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ABSTRACT Populations structured into genetic groups may display group-specific linkage disequilibrium, mutations, and/or
interactions between quantitative trait loci and the genetic background. These factors lead to heterogeneous marker effects affecting
the efficiency of genomic prediction, especially for admixed individuals. Such individuals have a genome that is a mosaic of
chromosome blocks from different origins, and may be of interest to combine favorable group-specific characteristics. We developed
two genomic prediction models adapted to the prediction of admixed individuals in presence of heterogeneous marker effects:
multigroup admixed genomic best linear unbiased prediction random individual (MAGBLUP-RI), modeling the ancestry of alleles; and
multigroup admixed genomic best linear unbiased prediction random allele effect (MAGBLUP-RAE), modeling group-specific
distributions of allele effects. MAGBLUP-RI can estimate the segregation variance generated by admixture while MAGBLUP-RAE can
disentangle the variability that is due to main allele effects from the variability that is due to group-specific deviation allele effects. Both
models were evaluated for their genomic prediction accuracy using a maize panel including lines from the Dent and Flint groups, along
with admixed individuals. Based on simulated traits, both models proved their efficiency to improve genomic prediction accuracy
compared to standard GBLUP models. For real traits, a clear gain was observed at low marker densities whereas it became limited at
high marker densities. The interest of including admixed individuals in multigroup training sets was confirmed using simulated traits,
but was variable using real traits. Both MAGBLUP models and admixed individuals are of interest whenever group-specific SNP allele

effects exist.
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ENOMIC prediction was proposed by Meuwissen et al.

(2001) and has since become a central tool in many
animal and plant breeding programs. In its simplest applica-
tion, a set of individuals is evaluated for a given trait and
genotyped at a high density using single nucleotide polymor-
phisms (SNPs). A statistical model is trained on this data set,
referred to as the training set (TS), and is used to predict the
breeding value of individuals for whom only genomic infor-
mation is known, referred to as the predicted set (PS). The
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breeding values of PS individuals are predicted based on their
genomic resemblance with TS individuals by taking advan-
tage of the linkage disequilibrium (LD) between the SNPs
and the quantitative trait loci (QTL) underlying the trait.
Several models have been developed making different as-
sumptions on the distribution of allele effects (Heslot et al.
2012). Most models, including the widely used genomic best
linear unbiased prediction (GBLUP) model and the equiva-
lent ridge-regression best linear unbiased prediction (RR-BLUP)
model, do not explicitly consider the possible existence of
a genetic structure in the population.

When a population is structured into genetic groups, the
existence of group-specific allele frequencies and/or effects at
QTL may affect genomic prediction accuracy in different
manners. First, when the same structure is observed within
the TS and the PS, the group mean differences are implicitly
taken into account by a standard GBLUP model through the
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kinship and contribute to the accuracy, as shown by Guo et al.
(2014) and Rio et al. (2019). Conversely, when targeting a
group-specific PS, training a model on a different group can de-
crease accuracy dramatically as shown in several species, including
dairy and beef cattle (Olson et al. 2012; Chen et al. 2013), and
maize (Technow et al. 2013; Lehermeier et al. 2014). The combi-
nation of genetic groups in a multigroup TS has been proposed to
apply predictions to a wide range of genetic diversity (de Roos et al.
2009). This solution is particularly interesting for genetic groups
with a limited population size or to optimize resources for traits
that are expensive to evaluate, so that a same TS can be used for
different group-specific PSs. Such multigroup TSs showed a good
predictive ability in a wide range of species, such as dairy cattle
(Brgndum et al. 2011; Pryce et al. 2011; Zhou et al. 2013), maize
(Technow et al. 2013; Rio et al. 2019), and soybean (Duhnen et al.
2017). However, the gain in precision is often limited compared to
what could be obtained by applying predictions separately within
groups (Carillier et al. 2014; Hayes et al. 2018).

Limited accuracy of intergroup predictions may result from
differences in genetic information captured by SNPs. An
obvious configuration consists in QTL segregating only in a
given group, which cannot be accounted for when training the
model on other groups. Group differences in genetic infor-
mation captured by SNPs may also be due to group-specific
SNP allele effects. Such heterogeneity may result from differ-
ences in LD between SNPs and QTL, as observed in several
species including dairy cattle (de Roos et al. 2008) and maize
(Technow et al. 2012). They may also be due to group-specific
genetic mutations nearby QTL, or to epistatic interactions be-
tween QTL and the genetic background. Such heterogeneity in
SNP allele effects was shown by Rio et al. (2020) for maize
flowering time when studying an inbred maize panel including
lines from the Dent and Flint genetic groups, along with admixed
individuals. Specifying group-specific SNP allele effects in geno-
mic prediction models thus appears to be an appealing solution to
improve genomic prediction accuracy. This was proposed by
Karoui et al. (2012) and Lehermeier et al. (2015) by adapting
multitrait models to multigroup predictions. In such models, the
SNP allele effects are assumed to be different but correlated be-
tween groups. This same formalism was also used to derive a
priori indicators of accuracy or to find relevant estimators of re-
latedness in structured populations (Wientjes et al. 2015, 2017).
Another possibility to account for the heterogeneity of allele ef-
fects is to decompose them as a sum between a main SNP effect
and group-specific deviations, as proposed by Schulz-Streeck
et al. (2012), de los Campos et al. (2015), Technow and Totir
(2015), and Veturi et al. (2019). While proving their efficiency,
these models only take into account the existence of distinct ge-
netic groups in the population and cannot be applied directly to
account for and/or predict admixed individuals.

Admixture is a common feature in natural and breeding
populations. The genome of admixed individuals is a mosaic
of chromosome fragments of different group ancestries. In breed-
ing, admixture can be generated by introgressing new favorable
alleles into elite germplasm. When predicting the performance of
admixed individuals, standard genomic prediction models like
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GBLUP may poorly account for the possible heterogeneity of
allele effects across genetic groups. A heterogeneity observed
between pure individuals from different groups should be con-
served in admixed individuals, provided that it results from alocal
genomic difference between groups (group-specific LD and/or
group-specific mutations) and not from an interaction with
the genetic background. Dedicated genome-wide association
study (GWAS) methodologies are available to identify QTL in
such configuration in admixed populations (Sillanpad and
Bhattacharjee 2006; Skotte et al. 2019; Rio et al. 2020).

Before the advent of genomic data, the animal model,
which considers pedigree relationships between individuals,
has been adapted to multigroup populations including admixed
individuals. The aim was to account for the additional variability
observed in an admixed population compared to parental pop-
ulations, by splitting the genetic variance into group-specific and
segregation components using global admixture proportions
(i.e., proportions of genome originated from each group for a
given individual) (Lo et al. 1993; Garcia-Cortés and Toro 2006).
Such methodology was later adapted to genomic prediction by
Strandén and Mantysaari (2013) and Makgahlela et al. (2013)
by replacing the pedigree-based kinship matrix with a kinship
matrix estimated with SNPs. However, to our knowledge, no
model was proposed which accounted both for group-specific
allele effects and local admixture (i.e., group origin of each allele
for a given individual). Local admixtures are relatively easy to
obtain when admixed individuals are generated from a con-
trolled mating design between individuals from different genetic
groups, as commonly done in animal and plant breeding. The
collection of these data are more difficult to achieve in natural
populations because allele ancestry is not directly observable, as
opposed to allele genotypes. However, they can be inferred us-
ing software such as STRUCTURE (Pritchard et al. 2000), LAMP
(Sankararaman et al. 2008), and RFmix (Maples et al. 2013).

Regarding the interest of admixed individuals in multi-
group TSs, Toosi et al. (2013) used simulations to show that
including them enables high genomic prediction accuracy
when predicting either pure or admixed individuals. Such
performance can be explained by a good conservation of LD
phases between admixed individuals and pure individuals
and by a reduction of the LD extent in recombinant admixed
individuals that allowed more accurate estimates of QTL al-
lele effects by linked markers.

In this study, we present two genomic prediction models
that account both for group-specific allele effects and local
admixture. The two models, called multigroup admixed ge-
nomic best linear unbiased prediction random individual
(MAGBLUP-RI) and multigroup admixed genomic best linear
unbiased prediction random allele effect (MAGBLUP-RAE),
are easy to implement as a linear mixed model. They were
evaluated for their precision in estimating variance components
as well as for their genomic prediction accuracy. Both models
were applied to a Flint-Dent maize data set including admixed
individuals using simulated traits and real traits. In this study,
we also evaluated the benefits of using admixed individuals
in multigroup TSs. Different scenarios were investigated by



leveraging the proportion of pure and admixed individuals
within the TS.

Materials and Methods
Modeling the genetic value of admixed individuals

To develop a relevant genomic prediction model for admixed
individuals, our general strategy was to (i) propose an in-
finitesimal model for genetic values, (ii) study the expected
genetic value and the covariance between genetic values, and
(iii) derive a Gaussian variance component model that can be
easily implemented as a linear mixed model. This strategy
helps to identify which parameters need to be estimated, and
which incidence and covariance matrices are required for their
estimation. We considered two statistical formalisms that are
classically found in the genomic prediction literature. According
to the random individual formalism, the genotypes (both alleles
and their ancestry) are assumed to be randomly distributed while
allele effects are considered deterministic, as commonly done in
the animal model (Henderson 1984; Kruuk 2004). According to
the random allele effect formalism, the allele effects are as-
sumed to be randomly distributed, as proposed by Meuwissen
et al. (2001), while the genotypes are considered deterministic.
The general strategy and the two statistical formalisms are first
presented for GBLUP, then applied to admixed populations to
derive MAGBLUP-RI and MAGBLUP-RAE. In this section, loci
are referred to as QTL but could also be considered as molecular
markers in LD or not, with some (unobserved) QTL. In such a
case heterogeneity in allele effects may also result from group
differences in LD between markers and QTL.

GBLUP

Let us consider a population of homozygous inbred lines
without stratification into genetic groups. If we suppose an
infinitesimal model with biallelic QTL for a trait of interest and
no epistatic interactions among loci, we can model the genetic
value of an individual as:

M
Z Bm +Wlm Bm BS’!)) (1)

m=1

where G; is the genetic value of individual i, M is the number
of QTL controlling the trait, Wy, is the QTL genotype at locus
m, taking the value “1” if individual i has the allele 1 and “0”
otherwise, and B9 and B}, refer to the effects of the homozy-
gous genotype for alleles 0 and 1 at locus m, respectively
(further referred to as effects of alleles 0 and 1).

GBLUP-RI: According to the random individual formalism, QTL
allele effects are considered deterministic and QTL genotypes
are modeled as being drawn from a Bernoulli distribution:
Wim ~ B(fm), where f,, is the frequency of allele 1 at locus m.
An absence of LD is assumed between QTL, which amounts to
assuming cor(Wip, Win) = 0 for all m and m'.

For a given trait, let E(G;) and cov(G;, Gj|;j) be the expected
genetic value and the genetic covariance assuming a kinship

coefficient o [being formally defined as a;; = cor(Win, Wjm)
for all m] between individuals i and j. One has:

E(G) =pu

where = M (B + fin(BL — B%)) is the mean of the pop-
ulation, decomposed as the sum of the mean QTL effects over
all loci, and:

COV(Gi7 Gj|aij) = aija'é

where 02 =M, £, (1~ f)(BL,—B2)” is the genetic vari-
ance, corresponding to the sum of QTL variances over all loci.
Note that when i = j, the genetic covariance simplifies to the
genetic variance V(G;) = o2.

From this formalism, one can derive an approximate Gauss-
ian variance component model that inherits its mean and
variance components from the previous infinitesimal model.
The phenotypic values are then modeled as the sum of a fixed
intercept and two random components: a genetic component
and an error component including environmental effects and
other uncontrolled effects, the two components being inde-
pendent of each other:

y=1lu+g+e (2)

where y is the vector of phenotypes of the N individuals, 1is a
vector of 1, g is the vector of genetic values with g ~ N'(0,Ko2),
K is the matrix of kinship coefficients aj, e is the vector of errors
with e ~ N/ (0,Ic2), and I is the identity matrix.

In practice, the kinship matrix can be computed following
VanRaden (2008):

S o1 Wim = i) Wim = fn)
K). = _ /
( )U Zln\le fm(l _fm)

= ]%,Zf’: 1 Wi, refers to the estimate of f;,.

®))

where fm

GBLUP-RAE: According to the random allele effect statistical
formalism in Equation 1, QTL genotypes are now considered
deterministic and QTL allele effects are modeled as being
drawn from a normal distribution: g ~ A/(0, 0%) indepen-
dent and identically distributed (IID) for allm and k in {0, 1},
and 3 is the variance common to all QTL effects BE.

Let E(G;jw;) and cov(G;, Gj|lw;, w;) be the expected genetic
value and the covariance between genetic values of individ-
uals i and j over an infinite sampling of allele effects, with w;
and w; being the vectors of deterministic QTL genotypes of
individuals i and j, respectively. One has:

E(Gilw;) =0
and
COV(Gi,Gj|Wi,Wj) =

2
;0]

where o, = Mo} is the variance due to QTL effects and ¢;; is
the identity-by-state (IBS) coefficient between i and j, which
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has an explicit expression that stems from the derivation of
the covariance:

1 M
d)ij :M Z((l 7Wim)(1 7ij) +Wiijm) (4)
m=1

Note that when i = j, the covariance simplifies to the var-
iance V(G;lw;) = o, as ¢;; = 1 for homozygous inbred lines.
From this formalism, we can also model the phenotypic
value of a set of individuals as being a sum between a genetic
component and an error component. While not specified by

the generative model, a fixed intercept can be assumed:

y=1lpu+u+te (5)

where u is the vector of genetic values with u ~ N(0, po?)
and ¢ is the matrix of IBS coefficients ¢;;. All other terms are
identical to those described in Equation 2.

MAGBLUP: Let us consider a population of homozygous in-
bred lines from two pure genetic groups A and B, along with
lines admixed between these two groups. If we suppose a
polygenic trait with biallelic QTL, whose effects depend both
on the allele at the QTL (0/1) and its ancestry or local
admixture (A/B), and no epistatic interactions among loci,
we can model the genetic value of an individual as:

Gi = i”:l (Aima (Ba + Win (Bia = B3 )) (6)

+ Aimp (B?nB + Wim (ﬁflnB _B%B)))

where G; is the genetic value of individual i; M is the number
of QTL controlling the trait; A;,4 is the allele ancestry at locus
m, taking the value “1” if individual i inherited its allele from
group A and “0” otherwise; A = 1 — Aima, Win is the QTL
genotype at locus m, taking the value “1” if individual i has
the allele 1 and “0” otherwise; and B2, BL, B, and Bl5
refer to the effects of the homozygous genotype for alleles
0 and 1 in groups A and B at locus m, respectively (further
referred to as effects of alleles 0 and 1 in groups A and B).

MAGBLUP-RI: According to the random individual formal-
ism, QTL allele effects are considered deterministic, local
ancestries are modeled as being drawn from a Bernoulli
distribution: Ajma ~ B(r;) IID where ; is the genome pro-
portion that individual i received from group A, QTL genotypes
are modeled as being drawn from a Bernoulli distribution con-
ditionally to allele ancestries: (Win, |Aimp =1) ~ B(fmp), where
p € {A, B} will further refer either to group A or B and f;,, is the
frequency of allele 1 at locus m in group p. One also assumes
that CO]T(Wim, Wim’|Aimp = 17Aimip/: 1) = 0 for all m, m’ 7A m
andp, p’.Whenp = p’, this last assumption amounts to assum-
ing an absence of LD between QTL within groups.

Let us define the following parameters to model the covariance
between individuals: o = cor(Win, Wi |Aimp = 1, Ajmp = 1) for
all m being the “conditional” kinship between i and j on their
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shared group p ancestries, and 0‘; = E(AimpAjmp) for all m
being the proportion of shared group p ancestry (or shared
admixture). Note the existence of the following constraint:
07 =1 —m; — m; + 6, as shown in Figure 1.

For a given trait, let E(Gjm) and
cov(Gi, Gj|m;, m;j, 07}, 07, o}, af) be the expected genetic value
and the genetic covariance between i and j. One has:

E(Gi|m;) = mipg + (1 — ;) up

M M .
Where /‘Lp = Zm:ll"“mp = Zm:lBt(;p +fmp( rlnp - B&p) 18 the
mean of group p, decomposed as the sum of the mean QTL
effects w,,, in group p, and:

B B 2 2 B B 2

where A; = 6} — ;7 is the covariance between the allele ances-
. . H M 2 2
tries of i and j, 0§ = 577 Yoot (Mma ~Hons)” ~ i 7(Ha~15)

is the segregation variance caused by differences be-

tween group-specific mean QTL effects, and
2] . .
og = S met fp(1 = finp) (B, —Biyp)” is the genetic variance

in group p. When i = j, the covariance simplifies to the vari-
ance V(Gi|m) = mi(1—m)o2 + mo’%A +(1- 771‘)0'%8. More
details about the derivation of the model are shown in
Supplemental Material, File S1. Note that the covariance
between the genetic values of two pure individuals of differ-
ent groups is null here.

From this formalism, we can model the phenotypic value of
a set of individuals as the sum of fixed group effects and four
random components: an admixture component, two group-
specific genetic components, and an error component, with
the four components being independent of each other:

Yy=Xp+g8s+8 +8+e @)

where X = (ar, 1 — o) is the incidence matrix for fixed effects
with 7 being the vector of group A genome proportions,
= (ua, mp)" is the vector of group-specific intercepts, gg
is the vector of the admixture component of the genetic value
with g5 ~ N (0,Ac?), A is the matrix of coefficients Ay, g, is
the vector of the group p component of the genetic value with
g, ~ N(0, (6, >Kp)0'ép), 0, is the matrix of coefficients = 05,
and “o” refers to the Hadamard product.

In practice, covariance matrices can be estimated as follows:

_ Zln\leAimp (Wim —f mp)Aij (ij _f mp)

Kp); < ~ (8)
( p) ’ Zln\/{zlAimPAijfmp (1 _fmp)
1M
(Op)ij i ZAimijmp 9
m=1
(A)y = (0a) — i 10

N
N 2 1 Aimp Wim
where T = %Z%[:1AimA and fmp = %Ni‘: refer to the
i—12Yimp

estimates of 7; and fi,p, respectively. Note that the estimators
of kinship matrices were proposed in analogy with Equation 3.



MAGBLUP-RAE: According to the random allele effect for-
malism, QTL genotypes are considered deterministic and the
allele effects are random. These allele effects can be further
decomposed into main effects and group-specific deviations as
follows:

0 0
Bmp = ym +8mp7

1 1
Bmp = ym +6mp7

with y& ~ A(O, ay) D and6k ~ N (0, 03 ) IID for all m, p,
andk € {0,1}; 02 and 05 are the variance of the QTL effects ¥k,
and 8k respectlvely, with all ¥k and 8k being independent.

Comblmng this decomposition Wlth Equation 6, one
obtains:

M
= >~ (VoA Wi (73— 75,)

m=1
+ Aima (5% + Wi (312 =804 )) b
+q%m3<8m34fmam(8 -89 ))).
Let E(Gijla;,w;) and cov(G;, Gjla;,a;, w;,w;) be the

expected genetic value and the covariance between genetic
values of individuals i and j over an infinite sampling of allele
effects, with w; and w; being the vector of deterministic QTL
genotypes of i and j, respectively, and a; and a; being the
vector of deterministic QTL allele ancestries of i and j, re-
spectively. One has:

E(Gjla;,w;) =0
and:

cov(Gi, Gjla;, aj, wi, wj) = ¢1]UU+¢UUUA %‘TUB

where d’u is the IBS coefficient between i and j (Equation 4)
and d)p is the IBS coefficient between i and j on shared group p
ancesmes over the total number of loci, o7, = Ma? is the variance
component due to main QTL effects, and O'Up = M‘T.sp are the
variance component due to QTL deviation effects in group
p- Note that when i = j, the covariance simplifies to the var-
iance V(Gila;, w;) = o}, + w0}, + (1 — 7)o}, . According to
this formalism, the genetic covariance between two pure in-
dividuals of different groups is nonnull whenever the vari-
ance of main QTL effects is nonnull.

Like ¢;; in Equation 4, qbg has an explicit expression that
stems from the derivation of the covariance:

1 M
(155 = M Z AimpQjmp ((1 - Wim) (1 - ij) + Wiijm>~
m=1
(12)

From this formalism, we can model the phenotypic value of
a set of individuals as the sum between four components, one

genetic component that is due to main QTL effects, two genetic
components that are due to group-specific deviation effects,
and an error component. Like with GBLUP-RAE, a fixed in-
tercept can be assumed:

y=1lp+u+us+ug+e (13)

where u,, is the vector of the genetic component that is due to
QTL deviation effects in group p with u, ~ A/(0, qbpa%,p), and
¢, is the matrix of IBS coefficients on shared group p ances-
tries d){; All other terms are identical to those described in
Equations 2 and 5.

Flint-Dent data set

We considered the Flint-Dent panel presented in Rio et al.
(2020). It consists of 970 maize inbred lines including 300 pu-
re Dent, 304 pure Flint, and 366 admixed lines, which were
genotyped for 482,013 polymorphic SNPs. Missing marker
data were imputed and the ancestry (Dent or Flint) of the
alleles inherited by admixed individuals were inferred from
their marker data and their pedigree, as described in Rio et al.
(2020). For all individuals, SNP alleles (coded 0/1) and al-
lele ancestries (Dent or Flint) are considered as known. LD
extent was estimated separately for the Dent and Flint lines
and suggested the existence of a larger number of effective
chromosome segments in the Flint than in the Dent data set,
as presented in Figure S1. The panel was evaluated in two
trials for five traits: male flowering (MF) and female flower-
ing (FF) in calendar days after sowing, plant height (PH) in
centimeters, ear leaf number (ELN), and total number of
leaves (TNL). Each trial was a Latinized alpha design where
every line was evaluated two times on average, with 98% of
lines observed in both trials. The phenotypic analysis was
presented by Rio et al. (2020) for flowering traits and applied
here for all traits (Table S1). Least-square means were com-
puted over the whole design and are further referred to as
phenotypes. No weighted analysis was considered here as the
overall design was essentially balanced within and between
trials.

Statistical inference and genomic predictions

The genomic prediction models presented in the previous
section were applied to the Flint-Dent data set where group
A refers to the Dent group (D) and group B refers to the Flint
group (F). The four models considered are GBLUP-RI as de-
fined in Equation 2, using a kinship matrix computed follow-
ing Equation 3; GBLUP-RAE as defined in Equation 5, using
the IBS matrix computed following Equation 4; MAGBLUP-RI
as defined in Equation 7, using the covariances matrices de-
scribed in Equations 8-10; and MAGBLUP-RAE as defined in
Equation 13, using the three IBS matrices described in Equa-
tions 4 and 12. For all models, the inference of parameters
was done using the R-package MM4LMM (Laporte et al.
2020). Genomic predictions were computed as BLUPs
(Searle et al. 2008) of the genetic values (including fixed
effects).
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Figure 1 Diagram illustrating the genome-wide allele ancestry of two
inbred individuals i and j, represented by their haplotypes, with a pro-
portion r; of genome A for j and m; for j, a proportion of shared group A
ancestry 9;‘ between / and j, and a proportion of shared group B ancestry
67 =1~ — m; + 6] between jand j.

Simulated traits

Phenotypic traits were simulated to study the precision of
MAGBLUP-RI and MAGBLUP-RAE in terms of variance esti-
mates and genomic predictions. Genetic values were simu-
lated using the model presented in Equation 11. Three
different types of genetic configuration were defined regard-
ing QTL allele effects and are summarized in Table 1: “Main”
refers to a trait with only main QTL allele effects, “Dev.” refers
to a trait with only group-specific QTL deviation effects, and
“Main+Dev.” includes both types of effects. A total of
1000 loci were sampled among all SNPs to be used as QTL.
Allele effects were sampled independently from normal dis-
tributions with variances defined by the type of genetic con-
figuration. The genetic value of each individual was
computed as a sum of QTL effects that depend on both the
genotype and the ancestry of the alleles. Residuals were sam-
pled from a normal distribution A/(0, 0%), with 0% chosen to
reach a heritability of 0.8, which corresponds to the level of
heritability observed for the traits in our real data application
case. Genetic configurations complementary to those previ-
ously cited were simulated and are briefly presented in the
Discussion section.

Evaluation of genomic predictions for simulated traits

The precision of genomic prediction of simulated traits was
evaluated using two precision criteria: the accuracy and the
standardized root-mean-square error of prediction (RMSP).
The accuracy was computed by correlating the predicted value
of the PS individuals to their simulated genetic value. The
standardized RMSP was computed using the square root of the
average of the square difference between the predicted value
of PS individuals and their simulated genetic value, divided by
the SD of the simulated genetic values. MAGBLUP-RI and
MAGBLUP-RAE were compared to GBLUP-RI and GBLUP-RAE
using two cross-validation (CV) procedures and 50 simulated
traits for each type of genetic configuration. The first CV
procedure, called averaged holdout (HO), consisted in split-
ting the data set into proportions # and £ for the TS and the PS,
respectively. The second CV procedure, called structured
holdout (SHO), allowed us to (i) test the effect of the com-
position of the TS in terms of genetic background (and more
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particularly the interest of including admixed individuals),
and (ii) evaluate the efficiency of the different genomic pre-
diction models. Because the performance of GBLUP-RI and
GBLUP-RAE were identical in the HO procedure, only the
GBLUP-RI was considered for the SHO procedure. For the
SHO procedure, samples of 90 individuals were predicted
using a model trained on 210 other individuals. Those num-
bers were chosen to fit with all the scenarios described in
Table 2. All the scenarios are designated as TS_PS, with TS
and PS referring to the genetic backgrounds [Dent (D), Flint
(F), admixed (A)] represented in the TS and the PS, respec-
tively. When there is more than one genetic background in
the TS or the PS, the composition is always perfectly balanced
between them. As an example, DFA_A refers to a TS equally
composed of individuals from the three genetic backgrounds
and a PS composed of admixed lines only. In scenarios where
only a Dent or Flint genetic background is found in the TS
(D D,F D,D F,F F,D A andF A), only GBLUP-RI could be
evaluated. In configurations where admixed individuals are
absent of the TS (DF_D, DF_F, and DF_A), the admixture
term “gs” of MAGBLUP-RI was removed as its variance com-
ponent could not be estimated. For both CV procedures, the
splitting was done 20 times and the precision criteria were
averaged over replicates.

Application to real traits

The variance components of GBLUP-RI, GBLUP-RAE,
MAGBLUP-RI, and MAGBLUP-RAE were estimated for the
five real traits using the whole data set. The precision of
genomic predictions was evaluated using the HO and SHO
procedures with a splitting done 100 times. The same pre-
cision criteria were used as for simulated traits, but with
phenotypes as a reference. Note that the accuracy was then
called predictive ability, as it is commonly referred to in the
genomic selection (GS) literature. We also investigated the
effect of the number of SNPs used to compute the covariance
matrices of each GS model on the predictive ability. To this
end, different SNP densities were considered (100, 1000,
10,000, and 100,000 SNPs) by resampling among the
482,013 markers initially available. This resampling was
performed 100 times per SNP density, and the HO procedure
(with 100 splittings) was then applied to compare GS models.

Data availability

The Flint-Dent data set (genotypes and allele ancestries) is
available at the Dataverse: Rio Simon, 2020, ”FlintDent
GWAS data set”, https://doi.org/10.15454/0QT5CY. Sup-
plemental material includes details on MAGBLUP-RI deriva-
tion (File S1), the presentation of an alternative formalism
for GBLUP according to which both individuals and allele
effects are considered random (File S2), additional results
on the estimation of variance components by MAGBLUP-RI
and MAGBLUP-RAE (File S3), least-square means of the
Flint-Dent data set for the five real traits (File S4), R scripts
to run analyses (Files S5 and S6 for main code and functions,
respectively), and files with all supplemental figures (File S7)
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Table 1 Variances of the main allele effects uf/, the Dent-specific
deviation effects 0 , and the Flint-specific deviation effects o2,
for the three types of genetic configuration

Genetic configuration o2 od o,
Main 2 0 0
Dev. 0 1 3
Main+Dev. 2 1 3

and tables (File S8). Supplemental material available at fig-
share: https://doi.org/10.25386/genetics.12645833

Results
Precision of genomic prediction for simulated traits

The precision of genomic predictions of the GBLUP-RI,
GBLUP-RAE, MAGBLUP-RI, and MAGBLUP-RAE models
was first compared using CV (HO method) applied to 150 sim-
ulated traits, 50 for each type of genetic configuration. Re-
garding the accuracy, MAGBLUP-RI and MAGBLUP-RAE
outperformed GBLUP-RI and GBLUP-RAE for the genetic
configuration Dev. and Main+Dev., for which group-specific
QTL deviation effects were simulated (Figure 2). For instance,
considering genetic configuration Dev., a mean accuracy of
0.77 was obtained for MAGBLUP-RI and MAGBLUP-RAE
compared to 0.68 for GBLUP-RI and GBLUP-RAE. When con-
sidering genetic configuration Main, for which only main
QTL allele effects were simulated, GBLUP-RI, GBLUP-RAE,
and MAGBLUP-RAE slightly outperformed MAGBLUP-RI: a
mean accuracy of 0.70 was obtained for GBLUP-RI, GBLUP-
RAE, and MAGBLUP-RAE, compared to 0.68 for MAGBLUP-
RI. Similar trends were observed using the standardized
RMSP: a model with a higher accuracy tended to have a
lower standardized RMSP, and vice versa (Figure S2).

GBLUP-RI, MAGBLUP-RI, and MAGBLUP-RAE were then
compared for their genomic prediction accuracy using the
SHO CV procedure, which aimed at evaluating the effect of the
composition of the TS in terms of genetic backgrounds (D, F,
and A) to predict a given PS. This procedure was applied to
50 simulated traits for each genetic configuration. We present
the results for genetic configuration Main+Dev. (Table 3); the
results for configurations Main and Dev. are reported in Ta-
bles S2 and S3, respectively.

For all models and regardless of the genetic configuration,
the highest mean accuracy was obtained for scenario
DFA DFA, for which the PS and TS composition are balanced
between the three genetic backgrounds. To predict a specific
pure genetic background (D or F), the highest accuracies were
achieved when the TS was trained on individuals from the
same genetic background. The lowest accuracies were
obtained for across-group scenarios (F_D or D_F), while
across-genetic backgrounds scenarios involving admixed lines
led to intermediate accuracies (A D or A_F). When consid-
ering multigroup TSs, with an equal contribution of both Dent
and Flint genetic groups (DF_D, DAF_D, and A_D or DF_F,
DAF F, and A F), including admixed individuals either

Table 2 Scenarios evaluated with the SHO CV where 90 individuals
are predicted by 210 other individuals

SHO scenario TS composition PS composition

DFA_DFA D+ IF+ 1A D+ IF + 1A
AD A D
DFA_D D+ IF+1A D
DF_D D+ IF D
D_D D D
FD F D
AF A F
DFA_F D+ 1F+1A F
DF_F D+ IF F
D_F D F
F_F F F
A_A A A
DFA_A D+lF+ia A
DF_A D+ IF A
D_A D A
FA F A

The TS and the PS were balanced considering their composition in genetic
backgrounds [Dent (D), Flint (F) and admixed (A)].

improved or led to similar accuracies compared to including
only pure individuals. Note that any TS including only
admixed individuals can be considered as a multigroup TS,
since admixed individuals represent both groups. When pre-
dicting admixed lines, using an admixed TS (A_A) led to
higher accuracies than using all genetic background in the
TS (DFA_A), or pure individuals only (D_A, F A, or DF_A).

MAGBLUP-RI and MAGBLUP-RAE were considered as an
alternative to GBLUP-RI for multigroup TSs. When group-
specific allele effects were simulated, as in genetic configu-
ration Main+Dev., MAGBLUP-RAE generally outperformed
MAGBLUP-R], itself outperforming GBLUP-RI. For instance, in
scenario A_F, the average accuracy was 0.48 for GBLUP-RI,
0.49 for MAGBLUP-RI, and 0.50 for MAGBLUP-RAE. As
expected, the gain in accuracy was higher when MAGBLUP-RI
and MAGBLUP-RAE were used to predict admixed lines. For
instance, in scenario A_A, the average accuracy was 0.52 for
GBLUP-RI, 0.59 for MAGBLUP-RI, and 0.60 for MAGBLUP-
RAE.

Application to real traits

Variance components were estimated using the four models
for five traits and are summarized in Table 4. Residual vari-
ance estimates were comparable between models for all
traits. The genetic variance o2 estimated using GBLUP-RI
can be compared to the group-specific genetic variances
og, and o7 estimated using MAGBLUP-RI. For all traits but
MF, o was larger than o and o7 . For instance, og was
estimated at 19.51 for FF while ¢, and ¢, were estimated
at 17.69 and 15.99, respectively. The segregation variance
estimates o2 were always smaller than group-specific genetic
variances for all traits, but were substantial, especially for PH.
For MAGBLUP-RAE, ¢, was always larger than o, and o ,
which suggests a minor contribution of group-specific devia-

tion effects within this data set. For instance, o3 was estimated
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Figure 2 Boxplots of mean accuracies (evaluated by CV over 20 HO
replicates) obtained using GBLUP-RI, GBLUP-RAE, MAGBLUP-RI, and
MAGBLUP-RAE for 50 traits simulated according to each type of genetic
configuration (Main, Dev., and Main+Dev.; see Table 1).

as being equal to 37.90 for MF using MAGBLUP-RAE, while
of. and of were estimated as being equal to 2.64 and 0.00,
respectively. The variance component due to Flint deviation
effects was lower than the component due to Dent deviation
effects for all traits but TNL. The sum of the genetic compo-
nents estimated by MAGBLUP-RAE (i.e., 03 + 0% + 03 ) was
always approximately equal to the genetic component esti-
mated by GBLUP-RAE (i.e., 02).

The four models were compared for their predictive ability
using the HO CV procedure applied to the five real traits
(Figure 3). Lower predictive abilities were obtained for PH
compared to the four other traits. The four models led to very
similar predictive abilities no matter the trait and the popula-
tion sample evaluated, but the following ranking was gener-
ally observed (best to worst): MAGBLUP-RAE, GBLUP-RAE,
GBLUP-RI, and MAGBLUP-RI. For instance, with MF, the av-
erage predictive ability was equal to 0.768 for MAGBLUP-RAE,
0.767 for GBLUP-RAE, 0.764 for GBLUP-RI, and 0.761 for
MAGBLUP-RI. Like for simulated traits, similar trends were
observed using the standardized RMSP: a model with a higher
predictive ability tended to have a lower standardized RMSP,
and vice versa (Figure S3).

The effect of the number of SNPs used to compute the
covariance matrices of each GS model was investigated by
applying the HO CV procedure to GBLUP-RI, GBLUP-RAE,
MAGBLUP-RI, and MAGBLUP-RAE, with covariance matrices
computed using SNP samples of various densities. Boxplots
of mean predictive abilities are presented in Figure 4 for
MF and PH, and in Figure S4 for FF, ELN, and TNL. With
small SNP sample sizes, MAGBLUP-RI and MAGBLUP-RAE
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Table 3 Mean accuracies over 50 traits simulated according to
genetic configuration Main+Dev. (see Table 1) and 20 CV replicates
(SHO method), obtained using GBLUP-RI, MAGBLUP-RI, and
MAGBLUP-RAE

GBLUP-RI MAGBLUP-RI MAGBLUP-RAE
DFA_DFA 0.57 (0.11) 0.60 (0.12) 0.60 (0.12)
A_D 0.41 (0.07) 0.41 (0.08) 0.42 (0.08)
DFA_D 0.40 (0.08) 0.42 (0.09) 0.42 (0.09)
DF_D 0.41 (0.08) 0.42 (0.09) 0.42 (0.08)
D_D 0.49 (0.07) - _
F_D 0.13(0.13) - _
A_F 0.48 (0.09) 0.49 (0.08) 0.50 (0.08)
DFA_F 0.46 (0.10) 0.48 (0.08) 0.48 (0.09)
DF_F 0.44 (0.11) 0.46 (0.09) 0.47 (0.09)
D_F 0.09 (0.13) - -
F_F 0.54 (0.08) - _
A_A 0.52 (0.06) 0.59 (0.07) 0.60 (0.06)
DFA_A 0.48 (0.04) 0.54 (0.06) 0.55 (0.05)
DF_A 0.40 (0.05) 0.41 (0.05) 0.41 (0.05)
D_A 0.29 (0.07) - -
F_A 0.39 (0.08) - _
SD over the 50 mean accuracies (computed over 20 CV replicates) are shown
between brackets. “~" indicates that a model could not be applied for the given

configuration.

outperformed GBLUP-RI and GBLUP-RAE (e.g., for MF, the
predictive ability was of 0.59 for GBLUP-RI and GBLUP-RAE,
and 0.64 for MAGBLUP-RI and MAGBLUP-RAE), and this
advantage tended to decrease with larger SNP sample sizes.

The effect of genetic structure on the predictive ability was
then evaluated using the SHO CV procedure applied to the five
real traits. The predictive abilities obtained are summarized in
Table 5 for MF and PH, and in Tables S4-S6 for FF, ELN, and
TNL, respectively. Some results were consistent with the SHO
results on simulated traits: the highest predictive abilities
were obtained for scenario DFA_DFA, while the across-group
scenarios (F_D and D_F) led to the lowest predictive abilities
when predicting a given group-specific PS. Contrary to what
was observed on simulated traits, applying genomic predic-
tions within a given genetic background did not always lead
to the highest predictive abilities. For instance, when a Flint
PS was predicted using Flint lines for PH (F_F), the average
GBLUP-RI predictive ability was lower (0.37) than when us-
ing admixed lines (A_F, with 0.41). Compared to simulated
traits, a larger asymmetry was observed between across-
group scenarios, as Flint lines were better predicted by Dent
lines than the opposite (e.g., GBLUP-RI predictive ability of
0.60 and 0.33 for MF with scenarios D_F and F_D, respec-
tively). When considering multigroup TSs with an equal con-
tribution of both Dent and Flint genetic groups (DF_D,
DFA D, and A D or DF F, DFA F, and A F), including
admixed individuals sometimes depreciated predictive abil-
ities compared to including only pure individuals, unlike with
simulated traits. When predicting an admixed PS, using
admixed lines (A_A) was not necessarily the best option as
a higher GBLUP-RI predictive ability was observed when us-
ing a TS including both Dent and Flint lines (DF A with 0.57)



Table 4 Variance components of real traits estimated by GBLUP-RI, GBLUP-RAE, MAGBLUP-RI, and MAGBLUP-RAE using all 970 lines

Model Variance MF FF PH ELN TNL
GBLUP-RI o-é 13.95 (1.26) 19.51 (1.86) 640.35 (58.72) 1.22 (0.11) 1.74 (0.16)
U’% 3.77 (0.51) 2.89 (0.51) 114.97 (19.69) 0.32 (0.05) 0.46 (0.06)
MAGBLUP-RI 0'§ 3.56 (1.93) 4.60 (2.25) 312.28 (139.21) 0.49 (0.24) 0.43 (0.26)
créD 14.36 (1.66) 17.69 (1.96) 583.61 (69.43) 1.16 (0.14) 1.52 (0.19)
UZG; 12.10 (1.46) 15.99 (1.82) 487.25 (60.39) 1.11 (0.14) 1.71 (0.20)
U’% 3.63 (0.52) 3.46 (0.58) 131.00 (21.51) 0.32 (0.05) 0.46 (0.07)
GBLUP-RAE o-fj 40.53 (3.66) 51.53 (4.41) 1779.59 (158.51) 3.53 (0.33) 5.03 (0.46)
U’% 3.77 (0.51) 3.59 (0.56) 126.40 (20.44) 0.33 (0.05) 0.47 (0.06)
MAGBLUP-RAE af/ 37.90 (3.91) 48.89 (4.64) 1567.70 (183.04) 3.29 (0.35) 4.60 (0.49)
a'f,D 2.64 (3.13) 2.38 (3.66) 246.96 (152.00) 0.27 (0.29) 0.12 (0.40)
0'(2# 0.00 (3.33) 0.01 (3.90) 0.07 (155.90) 0.02 (0.30) 0.33(0.42)
a'% 3.81(0.51) 3.65 (0.56) 127.53 (20.53) 0.32 (0.05) 0.47 (0.06)

SE are shown between brackets.

compared to using A_A (0.55) for MF. When comparing ge-
nomic prediction models, GBLUP-RI and MAGBLUP-RAE
reached very similar levels of predictive ability and were gen-
erally superior to those obtained using MAGBLUP-RI, as ob-
served in genetic configuration Main for simulated traits.

Discussion

Modeling group-specific allele effects in
admixed populations

We developed two genomic prediction models adapted to the
prediction of admixed individuals.

MAGBLUP-RI was derived using a formalism in which the
genotypic information at QTL is random, and is thus in line
with the animal model (Henderson 1984) and the decompo-
sition of variance in admixed populations proposed by Lo
et al. (1993) and Garcia-Cortés and Toro (2006). We pro-
posed estimators of the covariance matrices that take advan-
tage of both genotypic information and local admixtures,
unlike Strandén and Méintysaari (2013) and Makgahlela
et al. (2013), who adapted these models using global admix-
ture proportions and a standard kinship matrix estimated
with SNPs. For given genetic groups A and B, the model is
expressed as a variance component model including a segre-
gation variance o2 and two group-specific genetic variances
og, and o7 . The segregation variance o3 was presented by
Lande (1981), Lo et al. (1993), and Lynch and Walsh (1998),
and corresponds to a part of the additional variance observed
in an admixed population that is due to contrasted mean QTL
effects between groups. It depends on two factors: the differ-
entiation of allele frequencies between groups and the exis-
tence of group-specific allele effects. Note that the additional
variance observed in admixed populations also results from
the variability in admixture proportions of individuals, which
is accounted for in the fixed part of the model.

MAGBLUP-RAE was derived using a formalism in which
SNP allele effects are random, and is thus is line with a Bayesian
conception of genomic prediction models (Meuwissen et al. 2001;
Gianola et al. 2009). Using this formalism, it is possible to allow
for genetic covariances between individuals from different

groups, assuming that SNP allele effects are at least partly
conserved between groups (Karoui et al. 2012; Lehermeier
et al. 2015). Rather than modeling directly covariances be-
tween effects across groups, we re-parametrized QTL allele
effects into a main effect and group-specific deviations, as pro-
posed by Schulz-Streeck et al. (2012), de los Campos et al.
(2015), Technow and Totir (2015), and Veturi et al. (2019).
Here, also, the main innovation of our model lies in the valo-
rization of genomic data and local admixtures, whereas other
methods based on the second formalism only accounted for
distinct genetic groups. MAGBLUP-RAE could be expressed as
a variance component model including a component that is
due to main SNP allele effects 02 and two components that are
due to group-specific deviation effects 0'(2]A and U%]B. These
components can be used to better understand the genetic ar-
chitecture of a given trait as they provide insights concerning
the conservation of SNP allele effects across genetic groups.
This information is tightly linked to the concept of genetic
correlation between genetic groups, which is an important
parameter to consider when applying GS in a structured pop-
ulation (Porto-Neto et al. 2015; Wientjes et al. 2017).
Genomic prediction models MAGBLUP-RI and MAGBLUP-
RAE differed in terms of the origin of genetic covariance
between individuals. According to MAGBLUP-RI, the genetic
value of a pure individual from a given group A is correlated
with those of other group A individuals and with those of
admixed individuals. However, no information can be shared
with a pure individual of the alternative group B (i.e., an
individual from group A cannot contribute to the prediction
of an individual from group B, and conversely), as a null
kinship is assumed between individuals coming from differ-
ent groups. The genetic value of an admixed individual is
correlated with those of all types of individuals, including
other admixed individuals that do not share any allele ances-
try, through the segregation covariance of g5. According to
MAGBLUP-RAE, the genetic value of a pure individual from
group A is correlated with those of admixed and group A
individuals, but also to individuals belonging to group B as
soon as the SNP effects are at least partially conserved be-
tween groups (i.e., o-ZU > 0). In such a case an individual from
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Figure 3 Boxplots of predictive abilities obtained by CV (HO method with
100 replicates) for GBLUP-RI, GBLUP-RAE, MAGBLUP-RI, and MAGBLUP-
RAE on real traits.

group A can contribute to the prediction of an individual from
group B. In conclusion, these two models underline the main
sources of genetic covariance between individuals: their kin-
ship, the conservation of QTL alleles effects between groups,
and the segregation of allele ancestries within admixed indi-
viduals. The extension to more than two groups is straightfor-
ward for MAGBLUP-RAE but not for MAGBLUP-RI, as it
would require to divide the segregation variance into pair-
wise components, as shown by Lo et al. (1993) and (Garcia-
Cortés and Toro 2006).

The random individual and random allele effect formal-
isms lead to genomic prediction models with different vari-
ance components that are not directly comparable. However,
an equivalence between the genomic prediction models
obtained from both formalisms can be shown for GBLUP
provided that adjustments of the random allele effect formal-
ism are made, as presented by Schreck et al. (2019): the
substitution effect 8}, — B2 must be directly modeled rather
than the effect of each allele, and the genotypes Wy, must be
standardized as W;, = Wi _fn___ In such a case, the
A/ Fu(i=F)
matrix that stems from the derivation of the covariance in
the random allele effect formalism is the one presented in
Equation 3, rather than the IBS matrix presented in Equation
4. Note that this equivalence only holds if the kinship be-
tween individuals (an unknown parameter) is estimated fol-
lowing Equation 3, as proposed by VanRaden (2008). Other
kinship estimators exist and allow for a similar equivalence
provided that another standardization of Wj, is used in the
random allele effect formalism (Astle and Balding 2009;
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Yang et al. 2010; Speed et al. 2012; Weir and Goudet 2017).
Note that kinship can also be estimated by maximum likeli-
hood (Choi et al. 2009; Laporte et al. 2017) in which case no
equivalence is possible with the random allele effect formal-
ism. Regarding MAGBLUP, adapting the random allele effect
formalism to develop a model equivalent to our MAGBLUP-RI
model would require (i) the consistency between the effects
modeled in the random allele effect formalism and those
observed in the variance components of MAGBLUP-RI (e.g.,
group-specific substitution effects 8, — B5,), (ii) the possi-
bility of defining standardized variables in the random allele
effect formalism leading to the estimators proposed in Equa-
tions 8-10, and (iii) the definition of group-specific fixed ef-
fects. While the first and third conditions are easy to satisfy, the
second is problematic for resemblance parameters of the form
afj, as the denominator of Equation 8 is specific of each pair of
individuals. Alternatively, one may consider a new formalism
in which both individuals and allele effects are considered
random. However, for GBLUP, this formalism is not helpful
to define a new genomic prediction model (File S2).

Variance components and genomic predictions

Using simulations, MAGBLUP-RI and MAGBLUP-RAE were
evaluated for their precision in estimating their respective
variance components, as presented in File S3. Both models
estimated their variance components accurately.

Regarding genomic prediction, the two MAGBLUP models
were compared to the two GBLUP models for the same three
genetic configurations using standard CV procedures. Both
MAGBLUP-RI and MAGBLUP-RAE led to higher accuracies
than GBLUP-RI and GBLUP-RAE when group-specific QTL
allele effects were simulated, and the gain was the highest
for the genetic configuration with QTL allele effects drawn
independently within each group. To quantify the minimum
relative size of the deviation effects (compared to the main
effects) required to observe a gain in precision between the
two MAGBLUP models and the two GBLUP models, additional
genetic configurations with increasing magnitude of deviation
effects were tested. Deviation effects that were of the order of
halfthe size of the main effects allowed for a substantial gain in
accuracy (Figure S5). When evaluated for the genetic config-
uration with conserved QTL allele effects between groups,
MAGBLUP-RAE led to accuracies similar to GBLUP-RI and
GBLUP-RAE, while MAGBLUP-RI resulted in slightly lower
accuracies. These results indicated that MAGBLUP-RAE is
more robust than MAGBLUP-RI over a wide variety of genetic
configurations. This may be explained by the possibility for
genetic information to be shared between groups, which gives
asubstantial advantage when QTL allele effects are conserved
between groups, as discussed by Lehermeier et al. (2015).
These simulations also show evidence of the robustness of
GBLUP-RI and GBLUP-RAE with respect to the heterogeneity
of SNP allele effects across groups, as the gain in accuracy did
not exceed 0.15 in the genetic configuration Dev., where al-
lele effects are drawn independently between groups. The
robustness of all genomic prediction models to a nonnormal
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100,000 SNPs.

distribution of allele effects was also investigated by compar-
ing the accuracy of the models for two alternative genetic
configurations based on the Main+Dev. genetic configura-
tion, as presented in Figure S6. The first genetic configuration
included a QTL with a large substitution effect, partially con-
served between the Dent and Flint genetic groups. Here, the
gains of MAGBLUP models over GBLUP models were slightly
reduced. The second genetic configuration included 10% of
the QTL with an effect that depends solely on allele ancestry.
Such effects may result from QTL differentially fixed between
groups whose information is captured by polymorphic linked
SNPs. Here, the gains of MAGBLUP models over GBLUP mod-
els were largely increased.

Using five real traits, MAGBLUP-RI and MAGBLUP-RAE
were compared to GBLUP-RI for variance component esti-
mates and genomic prediction accuracy. The genetic variance
o2 estimated with GBLUP was comparable and generally
higher than the group-specific variances o2, and ¢, esti-
mated with MAGBLUP-RI. The segregation variance esti-
mates were relatively low for flowering traits compared to
group-specific genetic variances, but was substantial for PH.
These results suggest a substantial additional variance gen-
erated by admixture for PH, which is consistent with the high
genotypic variance estimated in the phenotypic analyses for
admixed individuals compared to pure genetic groups (Table
S1). Using MAGBLUP-RAE, the proportion of variance esti-
mated to be due to main SNP allele effects was much higher
than those due to group-specific deviation effects for all traits.
These results suggested that the genetic architecture of these
five traits consisted of a polygenic background whose QTL
allele effects are mainly conserved between the Dent and

Flint groups. As expected on the basis of these results, the
two MAGBLUP models did not lead to a substantial gain in
accuracy, even though MAGBLUP-RAE allowed the highest
predictive abilities for all traits.

Previous QTL mapping and GWAS studies had shown
differences in terms of genetic architecture between Dent
and Flint groups for flowering traits (Giraud et al. 2014,
2017; Rincent et al. 2014). In a previous study based on
the same data set, Rio et al. (2020) identified QTL showing
a group heterogeneity of allele effects for flowering traits.
Based on these results, we could have expected that the pro-
portion of variance due to group-specific deviation effects
would be higher for MF and FF. One possible explanation
for the discrepancy between expected and observed results
is that part the heterogeneity of allele effects results from
interactions between QTL and the genetic background. In
presence of such interactions, SNP alleles effects would not
be conserved between pure groups (due to a different allele
ancestry and genetic background), nor between pure and
admixed individuals with the same allele ancestry. The two
MAGBLUP models will improve GS accuracy if group-specific
deviation effects are mainly caused by local genomic differ-
ences, as shown in the simulation study, but will be of limited
interest if the deviation effects are caused by interactions
between QTL and the genetic background. Several results
support this hypothesis for the present experimental data:
(i) QTL interacting with the genetic background were de-
tected by Rio et al. (2020) for MF and FF using this data
set; (ii) epistatic interactions contributed significantly to
the variability, as tested using a likelihood-ratio test on a
model adapted from Vitezica et al. (2017) for MF, FF, and
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Table 5 Mean predictive abilities over 100 CV replicates (SHO method) for MF and PH using GBLUP-RI, MAGBLUP-RI, and MAGBLUP-RAE

MF PH

GBLUP-RI MAGBLUP-RI MAGBLUP-RAE GBLUP-RI MAGBLUP-RI MAGBLUP-RAE
DFA_DFA 0.76 (0.04) 0.75 (0.04) 0.76 (0.04) 0.57 (0.06) 0.57 (0.06) 0.57 (0.06)
AD 0.60 (0.06) 0.59 (0.06) 0.60 (0.06) 0.34 (0.09) 0.32 (0.09) 0.34 (0.09)
DFA_D 0.63 (0.06) 0.62 (0.05) 0.64 (0.05) 0.41 (0.08) 0.40 (0.08) 0.41 (0.08)
DF_D 0.66 (0.05) 0.65 (0.05) 0.67 (0.05) 0.44 (0.08) 0.43 (0.08) 0.43 (0.08)
D_D 0.70 (0.04) - - 0.52 (0.06) - -
F_D 0.33(0.11) - - 0.07 (0.10) - -
A_F 0.67 (0.05) 0.65 (0.05) 0.67 (0.05) 0.41 (0.08) 0.39 (0.09) 0.41 (0.08)
DFA_F 0.71 (0.05) 0.69 (0.05) 0.71 (0.05) 0.37 (0.08) 0.33 (0.09) 0.35(0.09)
DF_F 0.70 (0.05) 0.68 (0.05) 0.69 (0.05) 0.35 (0.08) 0.33 (0.09) 0.34 (0.09)
D_F 0.60 (0.07) - - 0.15(0.11) - -
F_F 0.69 (0.05) - - 0.37 (0.07) - -
A_A 0.55 (0.06) 0.53 (0.07) 0.55 (0.07) 0.39 (0.08) 0.37 (0.08) 0.38 (0.08)
DFA_A 0.56 (0.08) 0.53 (0.09) 0.55 (0.08) 0.37 (0.08) 0.35 (0.08) 0.36 (0.08)
DF_A 0.57 (0.08) 0.55 (0.08) 0.56 (0.08) 0.39 (0.08) 0.38 (0.09) 0.38 (0.08)
D_A 0.53 (0.07) - - 0.36 (0.08) - -
F_A 0.52 (0.08) - - 0.38 (0.06) - -
SD over the predictive abilities of the 100 CV replicates are shown between brackets. “~" indicates that a model could not be applied for the given configuration.

PH (Table S7); and (iii) variance components estimated us-
ing MAGBLUP-RAE, trained only on pure Dent and Flint in-
dividuals (i.e., without admixed individuals), suggested a
higher contribution of group-specific deviation effects than
that suggested by the variance estimates obtained when in-
cluding admixed individuals (Table S6 and Table 4). In such
data, epistatic interactions with the genetic background may
contribute to group-specific deviation effects, while the pres-
ence of admixed individuals is likely to minimize their con-
tribution. In such a situation, it could be more appropriate to
perform genomic predictions using models that account di-
rectly for epistatic interactions between QTL (Vitezica et al.
2017), or other methods accounting for various types of het-
erogeneity between genetic groups, such as computing an
alternative covariance matrix based on specific kernel func-
tions (Heslot and Jannink 2015; Ramstein and Casler 2019).
A simple modeling of epistatic interactions between QTL
pairs according to Vitezica et al. (2017) led to limited gains
in terms of predictive ability for flowering traits using this
data set (Figure S7). It suggests the need for a more complex
modeling of epistatic interactions between QTL that also ac-
count for allele ancestry.

As discussed by Ibanez-Escriche et al. (2009) and Technow
et al. (2012), the modeling of group-specific allele effects
would probably be more beneficial compared to standard
GBLUP for data sets genotyped at low to medium density.
This hypothesis is based on the idea that LD between SNPs
and QTL is more likely to differ between groups at low densities,
leading to a heterogeneity of group-specific allele effects esti-
mated at SNPs, even when the true QTL allele effects are con-
served between groups. This hypothesis was confirmed using
this data set, showing a substantial advantage of MAGBLUP-RI
and MAGBLUP-RAE compared to GBLUP when subsets of
100 and 1000 SNP were used. Alternatively, in presence of
true different QTL allele effects between groups, a high SNP
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density is likely to enhance the robustness of GBLUP, as SNPs
showing a high differentiation in terms of allele frequencies
may be used to adjust the group specificity of QTL effects.

Benefits from admixed individuals in multigroup TSs

The effect of the composition of the TS was evaluated using
both simulated and real traits, based on the SHO CV procedure
that leverages the contribution of each genetic background
(Dent, Flint, or admixed) to the TS and the PS. Several
observations were in accordance with the results of Rio
etal. (2019): (i) the best accuracies were obtained in scenar-
ios for which all genetic backgrounds were represented in the
TS and the PS, (ii) a given group-specific PS was generally
best predicted using a TS including only individuals from the
same genetic group, (iii) applying across-group predictions
could highly depreciate genomic prediction accuracy, and
(iv) multigroup TSs showed a relatively high accuracy no
matter the target PS. Interestingly, Flint lines were better
predicted by Dent lines than the other way round for all real
traits. This asymmetry may result from the higher contribu-
tion of Dent-specific compared to Flint-specific deviation ef-
fects as quantified through the estimates of o, and o7 (see
Table S8 and Table 4), making Dent lines more difficult to
predict by the Flint lines than the other way round. These
results suggest that MAGBLUP-RAE can be useful to forecast
the accuracy of across-group predictions.

One could question whether including admixed individ-
uals in multigroup TSs, instead of assembling pure individ-
uals, would improve genomic prediction accuracy when
predicting both admixed and pure individuals. Based on
simulated traits, applying MAGBLUP-RI or MAGBLUP-RAE
instead of using GBLUP-RI led to limited gains when pre-
dicting Dent or Flint lines, but greatly improved the accu-
racy when predicting admixed lines. For real traits, the
predictive ability was little affected by the GS model or the



constitution of the TS when predicting admixed individu-
als, even though a TS including only Dent or Flint lines
generally led to the lowest accuracies. The inclusion of
admixed lines in multigroup TSs, rather than assembling
pure individuals, was not always beneficial for real traits,
unlike previous results based on simulations presented by
Toosi et al. (2013) and on simulated traits in this study.
Here, also, the existence of epistatic interactions between
QTL and the genetic background may explain the discrep-
ancy between the results on simulated and real traits. Such
interactions would be shuffled within admixed individuals
and would limit the amount of genetic information to be
shared between an admixed and a pure individual. In such
context, the main source of genetic information to predict a
given pure individual would consist in other individuals
from the same genetic group.

In conclusion, MAGBLUP-RI and MAGBLUP-RAE showed
their complementarity as genomic prediction models in the
context of admixed populations and traits with QTL showing
group-specific allele effects. While MAGBLUP-RI can be used
to evaluate the segregation variance generated by admixture,
MAGBLUP-RAE can be used to disentangle the variance that is
due to main allele effects from the variability that is due to
group-specific deviation allele effects. In breeding, admixed
individuals are generated on many occasions by breeders
when (i) exotic genetic pools are crossed to elite germplasm
to sustain long-term genetic gain, (ii) progenitors are derived
from commercial hybrids to assemble group-specific favorable
alleles, or (iii) when breeding company mergers go along with
genetic resources mergers. Beyond breeding, the growing
interest of the quantitative genetics community in admixture
should be accompanied by an increasing availability of genomic
data for which information on allele ancestry will be available.
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