance map for the same scenario as in (a), but with parasitic resistance Ry, = 0.11Q, R,c =0.03 Q
and random variation in inductor and capacitor values u € [—0.01, 0.01], Zs., and Experimentally measured impedance Zexp. (colored crosses), see
Supplementary Table 3. b Normalized error of measured points, Normalized Error = (|Z,, — Zsim.l/Zsim.)z' c Plot of the Log of expected simulated
impedance, Log(Zsim), vs. the Log of experimentally measured impedance, Log(Z,,,) (blue and red dots). The blue dots represent points in the low-lying
regions, while the red dots are located near the drumhead region. The gray dashed line is the line computed by least squares regression. Gray crosses
represent the mean of the simulated impedance within a 0.03 radius in k space surrounding a particular k,, k, point, while error bars represent the standard
deviation of impedance within the 0.03 k radius of that particular k,, k, point, which is shown in Supplementary Tables 4-14. For k,, k, points in regions with
very high local standard deviation, the gray cross may not coincide with the blue/red dots. The correlation coefficient between Log(Zim) and Log(Z,, ) is

0.743, and increases to 0.863 when the three borderline points with largest variance are excluded.

nodal admittance band structure is directly characterizable via
impedance measurements. A key theoretical novelty for accom-
plishing this is our choice of momentum space embedding
functions z(k), w(k), which permits the knotting (and not just
linking) of momentum space nodal structures without breaking
reciprocity. This not only allows for easy implementation of
almost any desired knot from its corresponding braid, but also for
a robust surface drumhead state characterization of the knots.
Combined with multi-terminal impedance measurements in the
bulk, our RLC nodal knot framework provides an unprecedent-
edly direct access to the Seifert surface structure and knot
invariants. Our approach is explicitly demonstrated through
large-scale simulations of three different nodal knot circuits, as

well as an experiment which maps out the drumhead surface state
of a nodal Hopf-link. It established the proof of principel how to
realize any nodal knot in a topolectric circuit.

As the next refinement step of the analytic simulation of the
electronic setup, one needs to take into account parasitic resis-
tances, in particular those that derive from the inductors. Here,
the dissipative, i.e., non-Hermitian generalization of our idealized
Hermitian circuit setup opens up yet another unexplored territory
of topological matter*>-44, ie, non-Hermitian nodal knot
systems0:4>, We defer this analysis to future work. In order to
directly remedy the parasitic effect from the inductors, the most
viable solution is to increase the AC frequency scale into the
Megahertz regime at which the nodal knots are observed. This
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Fig. 8 Machine learning optimization of (k,, k,) measurement points. a Initial suboptimal set of (k,, k,) sampling points for the drumhead region, subject

to a relatively relaxed criterion of log |Z,,,

— Zsp| >5.2, where Zgp is the standard deviation of the impedance subject to 1% tolerance in the capacitances

and inductances with parasitic resistance R, = 0.11Q, Ryc = 0.03 Q. While possessing higher impedance than points outside the drumhead region with
|Zavgl < 4.8, these still suffer from significant uncertainty effects (motley of colors). b The Nearest-Neighbor algorithm sets an allowed region (light blue)
for new (ky, k,) points, which are at most a distance 0.1 away from at least two existing good sampling points. € New randomly generated unfiltered
sampling points in the allowed region. d Output consisting of new sampling points filtered according to more stringent criteria

108 | Zigeatl >5.7,  1(Zog — Zigea)/ Zigeall < 0.2, Zsp/Zigeas < 0.2, which only n

would also help with the higher spatial intergration or our nodal
knot circuits. Setting up a new generation of Meghertz topolectric
circuits will hence be a prioritized experimental future objective.

Methods

Circuit simulation details. This section elaborates on the setup of the circuits that
we simulated. As detailed in the main text, the desired knot or link is given by the
kernel of a knot function f(z, w) that maps the 3D BZ T to a complex number C.
The first step in determining the circuit design is the construction of the function f
(2, w) from the corresponding braid through the procedure we had outlined. In the
next step, we find suitable functions z(k) and w(k) that faithfully map the knot to
the kernel of f(k). To be able to implement the corresponding function f(k) in a
circuit environment i.e. a tight-binding lattice that preserves reciprocity, we
implement two mirror images of the circuit in the BZ that are related by k, — —k..
The Laplacian for the circuit simulations is then set up as (note the slightly dif-
ferent definition of f from Eq. 1 of the main text)

k

x0 Ry

J(k, K, k

ko k) = iw,C | Imf(ky, k. k) 7, + Ref (k k,)7,|. (11)

The circuit connections are then designed such that they form the Laplacian J
(k). This is achieved by expanding the real and imaginary part of f as single cosine
terms and implementing the separated terms as internodal connections in the
circuit. Those connections need to fulfill two criteria. First, they need to realize the
proper real space linkage between two nodes to replicate the specified term in the
(2 x 2) Fourier transformed Laplacian. Second, the magnitude of those elements is
to scale with the prefactor of the corresponding cosine term. A positive value is
implemented by a capacitor and a negative value by an inductor. Finally, we need
to account for the total node conductance in the circuit setup by implementing
adequate grounding terms. The scales of the capacitances and inductances are
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eed to be sieved out from the allowed region.

chosen to be C=1nF and L =10 pH, yielding a resonance frequency of
1
2nvVLC

fo will be the operating frequency for all performed simulations, where signatures of
the prescribed nodal knots or links emerge. At this specific frequency, the
inductances defined act as negative capacitances due to their 7 relative phase shifts.
For reasons of numerical stability, we include additional ground connections of
Cground = 100 nF and Rgrouna = 1 kQ at every node in the circuit. These terms just
enter as an identity matrix contribution ;I and can be subtracted out after the
band structure has been reconstructed from the simulation data. The Laplacian of
the circuit is then shifted as J(k) — J(k) + Iy, and its two band admittance
spectrum is given by

~ 1.592 MHz.

fo= (12)

k, k

) k) =l 2 iw,C (Ref)” + (Imf)’

= I, +iw,C |f].

jt(kx’ (13)

To recreate the admittance band structure, we use the measurement scheme
initially described in!®. There and in all our simulations, each measurement step
consists of a local excitation of the circuit at one node through an AC driving
voltage via a shunt resistance and a global measurement of the total voltage profile
at all nodes in the circuit. The shunt resistance enables the measurement of the
input current that is fed into the circuit.

From the global response of the circuit, we can reconstruct the Fourier
coefficients of J in reciprocal space and diagonalize J(k) for every k. This
measurement procedure must be repeated M times, where M describes the number
of non-equivalent nodes in the circuit network to be able to reconstruct the full
Laplacian J(k). From the admittance band structure, we then distill the closed nodal
loops of the specified model by selecting the imaginary admittance eigenvalues, that
are smaller than a globally chosen upper threshold. This upper bound is selected
such that the valley points corresponding to the zero nodal points on the knot or
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link are recovered, but no additional points appear in regions with small gradients
close to the nodal line. Due to the discretization of the BZ, we recover only a
discrete set of nodal points in the BZ. This drawback can be counterbalanced to
some degree by simulating circuit networks with different dimensions in terms of
unit cells. This way, we enhance our grid resolution in reciprocal space and obtain a
more precise result due to an increased number of data points on the knot or link.

Similarly, the OBC simulations are evaluated by extracting admittance
eigenvalues smaller than a chosen limit. Those points in the projected BZ form 2D
areas, as shown in Supplementary Fig. 2. These 2D areas correspond to projections
of the Seifert surface bounded by the corresponding link or knot onto the direction
of the open boundary surface. The corresponding zero-admittance eigenstates
amount to the so-called Drumhead states that are exponentially localized at the
boundary with an inverse localization lengths given by their imaginary gaps®47.
With these preliminary explanations, the only remaining requisite to perform the
individual simulations is the specification of the employed knot function f(z, w)
and the functions z(k) and w(k). Note that since f(k) in general consists of an
exponential tail of distant couplings in real space?6:484°, some gap-preserving real
space truncation of its real and imaginary parts is necessary for actual
implementations. For the most part, this presents no additional challenges, and can
be adapted to conform to the specifications of available actual electronic
components. We also need to define an upper admittance threshold for resonance
to extract the nodal points from the obtained simulation data.

We perform Xyce simulation for different system sizes in order to increase the
resolution of the knot in the BZ. Since the reciprocal space consists of discrete
points of allowed quasi-momenta for any finite number of unit cells, we cannot to
trace out the knot exactly. In order to increase the density of samples, one can
increase the system size, but this increases the computational costs. Our alternative
approach is to create several copies of the same setup, but with varying system
sizes. Choosing the number of unit cells as co-primes of one another increases the
sampling density of the combined momentum grid without the need for creating a
very large system.

In the Xyce simulations, we create spice netlists which represent a circuit
network consisting of capacitors and inductors described by a Laplacian in the
form of (11) and perform AC analyses on them. In order to simulate one
measurement procedure step necessary to reconstruct the admittance band
structure, we connect an ideal voltage source via a shunt resistor to the circuit. As
the parameters of amplitude voltage and shunt resistance can be chosen arbitrarily
in a simulation, we used 1V and 1 Q. The AC analysis frequency is given by fo.

Drumhead state experiment. The objective of our experiment is to reconstruct
the surface topological drumhead state of a simplest illustrative nodal structure, the
Hopf-link, as shown in Supplementary Fig. 2a. For that, the physical circuit must
possess a Laplacian LC that is proportional to the Laplacian L of a Hopf-link at a
particular resonant AC frequency w,. For a streamlined implementation, we
deformed the Hopf-link Laplacian from the Supplementary Information such that
it contains up to only nearest neighbor (NN) connections along the surface normal
X while retaining a qualitatively similar nodal structure (Fig. 5). Explicitly, we
require

LC|w:wo = iw(LELELE — LO)|

z Hx Px

x in( LzLxLx - Lz)', (14)

W=y

where the components of the deformed Hopf-link Laplacian are given by L, =
4cosk,(2 — cosk, — cosk,) — 2(5 — 4 cosk, + cos 2k, + cosk, — k, — 4 cosk,—
cos4k, + cosk, +k,)and L, = (1 + 2 cos 2k, )(cosk, + cosk, + cosk, — 2). One
way to satisfy Eq. (14) is to design the physical circuit such that its corresponding
components LS, LS are of the forms

(15)

LS = —t,; — 2vcosk,,

LS =2t(1 — cosky) + g, + tag +2v (16)
where v, t, typ, g4 and gg depend parametrically on k,, k. as follows:
v =1+ 2cos2k,
t = 4(2 — cosk, — cosk,)
tap = 2(cosk, +cosk, — 2)(1 + 2 cos 2k;)
g4 = 6+4cos2k, +4cosk, —k, —12cosk,
+ 4 cos 2k, — 2(5 + 2 cos 2k,) cos k, — 2 cos 3k, (17)

—4cosdk, +4cosk, +k,
gp = —2—4cos2k, —4cosk, — k, +4cosk,
+4cos 2k, +2(3 — 2 cos 2k, ) cos k,
—2cos 3k, +4cos4k, — 4 cosk, + k,
() can be realized with an LC circuit array in the form of a 2-leg ladder with N

unit cells (rungs) and 2N nodes in total (Fig. 9). Each term x € [t, v, — ¢, tap, 4 €8]
is represented by a parallel configuration of a tunable inductor L, and capacitor C,

of appropriate value, such that its admittance

‘ i 1
Gy (k. k,) = iwC, +in = iwC, (CX - m) (18)

X

is of the required (k,, k.)-dependent value t, v, —t, tap, g4 Or gp at a particular @ =
w,. As elaborated later, it suffices to vary only the inductances to sweep through the
entire range of (k,, k.) stipulated by the size of the drumhead region in Fig. 5. Here
Co is an arbitrarily defined reference capacitance value that offers a free rescaling
degree of freedom in the tuning, and c, is the corresponding dimensionless
capacitance of element x. Each element proportional to 2(1 — cosk,) couples two
neighboring unit cells, while each term in the off-diagonal LS couples the upper
and lower rungs. Note that our proposed circuit requires only LC components i.e.
inductors and capacitors, with positive and negative resistors truncated off without
appreciably changing the shape of the drumhead region. That said, with the contact
and parasitic resistances intrinsic to an experimental circuit, some of these
resistances will be inevitably reintroduced. These, however, also lead to no
significant modification of the drumhead region, as verified via a simulation with
realistic amounts of parasitic resistances and component uncertainty (Fig. 7b).

Our circuit is built with interconnected PCBs, each representing one unit cell, as
shown in Fig. 9c. With a strategic choice of C, and frequency w, it is possible to
scan through the entire relevant range of k,, k. by just tuning the inductances alone.
As elaborated later, this can be accurately achieved through the use of ferrite rods
and shorted wire loops within/around each inductor. The required fixed
capacitances are realized by parallel combining commercially available capacitances
into logical capacitors. The specifications of these logical components, as well as
that of their underlying physical capacitors, are detailed in Supplementary Tables 1
and 2.

A major consideration of topolectrical circuit design is that imperfections from
parasitic/contact resistances and component uncertainties should not change the
measured impedance and hence Laplacian band structure significantly. Inductors
are commonly manufactured with 4/—10% inductor value uncertainty, and a
typical parasitic resistance that scales at a rate of 2.45 /1 mH. In theory it is
possible to decrease the impact of parasitic resistance by increasing the inductance,
but this cannot be done in practice because larger inductors typically require longer
wires which increases parasitic resistance. Capacitors on the other hand are
commonly manufactured with +/—5% uncertainty, and have negligible parasitic
resistance compared to PCB trace wires, which possess 0.024 Q/cm. In the case of
capacitors, the effect of parasitic resistance may be decreased by picking smaller
capacitors. However, choosing smaller capacitors requires larger inductors for the
same frequency used in impedance measurement, which increases parasitic
resistance, or requires a higher frequency. Therefore ideally one chooses the w, to
be as high as possible depending on their signal generator/impedance measurement
equipment, and then chooses a value of C, that results in the smallest effect of
parasitic resistance in the capacitors, but not too small to increase the inductor
values and inductor parasitic resistances. Such imperfections can be modeled as
additional serial resistivities on inductances and capacitances that are rescaled by a
factor of 1 + u, u a random variable, as illustrated in Fig. 9b for the measured
impedance across the entire circuit (between nodes 1A and NB).

Impedance data measurement and analysis: To map out the drumhead state, we
measured the impedance across the first and last nodes of the circuit (1A and NB)
at a number of strategically determined (k,, k) points that are relatively insensitive
to component disorder, as elaborated in the following subsection. As presented in
Fig. 5, the drumhead region is indeed clearly visible as a region of elevated
impedance, in close agreement with the imperfection-corrected simulation
(Fig. 7b.). The simulation also revealed that parasitic resistance in general decreased
the impedance contrast by reducing the high impedance in the drumhead region
and raising the low impedance outside of it. Component uncertainty increases the
variance in the measured impedance at each individual (k,, k.) point, such that a
larger number of measured (k,, k) points are needed to average over the noise.

While a very large N will yield the most topologically robust drumhead state in
an ideal setting, in practice that will also introduce much larger accumulated
parasitic resistances and total component uncertainties, not to mention the copious
resources needed. As such, we have built our circuit with N=9 cells as a
compromise between topological localization, noise and cost. The complete setup is
pictured in Fig. 10. After tuning all inductors in accordance to the k,, k, values, the
impedance across the entire circuit is measured by attaching nodes 1A and NB to a
voltage divider and observing the voltage drop across the circuit using an
oscilloscope. After correcting for possible frequency shifts due to uncertainties in
the tuning circuitry (elaborated later), we indeed measured a distinctive cluster of
elevated impedances in the drumhead region, as shown in Fig. 5c and analyzed in
Fig. 7.

Even though the experimental setup also suffers from imperfect tuning of
inductor values and additional parasitic resistances from the solders linking the
repeating PCBs (unit cells), we are still able to reliably distinguish the low/high
impedance points and hence delineate the correct drumhead region.
Experimentally, we were able to measure 5 points in the low-lying regions
Z . <1600, 6 points in the elevated region Z,, >250(2 and 3 points in the
borderline region between them. The 5 points in the low-lying region correspond
to the “inside” of the elevated region k, < 0.5, 0.6 < k. < 1.0, and the region to the
left of the elevated region k, < 0.4. The square root of the average normalized error
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a c d

L=1L, L=111L, L=125L, Tuning measurement circuit

Forto o .

Inductor 390 390 S
1.5 kOhm
/\/ to Oscilloscope T

Viune

b L=L, L=075L, L=051L,

Looped coil Ly
(ky, kz)
.

Fig. 9 Tuning of variable inductors. lllustration of tuning methods of the variable inductors and circuit diagram of impedance measurement circuit for
tuning inductors and imaging the drumhead region. a By adding a ferrite rod to the top of a fixed-value inductor, the inductance may be increased by up to
25%. b By surrounding the inductor with a shorted wire loop, the inductance may be decreased by up to 50%. ¢ Experimental implementation of ferrite rod
and wire loop. A plastic straw and modeling clay is used to hold the ferrite rod/wire loop in place after tuning. d External circuit used to measure and tune
the impedance of each coupling unit (logical component), as described by (19).

V_meas
(to oscilloscope)
N

Circuit after tuning
and connection of 7
‘repeating units > 4 F

Fig. 10 Experimental setup for impedance measurement. a Full view of setup for impedance measurement of the complete circuit array. The oscilloscope
generates the AC voltage signal for the impedance measurement, as well as for tuning each variable inductor of each coupling unit (logical component).
Schematics of the circuits are described in Figs. 9 and 6. b Close up of measurement circuit with AC voltage supply, test resistor forming a voltage divider,
inductor currently being tuned, and wire connecting to oscilloscope to measure voltage across the coupling unit.

of each measured point was 0.2, and the coefficient of correlation between component uncertainties within the tolerance range, +/—1% for both inductors
simulated and measured data were 0.743. When excluding three points (ky,kz) =  and capacitors, and a fixed parasitic resistance of Ry, = 0.11 Q, R,c = 0.03 Q. Zgp is
(0.9, 1.28), (0.96, 1.07), (0.07, 1.26), which according to simulation are in regions  the corresponding standard deviation associated with many samples of a particular
with very high local variance within a small k radius around those points (see ky, k. point simulated with component uncertainty and parasitic resistance, and
Fig. 7b, ¢, and Supplementary Tables 4, 5, and 6), the coefficient of correlation Zigeal 1s the predicted impedance without component uncertainty or parasitic

increases to 0.863. These relatively unstable points were chosen for measurement in  resistance. To ensure the integrity of the measured data, we will first desire that
order to map a complete ring around the drumhead, but are difficult to measure |Zavg — Zideall/|Zideall is small. This is not necessarily the case when the impedance
due to the extreme variance in the region k, > 1.0. With larger circuits with much  depends highly nonlinearly with the capacitances and inductances. Furthermore,
higher N, for example N = 30, the region k, > 1.0 becomes easier to measure due to  Zsp/Zigea should be minimized too, so as to mitigate the variance caused by the
reduced variance at higher N (see Fig. 5a.). uncertainties.

Machine learning assisted selection of sampling points: To minimize the effect Given an initial set of sampling points, our selection algorithm improves on
of uncertainties and reduce the number of (k,, k.) points needed to reconstruct a  them according to the aforementioned metrics, and outputs a more desirable set of
prominent drumhead region of elevated impedance, we used a Nearest-Neighbor ~ points. As elaborated in Fig. 8, the Nearest-Neighbor unsupervised learning
machine learning algorithm to select (k,, k.) sampling points which are optimally  algorithm efficiently determines a smaller allowed search space, allowing the
impervious to capacitor and inductor uncertainties, see Fig. 8. This is important for  filtering of desirable measurement points to be performed with much less

reducing experimental costs, as well as reducing the impact of inevitable computational resources compared to a brute force approach. We have optimized
component uncertainties. the selection of sampling points only within the drumhead region, since high

We associate each sampling point with Z,,g, which is the impedance of a impedance points are more sensitive to parasitic resistance and component
particular k,, k. point averaged over a large number of randomly generated uncertainty.
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Tuning of each unit cell through variable inductors: To realize the Laplacian
at a specific (k,, k;) point, the admittance of each coupling unit, i.e., logical
component x must be tuned to correspond to G, in (18). This may be done by
attaching each coupling unit to a voltage divider and AC power supply, and
observing the voltage drop across the coupling unit using an oscilloscope, see
Fig. 10. The coupling unit is placed in series with a calibrating resistance R, =
1.5kQ, a Viupply =5 Vpp voltage is supplied across the entire circuit, and the
voltage amplitude V, between the ends of the coupling unit is measured. The
inductance of the variable inductor in each coupling unit shall be tuned until V,
matches with

V. = Vsupply
*  14+RG,(k,,k,)

vz

for x € [t,v,—t 145,84, 85 (19)

Each variable inductor is tuned using ferrite rods or shorted wire loops placed
close to the fixed-value inductors, see Fig. 6. To increase the inductance, a ferrite
rod is placed closer to the inductor to better align the internal magnetic fields in it.
Conversely, to decrease the inductance, a wire loop is used to “shield” the inductor
from any change in magnetic field, thereby decreasing its self-inductance. The wire
loop decreases the inductance of the original fixed-value inductor due to an
opposing induced current, as derived below. First, the em.f induced in the wire
loop is equal to

d Co
€= 7E(DWI = 7]“)Lml(t)v
where Ly, is the mutual inductance between the fixed-value inductor and the wire
loop, and i(t) is the current running through the fixed-value inductor. The current
in the wire loop is then

(20)

. € —jwLi(t)
== ﬁ (21)
wi JWLy + Ry
where L, is the self-inductance of the wire loop, and R, is the resistance of the
wire loop. At sufficiently high AC frequencies, we may ignore the resistance in the
wire loop, such that the current induced in the wireloop is simply

i (t) = — (1) (22)
wl
The total flux on the original fixed-value inductor is then
12
® =10 + Lot~ (1~ {0, (23)
wl
implying a decreased inductance in the original fixed-value inductor:
O] 2
L=—n~L -2 (24)
i(t) Ly

Using a combination of the ferrite rod and wire cage, we were able to alter the
inductance of a fixed-value inductor component by —50% to +25% of its original
manufactured value.

With this range of variable inductances and the known stipulated values of
the logical components given in Supplementary Table 1, we selected default fixed
inductor values of 39 uH for the ¢, v coupling units, and 10 uH for the remaining
—t, tap, ga> gp units. The default capacitor values were selected to reproduce the
reference point (k,, k;) = (1.02, 0.75) via ((18)) without any alteration of the
fixed-value inductors. Because capacitors are only sold in a restricted set of
standard values, we used a parallel combination of several standard capacitors to
make up the capacitances needed in all of the coupling units. The combinations
used in the experiment for the coupling units ¢, v, —f, tsp, ga, gg are shown in
Supplementary Table 1. In addition to the variable inductors, removable 470 or
1800 pF capacitors are sometimes connected in parallel to certain coupling units
to represent (k,, k.) points beyond the tuning range of the variable inductors
alone. See Supplementary Table 2 for a complete list of component part numbers
used in the experiment.

Offsetting calibration uncertainty: In the experiment, all variable inductor
values are calibrated by a voltage divider as illustrated by Fig. 6d. As suggested by
(19), they are crucially dependent on the known value of the calibrating resistance
R.. In particular, suppose that R, has a manufacturing uncertainty AR,. Then since
the calibration voltage depends only on the product R,G,, the admittance of
component G, will also sustain a measurement error of AG,/G, = — AR{/R,. Since
G, is related to the frequency via G, = iwC, + (iwL,)”" in (18), the effect of a
nonzero AR; can be offset by shifting the measurement frequency window by

AG
how de/J:iw
_ G,AR
RdG,/dw
iwC, + ﬁ AR, (25)
T T, - o R
w? — w2 AR,

w -
2 1 o2 '
w? + w2 R

where w? = (L,C,)" is the resonant frequency of coupling unit x. As such,

calibration uncertainties can be offset by a small shift (in this case empirically
determined to be all close to —60kHz) in the measurement frequency up to
leading order, allowing the drumhead region to still be faithfully mapped out.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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