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Abstract: The effects of triazole fungicide Tango® (epoxiconazole) and two neonicotinoid insecticide
formulations Mospilan® (acetamiprid) and Calypso® (thiacloprid) were investigated in Candida
albicans and three non-albicans species Candida pulcherrima, Candida glabrata and Candida tropicalis to
assess the range of morphological, metabolic and genetic changes after their exposure to pesticides.
Moreover, the bioavailability of pesticides, which gives us information about their metabolization
was assessed using gas chromatography-mass spectrophotometry (GC-MS). The tested pesticides
caused differences between the cells of the same species in the studied populations in response
to ROS accumulation, the level of DNA damage, changes in fatty acids (FAs) and phospholipid
profiles, change in the percentage of unsaturated to saturated FAs or the ability to biofilm. In addition,
for the first time, the effect of tested neonicotinoid insecticides on the change of metabolic profile
of colony cells during aging was demonstrated. Our data suggest that widely used pesticides,
including insecticides, may increase cellular diversity in the Candida species population-known as
clonal heterogeneity-and thus play an important role in acquiring resistance to antifungal agents.
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1. Introduction

Pesticides comprise a wide range of chemicals of different classes used to ensure higher crop yields,
but on the other hand, many adverse effects have been detected in animals and humans after acute or
chronic exposure to pesticides, including cancer [1,2], lower fertility [3,4], metabolic changes [5,6] and
changes in gastrointestinal microbiomes [7,8]. Symbiotic microorganisms play crucial roles in many
important processes, such as vitamin synthesis [9], energy metabolism [10], neurodevelopment [11]
and immune system modulation [12]. If there are disbalances and the immune system is weakened,
facultative pathogens may cause disease. A typical representative is the genus Candida, which is
normally present on the mucous membranes and keeps in balance with other host microbiota.
After injury, candidiasis is commonly detected in the oral cavity, urogenital tract, on the skin, or
as a systemic fungal disease in humans and animals [13,14]. Candida yeast is a heterogeneous
group of microorganisms, inhabiting various environments. The genus Candida, belonging in the
family Debaryomycetaceae within the subtype Saccharomycotina, type Ascomycota, includes over 200
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morphologically diverse species; their common feature is the ability to reproduce asexually through
budding [15,16]. Apart from pathogenic Candida spp. there are beneficial species, which are often
involved in the fermentation processes of sausage, bread, coffee beans and cheese production [17],
or they are detected on the surfaces of fruit and vegetables [18]. In the soil, they play an important role
in nutrient transformation, plant growth promotion, and plant protection against some diseases [19].

On the other hand, it is well known that the microbiota is very sensitive to diet, environmental
pollutants and drug administration. Xenobiotics may be metabolized by the gastrointestinal microbiota
and metabolites can lead to increased [20] or reduced toxicity [21].

Mechanisms of antifungal activity of fungicides as well as pesticides mechanism of action on
pests are mostly understood [22–25].

On the other hand, soil fungi are often exposed to chemicals used in agriculture and among
them not only to fungicides but also to other pesticides. There is a current gap in knowledge on how
insecticides, not only fungicides, may modulate fungal cells’ heterogeneity. In addition, there is still a
lack of information about the impact of pesticides on microbiological flora after entering the human
and animal body.

This study aimed to assess the impact of commonly used pesticides as an underestimated and
neglected source of cellular variability of microorganisms, including yeast of the Candida genus,
which may lead to the creation of clonal heterogeneity with altered morphological, genetic and
physiological profiles. The consequence of this mechanism may be the creation of a population of cells
with new features (e.g., acquisition of drug resistance) in relation to the initial population. Furthermore,
to make our conclusions more general we chose also Candida strains isolated from infected humans,
C. pulcherrima isolated from the environment and C. albicans ATCC 14053, the most defined strain,
as a control.

In our experiments, a fungicide and two insecticide formulations were tested. The twin-component
fungicide formulation Tango® Star (84 g·L−1 epoxiconazole and 250 g·L−1 fenpropimorph) was applied
to cereal crops and sugar beet to prevent fungal diseases. Its active agent, epoxiconazole, belonging
in the group of triazoles, acts as an inhibitor of lanosterol 14-α-demethylase (CYP 51). This enzyme
is necessary for ergosterol synthesis, the basic steroid component of the fungal cell membrane [26].
The second active agent, a morpholine fenpropimorph, inhibits ergosterol synthesis through ERG2
and ERG24 gene inhibition. The product of the ERG2 gene catalyzes the change of zymosterol to
episterol and the product of the ERG24 gene catalyzes the change of dimethyl-cholestratrienol to
fecosterol in the ergosterol biosynthesis process [27]. Additionally, different levels of yeasts and the
composition of their communities were detected after fungicide treatment. The main reason for these
differences is the varying susceptibility of the yeasts to the applied fungicides [28]. Next, neonicotinoid
insecticides Calypso® 480SC (480 g·L−1 thiacloprid) and Mospilan® 20SP (20% acetamiprid) were
examined. Both are widely used to protect fruits, vegetables and ornamental plants against various
insects. Their active agents act as selective agonists to nicotinic acetylcholine receptors in insects,
while lower toxicity is observed in the vertebrates including humans due to the lower occurrence of
these receptors [29,30].

2. Materials and Methods

2.1. Candida Strains, Experimental Conditions and Pesticides Tested

The Candida strains used in this work are listed in Table 1. For all experiments, all Candida strain
pre-cultures for biomass propagation were grown on liquid YPD medium (1% w/v Difco Yeast Extract,
2% w/v Difco Yeast Bacto-Peptone, 2% w/v dextrose). Liquid cultures were incubated at 28 ◦C for 24 h
using an orbital shaker (120 rpm).
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Table 1. List of Candida spp. used in experiments.

Strains Characteristics

Candida albicans ATCC 14053 Control strain

Candida pulcherrima VKM Y-955 Environmental isolate, strains were kindly provided from the Institute
of Cell Biology NASU Lviv, Ukraine

Candida glabrata Urinary isolate, female; Identification (API® Candida Biochemical Test)
and DNA sequencing–GenBank Accession Number–LC389261.1

Candida tropicalis
Bronchoalveolar lavage isolate, male; Identification (API®Candida
Biochemical Test) and DNA sequencing–GenBankAccession
Number-KX664669.1

Three commercially available pesticide formulations were bought in Poland and used in our
experiment, namely the fungicide Tango® Star (250 g·L−1 fenpropimorph and 84 g·L−1 epoxiconazole)
and two insecticides, Mospilan® 20 SP with active ingredient acetamiprid (≥ 2 g·L−1) and Calypso®

480 SC with active ingredient thiacloprid (480 g·L−1). All pesticides were dissolved in sterile water
and were added to cell cultures at final concentrations of 6, 12 and 25 µg·mL−1 for Tango®; 25, 50
and 100 µg·mL−1 for Mospilan® and 60, 120 and 250 µg·mL−1 for Calypso®. Final concentrations for
individual compounds were determined based on kinetic growth analysis. In some experiments (cell
viability and oxidative stress detection), the effect of pure active agents alone or in combination was
also analyzed. The following concentrations were used for epoxiconazole: 1.51, 3.02 and 6.29 µg·mL−1;
fenpropimorph: 4.49, 8.98 and 18.71 µg·mL−1 or their mixture; acetamiprid: 25, 50 and 100 µg·mL−1;
and thiacloprid: 60, 120 and 250 µg·mL−1.

2.2. Testing Sensitivity to Pesticide Treatment

The effects of the pesticides on yeasts were tested in liquid culture. For this purpose, the yeast cells
were washed, and suspended in YPD medium (total volume 250 µL) with a working concentration
of 5 × 106 cells·mL−1 and cultured in a 96-well format shaker (900 rpm) at 28 ◦C with the addition
of the specified concentrations of pesticides. Five different concentrations of every substance were
examined; for Tango® and Mospilan® 6; 12; 25; 50 and 100 µg·mL−1 and for Calypso® 60; 120; 250; 500
and 1000 µg·mL−1.The final concentrations tested for individual compounds were determined based
on kinetic growth analysis.

2.3. Growth Rate

For the kinetics of the growth assay, Candida cells were washed and suspended in a YPD medium
to a total volume of 250 µL with a working concentration of 5 × 106 cells·mL−1 and cultured in a 96-well
format shaker (900 rpm) at 28 ◦C with the addition of the final concentrations tested. The optical density
(OD) at 600 nm was determined for each well using a Tecan Scientific microplate reader equipped with
monochromator optics every hour during an 8h period.

2.4. Morphology Assessment

To assess the morphological characteristics of yeast strains, the cells of tested isolates cultured with
specific concentrations of pesticides were centrifuged and then diluted with 0.9% NaCl (Sigma-Aldrich,
Poznan, Poland). The effects of the pesticides on the morphology of individual Candida species were
determined using an Olympus light microscope equipped with a DP72 CCD camera and Olympus
CellF software. Observations were made under the magnification of a 100 × lens.

2.5. Effect on Candida Colony Aging

Cells were plated on GM–PKB agar (1% yeast extract, 3% glycerol, 2% agar, 30 mM CaCl2, 0.01%
BKP) with the addition of selected concentrations for Tango® (6 µg·mL−1), Mospilan®(100 µg·mL−1)
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and Calypso®-(250 µg·mL−1) at densities of 103 per plate; the lowest inhibitory concentration of each
pesticide tested was chosen. The plates with cells were incubated at 28◦C for 50 days. Color changes in
GM–PKB agar were observed after 3, 7, 12, 15 and 50 days of incubation and recorded using a Nikon
D850 Digital SLR Camera.

2.6. Biofilm Assay

Cells (1 × 107) were taken and suspended in a YPD to a final volume of 1 mL. Then 250 µL of
culture was applied to a 96-well plate and incubated at 37 ◦C for 48 h. After incubation, the culture
was gently removed with a multichannel pipette and rinsed with sterile 1 × PBS. The biofilm was
stained with 0.4% crystal violet for 15 min. The dye was then removed, the excess was washed off

with distilled water and the plate was dried at room temperature (RT). Next, 200 µL of 95% ethanol
was added to each well in the plate and absorbance was measured using a Tecan Scientific microplate
reader equipped with monochromator optics at 595 nm wavelength.

2.7. Pesticide Content Analysis in Medium and Cell Pellet

After pesticide treatment, cell pellet and medium were analyzed using the gas chromatography-
mass spectroscopy (GC-MS) method to detect where the pesticides predominantly occurred, meaning
whether they were metabolized by the cells or not. Initially, 1 mL of supernatant was placed in a
15 mL propylene centrifuge tube and 5 mL acetone was added. Then 0.2 g Na2SO4 was added and
the contents of the centrifuge tube were mixed for 1 min (BenchMixerTM, Benchmark- Scientific, Inc.,
Edison, NJ, USA). Next, 0.2 mL of extract was put into 2 mL vials and 0.8 mL of petroleum ether and
0.1 mL of internal standard (for GC-MS) were added. To the pellet, 0.5 mL of acetone was added
(in 2 mL tubes) and mixed for 8 min. After centrifugation (3000 rpm, 5 min) the whole extract was put
into 2 mL vials and 0.1 mL of internal standard was added (for GC-MS) [31].

2.8. Cell Viability Assays

Cell viability was estimated with a LIVE/DEAD® Yeast Viability Kit (Molecular Probes, Leiden,
Netherlands) using the standard protocol according to the manufacturer’s instructions. Briefly, cells
of each strain were washed and stained with a mixture of FUN®1 and Calcofluor® White M2R and
inspected under an Olympus BX61 fluorescence microscope equipped with a DP72 CCD camera and
Olympus CellF software. A total of 200 cells were used for the analysis.

The antimicrobial properties of pesticides in liquid yeast cultures were determined using the
Alamar Blue (resazurin) cell viability assay according to Schneemann et al. [32]. The principle of this
method is based on the irreversible reduction of blue dye resazurin to red-fluorescent resorufin only by
metabolically active cells. Briefly, overnight cultures of tested microorganisms in YPD medium (yeast
extract—10 g·L−1, peptone—20 g·L−1, glucose—20 g·L−1, pH 7.2) were diluted, counted and suspended
in YPD medium (total volume 250 µL) with a working concentration of 5 × 106 cells·mL−1 and cultured
in a 96-well format shaker (900 rpm) at 28 ◦C with the addition of the specified concentrations of
pesticides. In addition, a negative control (no compound) and a positive control (cycloheximide,
1 mg·mL−1) for Candida species strains were prepared. After 24 h of incubation, 10 µL of resazurin
solution (0.2 mg·mL−1 in PBS) was added to each well of the 96-well plate and incubated for 2 h
(until the negative control color changed from blue to red/pink). To assess the impact of the analyzed
pesticides on the metabolic activity of yeast, a fluorescence measurement at 560 nm after excitation at
590 nm was taken.

2.9. Cell Cycle Phase Determination

Fluorescence-activated cell sorting (FACS) analyses were done using an Amnis®FlowSight® flow
cytometer and IDEAS software version 6.2.187.0 (Merck Millipore, Warsaw, Poland). Briefly, fixed cells
in 70% ethanol were incubated with RNase A (1:1 in TE buffer, 1 h, 37 ◦C) and then digested with
proteinase K (1: 1) with Syber Green (1 µL stock solution in DMSO per 1 mL buffer) overnight at 4 ◦C.
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After incubation, stained cells were washed 1 × in TE (1:1), then the resulting pellet was suspended in
100 to 200 µL TE (1:1). For each FACS assay, the DNA content of 10,000 single cells was monitored.

2.10. Oxidative Stress and Genotoxic Damage Assessment

After 24 h Candida cell treatment with commercial pesticides and their active ingredients,
the mitochondrial superoxide level (MitoTracker® Red CM H2XRos, Thermo Fisher Scientific, Waltham,
MA, USA.) was assessed as previously described [33].The integrated fluorescence density was measured
using a Tecan Scientific microplate reader equipped with monochromator optics at excitation wavelength
579 nm and emission 599 nm.

Alkaline comet assay was conducted to assess the potential genotoxic damage in cells [34].
After 24-h treatment with pesticides, cells were processed as previously described by Lewinska et al. [35].
Subsequently, slides were stained with 0.25 µM YOYO-1 (Invitrogen Corporation, Grand Island, NY,
USA) in 2.5% DMSO and 0.5% sucrose and mounted with a coverslip and digital comet images were
immediately captured with an Olympus BX61 fluorescence microscope equipped with a DP72 CCD
camera and Olympus CellF software; YOYO-1 fluorescent signals were collected using FITC filter
(λex = 491 nm, λem = 509 nm). At least 100 comets were measured per each sample triplicate using
CometScore Software downloaded from http://rexhoover.com/index.php?id=cometscore. The Olive
Tail Moment (OTM) was scored as a general parameter for DNA integrity assessment [36] which is the
distance (in direction) between the center of gravity of the head (CGH) and the center of gravity of the
tail (CGT) and percent tail DNA (DNAT):

OTM = (CGT − CGH) ×% DNAT

2.11. Total Lipids Content Analysis

Total lipids content was analyzed based on fatty methyl esters according to Wychenand
Laurens [37]. Sample preparation started with inserting 20 mg of yeast (dry weight) into a
2 mL chromatographic vial. Then, 25 µL of internal standard C15:0 (1000 µg·mL−1), 200 µL of
dichloromethane/methanol (2:1, v/v) and 300 µL of 0.6 M HCl in methanol were added to the sample.
The vials were sealed (PTFE caps), the contents of the vial were shaken by hand and placed in a
laboratory oven (SLW 53 SIMPLE, POL-EKO-APARATURA SP.J., Wodzislaw Sl., Poland) andheated to
85 ◦C ± 3 ◦C for 1 h. After this time, the vials were cooled (15 min) to RT. Then the isolation of fatty acid
esters and preparation of samples for chromatographic analysis were performed. After cooling, 1 mL of
petroleum ether was added to the vial, the contents of the vial were shaken by vortex (BenchMixerTM,
Benchmark, Scientific, Inc., Edison, NJ, USA) for 5 min and allowed to separate for 1 h. Next, 100 µL
of the upper phase was transferred to a 2 mL chromatographic vial and 400 µL of petroleum ether
was added. Chromatographic analysis was carried out using a gas chromatograph with a mass
detector in full scan mode. Ions from 50 m/z (mass to charge ratio) to 400 m/z were monitored,
source temperature 230◦C, electron ionization type (EI), temperature program 40–260 ◦C, column HP-5
MS (Ultra Inert/30 m × 0.25 mm I.D. × 0.25-µm). The linearity was determined based on six-point
calibration curves (R2 from 0.925 to 0.999). The analysis results include recovery of the method based
on the recovery of the added internal standard.

2.12. Phospholipid Determination by Phosphorus Assay

Phospholipids from Candida cells were extracted hot with an ethanol/ether (3:1) mixture.
After evaporation of the solvent, the extract was mineralized, as a result of which phospholipid
phosphorus was transformed into orthophosphate. In an acid medium, orthophosphate forms are
created with molybdate (VI) and ammonium phosphomolybdate (VI). This compound is reduced to
mixed molybdenum oxides, so-called molybdenum blue (MO2 ×MO3), the quantity of which was
determined by means of colorimetry at 720 nm. The phosphorus determination in 1 mL (0.01 mg P) of
the standard solution was performed in an identical manner.

http://rexhoover.com/index.php?id=cometscore
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2.13. Glycogen Accumulation Analysis

Analysis of glycogen accumulation was performed according to Chester [38] based on the
reddish-brown color of yeasts stained with iodine. Briefly, cells (103 densities) were plated on YPD agar
(yeast extract—10 g·L−1, peptone—20 g·L−1, glucose—20 g·L−1, 1.8% to 2% bacteriological agar, pH 7.2)
previously incubated for 24 h with the appropriate concentrations tested. After 48 h of incubation at 30 ◦C,
colonies were stained using 5 mL iodine solution (0.2% I2 in 0.4% KI). Staining reactions were recorded 1
min after adding the iodine solution. Pictures were taken with a NIKON D850 Digital SLR Camera.

2.14. Statistical Analysis

The results are presented as mean ± SE. A simple analysis of variance (ANOVA) and Dunnett’s a
posteriori test were used to analyze differences between control and pesticide-treated samples.

3. Results

3.1. Growth Change, Morphology and Aging

The influence of fungicides to limit the growth of yeasts is well known [39]; however, nothing is
known about the influence of insecticides on this process. To this aim, we evaluated the impact of the
tested pesticides on the growth kinetics of the analyzed Candida spp. during the 8-h period.

A comparative analysis of the growth kinetics of the tested Candida strains showed their varied
sensitivity when exposed to different concentrations and types of pesticide (here we show differences
in growth after an 8h incubation with pesticides—Figure 1). No death phase was observed even at
the highest pesticide concentrations. However, Tango® fungicide caused a decrease in the number
of cells in all tested strains starting from three hours of culture and Mospilan® at a concentration of
100 µg·mL−1. Interestingly, despite the delayed growth profile in Candida pulcherrima in the initial
stages of incubation with Tango® fungicide, after 6 h of treatment growth stimulation was observed
compared to the control. After 8 h of growth, Candida pulcherrima exhibited the highest tolerance in the
highest fungicide concentrations used (12 and 25 µg·mL−1). All tested strains adapted to growth in the
presence of Calypso® pesticide.

It was previously shown that not only fungicide Tango® but also insecticides may have inhibited
the growth of Candida spp. For this reason, in the next stage of research, we decided to check
morphological changes in tested strains under the influence of applied insecticides compared to
controls (Figure 2). In controls, all Candida strains had a typical spherical to oval shape. No changes
were detected in C. pulcherrima and C. glabrata after any pesticide exposure. They tended to create
blastospores, with C. glabrata producing the smallest. Microscopic observation of the cell morphology
of C. albicans and C. pulcherrima showed an increase in cell size after using each of the Tango® fungicide
concentrations. Additionally, C. albicans was not able to create hyphae. The twin-component fungicide
Tango® which inhibits ergosterol synthesis may contribute to the exhaustion of the intracellular pool
of ergosterol while blocking the transition of blastospores to hypha form. On the other hand, pesticide
treatment promoted the formation of C. tropicalis hyphae and pseudohyphae, mostly seen after Tango®,
Mospilan® and Calypso® exposure (in each concentration used).

Yeast colonies are a promising model for studying various aspects of microbial multicellularity [40].
Therefore, in the next stage, we decided to assess the influence of the tested pesticides on the
developmental phases of the colonies of the tested Candida spp. during aging, where cells with
high density undergoing metabolic changes may imitate the state of infection in vivo or yeast
colonies occurring in the natural environment. During the tests, selected combinations of pesticide
concentrations for the growth of individual Candida species on a solid medium with glycerol and
bromocresol purple (GM-BKP agar – (GM-agar (1% yeast extract, 3% glycerol, 2% agar, 30 mM CaCl2),
0.01% bromocresol purple) were tested. The analysis showed varied effects of the pesticides used in
communication between the colonies by changing the development patterns of the colonies observed,
relative to control. The use of Tango® fungicide at a concentration of 6 µg·mL−1 extended the active



Genes 2020, 11, 848 7 of 26

colony-growing phase (acid phase) to 12 days, after which the alkaline phase persisted until the 50th
day of culture (Figure 3A). Under control conditions, colony production of ammonia began from day
seven, intensively changing the pH of the medium after 14 days. In addition, a significant increase
in colony biomass with a smooth phenotype was observed on the fungicide medium throughout the
entire growth period, i.e., both acid and alkaline phases. The fungicide inhibited the occurrence of
turbid zones, which appeared in control colonies after seven days of growth, increasing their size
with the age of culture. On the medium with Mospilan®, C. albicans colonies intensively increased
their biomass from day three, and the initial alkaline phase was not interrupted by the acid phase
and continued throughout the culture. Mospilan® additionally caused differences in the appearance
of turbid paths observed after 12 days of culture. As a result of adding Calypso® insecticide to the
medium, the production phase of ammonia was observed, which continued throughout the entire
cultivation period. No acid phase was observed. The colonies had a smooth phenotype throughout
their growth, and their biomass increased with time relative to control. The occurrence of turbidity
phases around the colonies was also limited by insecticides, and a small amount around them was
visible in 12-day-old colonies.
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Figure 2. Cell morphology of C. albicans ATCC 14053, C. pulcherrima, C. glabrata, C. tropicalis after Tango®,
Mospilan®, and Calypso® treatment. Representative microphotographs are shown; objective 100×.

The Tango® fungicide completely inhibited the growth of C. pulcherrima (fungicidal effect)
(Figure 3B). On media with Mospilan® and Calypso®, the colonies maintained the acid phase
throughout the entire cultivation period (no alkaline phase was observed). Colony biomass and
phenotype were characteristic of the acid phase, while cell proliferation after three days was much
higher in Mospilan® and Calypso® medium compared to control.

As on C. pulcherrima, the Tango® fungicide also showed a fungicidal effect on C. glabrata (Figure 3C).
After exposure to Mospilan® C. glabrata resembled the pattern of colony differentiation under control
conditions; the alkaline phase appeared earlier (day 12) compared to control (day 15). In addition, an
intensive increase in colony biomass could be observed from the very beginning of culture. Similarly,
the Calypso® insecticide made it resemble the pattern of colony differentiation under control conditions.
However, the extension of the acid phase of colony development and shortening of the phase associated
with the production of ammonia could be seen. Additionally, no turbid zones were observed between
the colonies.

In the case of C. tropicalis, the most abnormal metabolic pattern of the colonies was produced by
the Tango® fungicide (Figure 3D), where the acid phase was extended to 12 days. However, no first
alkaline phase characteristic of the metabolic pattern of control colonies was observed. Fungicide
changed the color of colonies to grey, as well as their morphologies. No turbidity zones present in the
control colony system were observed. Interestingly, the morphology of the colonies with all tested
pesticides on the 50th day of culture had a lichen structure. The presence of Mospilan® accelerated the
occurrence of the alkaline phase as well as increased colony biomass. Moreover, no acid phase was
observed. The metabolic pattern of colonies on the Calypso® insecticide medium did not differ from
that of the control system.

We conclude by selecting subpopulations of fenpropimorph and epoxiconazole resistant
cells in C. albicans and C. tropicalis, Tango® prolonged the acid phase in the development of a
nutrient-metabolizing colony in solid medium. In contrast, a faster developmental transition of
colonies to the ammonia-producing phase in C. glabrata is connected with the reprogramming of the
cellular metabolism, enabling an escape from oxidative stress caused by Mospilan® [41,42]. It can be
assumed that in the case of the C. pulcherrima colony, the absence of an alkaline phase during growth
indicates accelerated cell aging.

In the next stage of research, each concentration of pesticides was used to determine their effect
on Candida biofilm formation and development (Figure 4).
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Figure 3. Impact of tested pesticides on the development of colonies formed by (A) C. albicans ATCC
14053, (B) C. pulcherrima, (C) C. glabrata, and (D) C. tropicalis. Colonies developed on complex glycerol
agar with 6 µg·mL−1 Tango®, 100 µg·mL−1 Mospilan®, 250 µg·mL−1 Calypso®. Bromocresol purple,
pH dye indicator with pKa 6.3 was used, with the color changing from yellow at acidic pH to purple at
a more alkaline pH.

Biofilm formation by pathogenic Candida yeast is considered the main virulence factor, protecting
the pathogen against adverse environmental conditions, mechanisms of the host’s immune response,
as well as against the targeted action of antifungal agents [43]. Candida biofilms are heterogeneous
structures existing as three-dimensional populations of yeast, pseudo-hyphae, and hyphae, embedded
within a self-produced extracellular matrix [44].

For all analyzed strains, the highest used concentration of Tango®(25 µg·mL−1) showed the
greatest reduction of biofilm biomass, as assessed by means of a cell viability assay. On the other hand,
in the case of C. pulcherrima (an increase of about 263.4%) and C. tropicalis (an increase of about 96.6%),
the lowest used Tango® concentration (6 µg·mL−1) stimulated the formation of biofilm compared to
control. The highest concentration of Mospilan® inhibited the ability to form biofilm in C. albicans
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and C. tropicalis, however, the lowest concentration tested (25 µg·mL−1) stimulated the formation of
particularly visible biofilm in C. tropicalis (an increase of about 125.8%). Calypso® caused a slight
decrease in biofilm biomass production in all tested strains except C. albicans (Figure S1). At lower
concentrations (60 and 120 µg·mL−1), the biofilm biomass was reduced 56% and 41% respectively,
while at the highest used concentration (250 µg·mL−1) it was stimulated by 62.8% relative to control.Genes 2020, 11, x FOR PEER REVIEW 11 of 28 
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Figure 4. Biofilm formation of C. albicans ATCC 14053, C. pulcherrima, C. glabrata, C. tropicalis after
Tango® and Mospilan® treatment. Biofilm formation was quantified using crystal violet staining.
Bars represent SD, n =3, statistical significances after comparison with control *** p < 0.001, ** p < 0.01,
* p < 0. Ctrl, control conditions (black); 6, 12, 25 µg·mL−1 concentration of Tango®, 25, 50, 100 µg·mL−1

concentration of Mospilan®.

3.2. Bioavailability of Pesticides

Additionally, the bioavailability of active agents was estimated (Figure 5). Increased penetration
of thiacloprid into C. pulcherrima and C. tropicalis cells was observed at the highest concentrations of
Calypso® insecticide. The concentration of thiacloprid in the cell pellet exceeded the concentration in
the supernatant for C. pulcherrima by 55.17µg·mL−1at 120µg·mL−1 reaching the value 77.12µg·mL−1 and
by 87.95 µg·mL−1 at 250 µg·mL−1 reaching the value 141.23 µg·mL−1. For C. tropicalis, the difference was
8.7 µg·mL−1 at 250 µg·mL−1 reaching the value 65.21 µg·mL−1 in the cell pellet. Increased bioavailability
of thiacloprid was also observed in C. albicans and C. glabrata, however, the concentration of the active
compound did not exceed those in the supernatant. Similarly, accumulations of acetamiprid in cells
of C. albicans by 2.82 µg·mL−1 (reaching the value 4.87 µg·mL−1) and C. pulcherrima by 4.01 µg·mL−1

(reaching the value 5.29µg·mL−1) were also clearly observed at the highest concentration of 100µg·mL−1

Mospilan® compared to the supernatant. The lowest bioavailability of active compounds was observed
with Tango® fungicide. Slight accumulations in the cell biomass of C. tropicalis and C. albicans were
observed in the case of epoxiconazole and of fenpropimorph in C. glabrata. In our study, the decrease
in amounts of Tango® active compounds observed in Candida cells confirms the observations of
Esquivel et al. [45] indicating that reduced intracellular accumulation of antifungal agents is a
mechanism of drug resistance in many species of fungi. Intracellular accumulation of azole drugs
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in Magnaporthe oryzae depended on the nutrient composition as well as the cell phase of the culture.
It has been observed that drug accumulation in older, exponential or stationary growing cells is
reduced compared to exponentially growing cells. Adaptation of the culture to various growth
media can modulate the composition of the cytoplasmic membrane in cells, and consequently affect
azole uptake. In another study, glucose-containing media reduced final drug accumulation levels,
probably due to the activation of glucose-dependent efflux pumps [45], which would confirm our
results for the active substances in Tango®. Moreover, in studies conducted by Mansfield et al. [46],
fluconazole accumulation was inversely correlated with the expression of ATP-dependent efflux
pumps in energized C. albicans cells. De-energized cells took up fluconazole by facilitated diffusion,
and changes in this process may be a concealed mechanism of resistance to azole drugs. Accumulation
of acetamiprid and thiacloprid in the tested Candida species may indicate the involvement of these
compounds in metabolism. It has been shown that Rhodotorula mucilaginosa IM-2 was able to degrade
acetamiprid and thiacloprid by hydrolysis of acetamiprid to the intermediate metabolite IM 1-3, and to
hydrolyze thiacloprid to form the corresponding amide derivative [47]. Thiacloprid amide still showed
insecticidal activity, which may consequently promote Candida intercellular variability.Genes 2020, 11, x FOR PEER REVIEW 13 of 28 
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Figure 5. Accumulation of pesticide active agents (fenpropimorph and epoxiconazole in Tango®;
acetamiprid in Mospilan®; thiacloprid in Calypso®) in cell pellet and cultivation medium was estimated
using gas chromatography with mass spectroscopy (GC-MS).The values are expressed as means, n =3.

3.3. Cytotoxicity and Changes in the Cell Cycle

The tested insecticides showed the different bioavailability (Figure 5); however, changes in the
growth of Candida strains were observed (Figures 1, 2 and 4). An interest was if these chemicals could
change the viability (Figure 6) of the strains and especially their metabolic activity (Figure 7).
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Figure 6. Changes in cell viability of C. albicans ATCC 14053, C. pulcherrima, C. glabrata, C. tropicalis cells
after pesticide treatment. The percentages of live and dead cells are shown. Bars indicate SD, n = 200.
*** p < 0.001, ** p < 0.01, * p < 0.05 compared to the viability of control cells (ANOVA + Dunnett’s a
posteriori test).Genes 2020, 11, x FOR PEER REVIEW 15 of 28 

 

 

Figure 7. Changes in metabolic activities (A, B) of C. albicans ATCC 14053, C. pulcherrima, C. glabrata, 

C. tropicalis cells after pesticide treatment. (A) Mean values of metabolic activity of Candida spp. cells 

were estimated with the Alamar Blue (resazurin) assay at different concentrations of pesticide 

treatment (6, 12, 25 µg.mL−1 of Tango® ; 25, 50, 100 µg.mL−1 of Mospilan® ; 60, 120, 250 µg.mL−1 of 

Calypso® ), Ctrl, control conditions (black). Bars indicate SD with standard deviations, n = 3, ***p< 

0.00, **p< 0.01, *p< 0.05 compared to control (ANOVA + Dunnett’s a posteriori test). (B) Mean values 

of metabolic activity of Candida spp. cells were estimated with the Alamar Blue (resazurin) assay after 

exposure to different concentrations of the pesticides’ active agents (Tango® -fenpropimorph (4.49, 

8.98, 18.71 µg.mL−1), epoxiconazole (1.51, 3.02, 6.29 µg.mL−1) and mixture of both; 

Mospilan® -acetamiprid; Calypso® -thiacloprid) Ctrl, control conditions (black). Bars indicate SD with 

SD, n = 3, ***p< 0.001, **p< 0.01, *p< 0.05 compared to control (ANOVA + Dunnett’s a posteriori test).  

Figure 7. Cont.



Genes 2020, 11, 848 13 of 26

Genes 2020, 11, x FOR PEER REVIEW 15 of 28 

 

 

Figure 7. Changes in metabolic activities (A, B) of C. albicans ATCC 14053, C. pulcherrima, C. glabrata, 

C. tropicalis cells after pesticide treatment. (A) Mean values of metabolic activity of Candida spp. cells 

were estimated with the Alamar Blue (resazurin) assay at different concentrations of pesticide 

treatment (6, 12, 25 µg.mL−1 of Tango® ; 25, 50, 100 µg.mL−1 of Mospilan® ; 60, 120, 250 µg.mL−1 of 

Calypso® ), Ctrl, control conditions (black). Bars indicate SD with standard deviations, n = 3, ***p< 

0.00, **p< 0.01, *p< 0.05 compared to control (ANOVA + Dunnett’s a posteriori test). (B) Mean values 

of metabolic activity of Candida spp. cells were estimated with the Alamar Blue (resazurin) assay after 

exposure to different concentrations of the pesticides’ active agents (Tango® -fenpropimorph (4.49, 

8.98, 18.71 µg.mL−1), epoxiconazole (1.51, 3.02, 6.29 µg.mL−1) and mixture of both; 

Mospilan® -acetamiprid; Calypso® -thiacloprid) Ctrl, control conditions (black). Bars indicate SD with 

SD, n = 3, ***p< 0.001, **p< 0.01, *p< 0.05 compared to control (ANOVA + Dunnett’s a posteriori test).  

Figure 7. Changes in metabolic activities (A, B) of C. albicans ATCC 14053, C. pulcherrima, C. glabrata,
C. tropicalis cells after pesticide treatment. (A) Mean values of metabolic activity of Candida spp.
cells were estimated with the Alamar Blue (resazurin) assay at different concentrations of pesticide
treatment (6, 12, 25 µg·mL−1 of Tango®; 25, 50, 100 µg·mL−1 of Mospilan®; 60, 120, 250 µg·mL−1 of
Calypso®), Ctrl, control conditions (black). Bars indicate SD with standard deviations, n = 3, *** p < 0.00,
** p < 0.01, * p < 0.05 compared to control (ANOVA + Dunnett’s a posteriori test). (B) Mean values of
metabolic activity of Candida spp. cells were estimated with the Alamar Blue (resazurin) assay after
exposure to different concentrations of the pesticides’ active agents (Tango®-fenpropimorph (4.49, 8.98,
18.71 µg·mL−1), epoxiconazole (1.51, 3.02, 6.29 µg·mL−1) and mixture of both; Mospilan®-acetamiprid;
Calypso®-thiacloprid) Ctrl, control conditions (black). Bars indicate SD with SD, n = 3, *** p < 0.001,
** p < 0.01, * p < 0.05 compared to control (ANOVA + Dunnett’s a posteriori test).

In the next stage of research, we decided to determine the effects of the pesticides on Candida
spp. cell survival rate as well as on the cell cycle. According to the prediction, the Tango® fungicide
concentrations used decreased the cell survival rate for C. albicans, C. pulcherrima and C. glabrata
(Figure 6). A slight increase in the fraction of dead cells was observed in C. tropicalis. The largest
fraction of C. pulcherrima dead cells was observed after applying Mospilan® at a concentration of
25 µg·mL−1. In the case of Calypso® insecticide, the highest mortality rate was observed among
C. pulcherrima (60 µg·mL−1; p < 0.01) and C. glabrata (250 µg·mL−1).

The cytotoxic effects of selected concentrations of the pesticides, as well as their active agents,
were checked using the resazurin reduction test (RRT) (Figure 7).It has been shown that Tango®

fungicide inhibited the metabolic activity of C. albicans (at the lowest concentration of 6 µg·mL−1);
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C. pulcherrima and C. glabrata cells (in all tested concentrations). C. pulcherrima and C. glabrata turned
out to be the most sensitive species to Tango®. No Tango® cytotoxic effect was observed in C. tropicalis.
On the other hand, an increase in metabolic activity was observed at the lowest Mospilan® concentration,
as well as at any Calypso® concentration used during C. pulcherrima treatment. A stimulating effect
was also observed in C. glabrata at all Mospilan® used concentrations, as well as in C. tropicalis
at 100 µg·mL−1. A higher sensitivity to the insecticide concentrations of Mospilan® was seen in
C. pulcherrima (at 100 µg·mL−1) and in C. glabrata cells after treated Calypso at 250 µg·mL−1. Similarly,
a higher sensitivity to Calypso® has been shown in Cryptococcus laurentii [48]. Ambiguity of the
results in our test for the metabolic activity of C. albicans and C. tropicalis cells treated with Tango®

may suggest the presence of subpopulations of resistant cells with normal metabolic activity and a
subpopulation of sensitive cells with low levels of mitochondrial enzymes. An increased sensitivity
to fungicide is characteristic of C. pulcherrima, where sensitivity to every active compound has been
demonstrated. Antagonistic effects have been found when compounds are mixed. Esquivel et al. [45]
indicated that antagonism between active compounds may be the result of competition for the import
of active compounds into host cells. In the case of insecticides, reduced cytotoxicity is observed in all
tested species, when treated either with commercial preparations and/or with the active compounds
included in them.

Cytotoxic analysis of the active pesticide compounds showed the dominant activity of
fenpropimorph and epoxiconazole contained in Tango® fungicide (Figure 7B). Cytotoxic activity
for C. albicans cells was visible in the case of the mixture of these compounds corresponding to a
concentration of 6 µg·mL−1. A strong cytotoxic effect of each of these compounds was observed in
C. pulcherrima and C. glabrata cultures. In the case of their penetration into the human or animal body,
they can lead to microbiological flora disorders. A reduction in the number and diversity of bacterial
intestinal flora in rats was demonstrated after administration of the triazole fungicide penconazole,
which may subsequently translate into the increased ability of a portion of the fungal pathogen cell
population to colonize various niches within the mammalian host [49].

C. pulcherrima also had reduced cellular metabolic activity due to acetamiprid (100 µg·mL−1).
C. tropicalis was the least sensitive strain, showing a slight decrease in metabolic activity after the
application of epoxiconazole and acetamiprid.

In addition, cell-cycle phase analysis of C. albicans (Figure 8) after a 24-h incubation of cells with
Tango® pesticide revealed a significant decrease in the number of cells in the G1 phase, with a slight
increase in the G2/M phase relative to control. In the case of Mospilan® and Calypso® pesticides,
a decrease in cell subpopulation was observed in each of the cycle phases, most pronounced in
the G2/M phase. Cell-cycle phase analysis of C. pulcherrima after Tango® treatment showed an
increase in the number of cells in the G2/M phase, with a simultaneous decrease in the G1 phase
in a concentration-dependent manner. In the case of Mospilan® at a concentration 100 µg·mL−1,
the number of apoptotic cells increased with a simultaneous decrease in the number of cells in
individual phases. In Candida glabrata, the Tango® fungicide reduced cell populations in each of the
cycle phases, most pronounced in G1 and S phases. An emergence of apoptotic cell populations was
also observed. After Mospilan® and Calypso® treatment, an increase in the number of cells in the G1
phase was observed at the highest concentrations of the compounds used (100 µg·mL−1 Mospilan® and
250 µg·mL−1 Calypso®) (Figure 8 and Figure S2). Cell-cycle analysis of C. tropicalis showed an increase
in the G2/M cell population after Tango® exposure at each concentration and a decline in the G1
phase. Mospilan® reduced the number of cells in M and G2/M phases, most clearly at concentrations
50 µg·mL−1 and 100 µg·mL−1. Calypso® did not inhibit any of the cell-cycle phases (Figure S2).
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Figure 8. Changes in cell-cycle analysis of C. albicans ATCC 14053, C. pulcherrima, C. glabrata, C. tropicalis
cells after pesticide treatment. Representative histogram data of cell-cycle analysis of Candida spp. cells
after pesticide exposure are shown. Histograms represent nuclear DNA content (X axis) relative to
normalized cell number (Y axis). Analysis was performed using Amnis®FlowSight® flow cytometer
and IDEAS software version 6.2.187.0 (Merck Millipore, Warsaw, Poland).please also explain different
color means in the picture: red.

3.4. Oxidative Stress and DNA Damage

For DNA damage detection, the alkaline comet assay was used (Figure 9, Figure S3). In all Candida
species Tango® was able to induce significant levels of DNA breaks (Figure 9) at a concentration of
6 µg·mL−1 (p < 0.01, p < 0.05). Mospilan® caused a significant increase in DNA breaks at a concentration
of 100 µg·mL−1 (p < 0.05), observed in C. pulcherrima and C. tropicalis. An increase in DNA damage
was also observed after Calypso® treatment in all tested species, the highest level in C. pulcherrima.

In connection with the demonstrated increase in the levels of DNA damage in the next stage of
research, it was checked whether their cause is the accumulation of reactive oxygen species (ROS)
during pesticidal stress. Oxidative stress damage was analyzed by means of mitochondrial superoxide
levels in the Candida cells treated with commercial pesticides (Figure 10A) as well as their active
agents (Figure 10B). Significantly elevated levels were observed in C. tropicalis cells after Tango®

treatment (Figure 10A; 6 and 12 µg·mL−1; p < 0.001). A slight increase in peroxide levels with no
statistical significance was observed in C. albicans after exposure to Tango® (12 µg·mL−1), Mospilan®

(100 µg·mL−1) and Calypso® (120 µg·mL−1). An increase in peroxide levels was also observed in
C. pulcherrima cells after Tango® (6 and 12 µg·mL−1; p < 0.05), and Mospilan® (25 and 50 µg·mL−1)
exposure as well as in C. glabrata cells after Tango® (6 and 25 µg·mL−1; p <0.05) exposure.
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Figure 9. Induction of DNA damage assessed with the alkaline comet assay (olive tail moment) in
C. albicans ATCC 14053, C. pulcherrima, C. glabrata, C. tropicalis cells after Tango®(6 µg·mL−1), Mospilan®

(100 µg·mL−1) and Calypso®(250 µg·mL−1) treatment. Bars indicate SD, n = 200, box and whisker
plots are shown, ** p < 0.01, * p < 0.05 compared to control conditions (ANOVA and Dunnett’s a
posteriori test). Ctrl—control conditions. Notes: Center line represents median. Lower and upper
limits represent 5th and 95th percentiles, respectively. Observed values outside whiskers shown as dots.
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Figure 10. (A) Assessment of oxidative stress damage in Candida spp. cells after pesticides treatment
(6, 12, 25 µg·mL−1 Tango®; 25, 50, 100 µg·mL−1 Mospilan®; 60, 120, 250 µg·mL−1 Calypso®).
(B) Assessment of oxidative stress damage in Candida spp. cells after treatment with different
concentrations of pesticides’ active agents (Tango®-fenpropimorph (4.49, 8.98, 18.71 µg·mL−1),
epoxiconazole (1.51, 3.02, 6.29 µg·mL−1) and a mixture of both; Mospilan®—acetamiprid (25, 50,
100 µg·mL−1); Calypso®—thiacloprid (60, 120, 180 µg·mL−1). MitoTracker® Red CM—H2Xros was
used in both to evaluate mitochondrial superoxide levels. Bars indicate SD with standard deviations,
n = 3, *** p < 0.001, ** p < 0.01, * p < 0.05 compared to control (ANOVA + Dunnett’s a posteriori test).
Ctrl, control conditions (black).

Second, the effects of active pesticide compounds were investigated with regard to oxidative
stress damage (Figure 10B). Analysis of C. albicans cells showed a significant increase in
fenpropimorph-induced peroxides at 8.98 µg·mL−1 (p < 0.001) and a slight increase after epoxiconazole
treatment at 3.02 and 6.29 µg·mL−1. In addition, a slight increase was observed at 25 µg·mL−1

acetamiprid, without statistical significance. In contrast, in the case of C. pulcherrima cells, the increase
in peroxide level was caused by epoxiconazole treatment at a concentration of 1.51 µg·mL−1 as well as
by thiacloprid at all concentrations tested, with the maximum at concentration 120 µg·mL−1 (p < 0.05).
In C. glabrata a significant increase (p < 0.001) in peroxide levels at all epoxiconazole concentrations
was observed. A slight increase in peroxide levels in the analyzed C. tropicalis cells was observed at
selected concentrations of fenpropimorph and epoxiconazole, and for mixtures of these compounds at
a concentration corresponding to 6 µg·mL−1 of commercial Tango® pesticide. A significant increase in
peroxide levels was caused by thiacloprid at a concentration of 120 µg·mL−1 (p < 0.01).
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3.5. Metabolic Activity Changes

First, the compositions of individual fatty acids in the studied Candida species during pesticidal
stress were analyzed (Figure 11A,B). In C. albicans, pesticide treatment significantly increased
polyunsaturated fatty acid (PUFA) content, whereas it decreased monounsaturated fatty acid (MUFA)
and total saturated fatty acid (SFA) contents. These changes were caused by a drop in the amount of
palmitoleic (C16:1) and especially visible palmitic (C16:0) acids and a simultaneous increase in the
levels of linoleic (C18:2) and stearic (C18:0) acids. In addition, comparison of the FAs of C. pulcherrima
showed that the amount of C18:2 was increased in all pesticide concentrations applied. The C16:0
percentage increase was particularly evident in the C. tropicalis cell population treated with the lowest
concentrations of pesticides. In contrast to the others, C. glabrata increased the percentage level of
palmitoleic (C16:1) acid. The exception was the highest used concentration of Tango® (25 µg·mL−1),
where a 30% decrease compared to control was observed, while the palmitic acid level (16:0) increased
by 14.3% (Figure 11A). Other concentrations of all pesticides used reduced the level of palmitic
acid (C16:0). The unsaturation index of FAs in C. glabrata cells increased by 28%, 31.3% and 9.1%
(6, 12, 25 µg·mL−1 Tango® respectively), 37.1%, 24.7% and 38.3% (25, 50, 100 µg·mL−1 Mospilan®

respectively), and 30.4%, 43.7% and 34% (60, 120, 250 µg·mL−1 Calypso® respectively) compared with
control. In addition, exposure of C. pulcherrima cells to pesticidal stress resulted in an increase in
unsaturated FAs compared with control. A similar tendency was also observed to a lesser extent in
C. albicans cells. An increase in the saturation index of C. tropicalis cells was observed with Mospilan®

and Calypso® at all concentrations used, in contrast to Tango® concentrations, where the unsaturation
index of cells increased (Figure 11B).

Secondly, the treatment of all Candida species cells with selected pesticide concentrations produced
changes in their phospholipid profiles (Figure 12). After exposure to 6 µg·mL−1 Tango® there was
a 36% increase in phospholipid phosphorus content in C. pulcherrima cells, but a 13% decrease in
C. albicans and a 43% decrease in C. tropicalis (p < 0.001). Exposure to 100 µg·mL−1 Mospilan® led to a
statistical decrease in phospholipid phosphorus content in C. albicans, C. glabrata and C. tropicalis cells
by 30%, 12.1% and 40.2% respectively, but with a simultaneous increase of 51.4% in C. pulcherrima cells.
A similar situation was observed after treatment with 250 µg·mL−1 Calypso®, where an increase in
phospholipid phosphorus content by 127.5% was observed in C. pulcherrima and a decrease by 32.6%
in C. albicans, 37% in C. glabrata, and 52.6% in C. tropicalis (Figure 12).

Furthermore, pesticide treatment did not induce changes in glycogen accumulation by C. albicans
cells (Figure S4). A slight increase in the number of glycogen accumulation cells was observed in
C. tropicalis at concentrations of 12 and 25 µg·mL−1 Tango® and 120 and 250 µg·mL−1 Calypso®.
C. pulcherrima and C. glabrata cells did not accumulate glycogen (Figure S4).
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Figure 11. (A) Fatty acid profiles and (B) unsaturated/saturated indices in Candida spp. cells after
pesticide treatment. (A) Fatty acid distribution after pesticide treatment was estimated using gas
chromatography with a mass detector in full scan mode. (B) The unsaturated index was calculated
as the sum of FA weights multiplied by the number of unsaturated bonds for each FA in the mixture.
The saturated index was calculated analogously. Percentage contents of saturated and unsaturated FAs
are shown. Ctrl, control conditions; 6, 12, 25 µg·mL−1 concentration of Tango®, 25, 50, 100 µg·mL−1

concentration of Mospilan®, 60, 120, 250 µg·mL−1 concentration of Calypso®.
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Figure 12. Phospholipid determination based on phosphorus in Candida spp. cells after pesticide
treatment. The phospholipid content was measured spectrophotometrically in 1 × 108 cells of each
species using a phosphorus assay. Bars indicate SD, n = 3, *** p < 0.001, ** p < 0.01, * p < 0.05 compared
to control (ANOVA and Dunnett’s a posteriori test).

4. Discussion

Given that the source of candidiasis is an endogenous infection, pesticides entering the body are
underestimated factors that may play an important role in developing cellular diversity and affect
Candida–host interactions during colonization. The heterogeneity of cells can have different properties
and lead to multiple benefits for the population [50]. Inhomogeneity in the population includes
genetic and metabolic diversity that translates into different cellular phenotypes observed in studies
on morphology, survival, biofilm-forming ability and cell cycle changes. At the beginning of this study,
we analyzed the impact of the pesticides tested on the morphological profile of selected species of the
genus Candida. It is recognized that in the population of fungi both yeast and pseudohyphae are similar
in morphology, and in the case of only three, phylogenetically closely-related species, i.e., C. tropicalis,
C. dubliniensis and C. albicans, may also appear in the form of hyphae [51,52]. C. glabrata is the only
pathogenic species that does not produce filamentous forms, existing exclusively as blastoconidia [53].
The morphological transition of yeast into filamentous form in C. tropicalis was observed in the presence
of all tested concentrations of pesticides and can be equated with the invasiveness of this species,
referred to as virulence [43,51]. Despite the morphological plasticity demonstrated by the researchers
in C. albicans, the pesticides used in this study did not stimulate morphological changes. It proved
that fluconazole-resistant strains suppressed induction of hyphal formation due to the influence of
the antibiotic in the amount of MIC, which did not inhibit cell culture growth, although the change
in morphological forms was limited [54,55]. It has also been demonstrated that for some fungal
pathogens including C. glabrata, there is no morphological transition of the pathomechanism from
commensal to pathogen. Our analysis of cell growth kinetics after Tango® and Mospilan® treatment
showed a longer adaptation phase in the growth curve for the populations of C. albicans, C. pulcherrima
and C. glabrata. Other studies have not shown any inhibitory effect on cell division by Calypso®.
Moreover, a stimulatory effect on yeast growth was observed after treatment of yeast cultures with
iprodione pesticide, where it was shown that the ingredients of the fungicidal preparation may become
an additional source of energy for bacteria and yeasts by increasing the biomass of the culture [56].

Additionally, the active substances in Tango®, epoxiconazole and fenpropimorph, increased the
dead cell fraction in all tested Candida strains, except C. tropicalis. In case of their penetration into the
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human or animal body, they can lead to microbiological flora disorders. A reduction in the number and
diversity of bacterial intestinal flora in rats was demonstrated after the administration of the triazole
fungicide penconazole, which may subsequently translate into increased ability of a portion of the
fungal pathogen cell population to colonize various niches within the mammalian host [49].

It seems that determining the impact of the tested pesticides on biofilm formation may be a
measure of the ability of the tested yeasts to adapt to stress conditions. Biofilm formation is a complex
process involving many types of cells and stages [57]. An increase in biofilmation at the lowest
fungicide concentrations may affect the transcription of resistance genes in the clonal cell population.
Heterogeneous resistance, or selection for a resistant subpopulation of cells, has been well documented
in Candida albicans [58] or Cryptococcus neoformans [59]. It is suggested that the increased metabolic
activity occurring in the early development of biofilm in Candida species contributes to their greater
resistance to antifungal drugs. Another reason is the presence of persister cells that do not divide
but maintain high tolerance to antimicrobial drugs. The presence of these cells allows antimicrobial
drugs to bind to their specific target, preventing the drug from inhibiting the function of the target
molecule [57].

Observed cell heterogeneity may also be a result of disorders in the cell cycle of the analyzed
strains after treatment with selected concentrations of pesticides [60]. In addition, the heterogeneity of
cells to oxidative stress responses and increased levels of ROS can enhance the potential of interacting
with DNA and cause genotoxicity leading to recombination and diverse mutations [61,62]. Our analysis
showed ROS increase in all Candida species, especially after the treatment of cells with Tango®, both in
commercial pesticide form and also after the application of the active compounds included in it. We
also observed an increase in total DNA damage in the cells of the analyzed species (p < 0.01, p < 0.05),
most clearly visible with Tango®. It has been demonstrated that antifungal agents such as amphotericin
B and azoles trigger common cell-death pathways causing oxidative damage in fungi such as Candida
albicans, Saccharomyces cerevisiae or Cryptococcus gattii [63]. Supporting our results, it was found that
Tango® [33] and a thiacloprid-based insecticide induced oxidative stress in bovine lymphocytes in
other studies [64]. It appears that modulation of ergosterol synthesis caused by the twin-component
fungicide (fenpropimorph and epoxiconazole) in all studied Candida strains could play a key role in the
adaptation of cells during oxidative stress [65]. The oxidative and nitrosative stress induced by azoles
(miconazole, fluconazole) in many clinical C. albicans isolates was identified as a factor determining their
sensitivity to miconazole [66]. Interestingly, it has been indicated that noise in the expression of genes
involved in DNA replication, repair and recombination processes can directly cause heterogeneity
among cells in terms of mutation rate and/or recombination, which would also have consequences
for the occurrence of cells pre-adapted to the given environment [67]. In addition, changes in the
metabolic profile of the colony during aging can lead to changes in the structure of populations which
differ in their resistance to stress, cell metabolism, and respiration and ROS production especially.
The aging colony process in yeast is of particular importance in relation to pathogenic fungi, because
the accumulation of old cell subpopulations can lead to increased resistance to attack by host immune
cells or the action of drugs [68].

Further analysis of the fatty acid profiles of the Candida species studied in response to the applied
pesticidal stress revealed cells’ phospholipid profile remodeling estimated on phospholipid phosphorus
content, as well as changes in the percentage of unsaturated to saturated FA, increasing the likelihood
of differences between the cells. It was found that the overall response to pesticidal stress in the
analyzed Candida species (to a lesser extent in C. tropicalis) is the accumulation of subpopulations of cells
with increased fatty acid unsaturation rates. Our findings during inducted pesticidal stress showed
differences in the amounts of saturated fatty acids, i.e., palmitic acid (C16:0) and stearic acid (C18:0),
and of unsaturated fatty acids, i.e., palmitoleic acid (C16:1) and linoleic acid (C18:2). Considering
the similarity of Tango® functioning to the mechanism of azoles group action, it appears that the
pesticides used may similarly affect phospholipid and fatty acid profiles, which has been confirmed in
another study [69]. Similarly, a higher percentage of unsaturated compared to saturated fatty acids
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observed not only in the case of the fungicide used but also insecticides, may increase the fluidity of
the cytoplasmic membrane Candida cells. Other studies also indicate that resistance to miconazole was
associated with a decrease in total lipids, phospholipids and sterol content [70].

In fluconazole-resistant C. albicans strains, higher efflux pump activity was observed as a result of
increased membrane fluidity and reduced levels of ergosterol. It was shown that Cdr1p and Cdr2p
represent two major drug extrusion pumps in C. albicans, effluxing not only azoles and their derivatives
but also a wide variety of structurally unrelated compounds. Contrary to our studies, no significant
alteration was observed in the phospholipid and fatty acid composition of the investigated C. albicans
strains [71,72]. It can be assumed that pesticides can also be removed by the mentioned major drug
extrusion pumps, but this requires further research.

Fungal pathogens such as C. albicans are characterized by extensive metabolic plasticity,
which allows them to adapt to the nutritional conditions of the various host habitats [73]. The effect of
pesticides on glycogen accumulation in all Candida species did not show significant differences from
control. C. pulcherrima and C. glabrata cells showed the lowest glycogen storage capacity. Zeitz et al. [73]
indicated that glycogen deficiency does not affect long-term survival, growth, metabolic flexibility or
morphology of C. albicans. Similar results regarding the C. glabrata strain were obtained in our other
studies [74].

5. Conclusions

In conclusion, we show in our work that, pesticides are still an underestimated source of
microorganism variability, which consequently may lead to the development of strains resistant to
drugs commonly used to control them. Analyses have shown that insecticides entering from the
environment through various routes into organisms can lead to the accumulation of ROS in cells,
causing oxidative damage to DNA and consequently can promote Candida spp. intercellular variability
and may indirectly influence their pathobiology, just like fungicides. Comparison of fatty acid profiles
of cells of tested species of the Candida genus revealed the remodeling of FAs and unsaturated/saturated
index of the FAs during pesticidal stress. The overall response to the fungicide as well as insecticides
has been found to be the accumulation of subpopulations of cells with elevated fatty acid unsaturation
rates, except for C. tropicalis. Particularly interesting is that for the first time the aspect of the tested
insecticides on the developmental phases of the colonies of the tested Candida spp. during aging,
where cells with high density were undergoing metabolic changes may imitate the state of infection
in vivo was studied. Therefore, the understanding of the factors modifying the intercellular variation
of Candida spp. is one of the major challenges of modern science, which may play an important role in
the development of new therapeutic strategies.
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