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Abstract: Corydalis and Pseudofumaria are two closely related genera from the Papaveraceae subfamily
Fumarioideae with Corydalis solida (C. solida) and Pseudofumaria lutea (P. lutea) as two representative
species. Phytochemical analysis revealed significant differences in the quality and quantity of
isoquinoline alkaloids, phenolic compounds and non-phenolic carboxylic acids between aerial and
underground parts of both species. Using the Liquid chromatography-electrospray ionization-tandem
mass spectrometry (LC-ESI-MS/MS) technique, 21 compounds were identified: five protoberberine
derivatives, three protopine derivatives, four phenanthridine derivatives, as well as three carboxylic
acids, two hydroxycinnamic acids, one chlorogenic acid, one phenolic aldehyde, and two flavonoids.
Moroever, significant differences in the content of individual compounds were observed between the
two studied species. The phytochemical profile of C. solida showed a higher variety of compounds
that were present in lower amounts, whereas P. lutea extracts contained fewer compounds but in larger
quantities. Protopine was one of the most abundant constituents in C. solida (440–1125 µg/g d.w.)
and in P. lutea (1036–1934 µg/g d.w.). Moreover, considerable amounts of coptisine (1526 µg/g)
and quercetin (3247 µg/g) were detected in the aerial parts of P. lutea. Extracts from aerial and
underground parts of both species were also examined for the antimicrobial potential against S. aureus,
P. aeruginosa and C. albicans. P. lutea herb extract was the most effective (MIC at 0.39 mg/L) against all
three pathogens.

Keywords: Corydalis solida; Pseudofumaria lutea; protopine; protoberberine derivatives; quercetin

1. Introduction

Corydalis DC. is the largest genus in the Fumarioideae subfamily belonging to the Papaveraceae
family [1]. It has over 400 species varying in terms of life forms, such as rhizome perennials, early spring
geophytes, therophytes and perennial climbing plants [2]. A small genus of Pseudofumaria Medik.
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was separated from the genus Corydalis, based on morphological traits only, e.g., the pistil, which is
deciduous and translucent in Pseudofumaria and persistent and green in Corydalis [2,3]. Pseudofumaria
comprises only two species: Pseudofumaria lutea (L.) Borkh (syn. Corydalis lutea (L.) DC.) and P. alba
(Mill.) Lidén (syn. Corydalis alba (Mill.) Mansf) [3–5].

In Corydalis, several species have been described during the recent few decades rendering a
complex and not fully understood taxonomic relationship [6]. However, only some of the species
and infraspecific taxa were subjected to phytochemical analysis with over 50 isoquinoline alkaloids
listed [7–10]. Yet, the phytochemical relationship to the other taxa within the Fumarioideae subfamily is
not fully documented. Therefore, we have chosen two typical and most representative examples of each
genus, i.e., Corydalis solida (L.) Clairv and Pseudofumaria lutea to compare their phytochemical profiles.

C. solida is found almost all over Europe, except in the very Northern and Western regions.
It is found in the lowlands, foothills and in the low mountain regions as an early spring geophyte
associated with European oak-hornbeam forests. It is forming corms, forming small underground
bulbs or bulbo-tubers, which unlike a similar species of C. cava, are full inside. From the corms grows
a single raised stem with two 2- to 3-pinnate leaves and the top racemose inflorescence of purple,
monosymmetrical flowers [11]. C. solida is also considered a type species for the genus, originally
described as solida subspecies of a basionym Fumaria bulbosa [12,13].

P. lutea grows in Italian and Swiss Alps on shady limestone rocks and screes at an altitude of
500-1700 m a.s.l. As an ornamental plant, it has spread almost all over Europe, and in many countries,
including Poland, acquired the status of an established anthropophyte [3,14,15]. The place of its
occurrence are mostly rocky places and stone walls, always on calcareous soils. P. lutea is a rhizome
perennial. Stems is branched, with many 2- to 3-pinnate leaves. The plant produces yellow flowers
gathered in racemes. The flowering period is May to October [2].

Data on the traditional or phytomedicinal use of both plants are scarce, which is probably related
to the alleged toxicity. C. solida was sometimes used as a calming plant, pain reliever, lowering blood
pressure. Starch-rich tubers were cooked and eaten by Slavic peoples and Tatars [16,17]. In Serbia,
tubers were used as a sedative, against bleeding, scurvy and worms [18]. Even less data is available for
P. lutea. Only one source reports the use of the herb as a gout treatment [19].

Little data on the phytochemical characterization of these two species prompted us to
perform comparative analyses. In aerial and underground parts of the plants cultivated in the
same location, we analyzed not only alkaloids but also carboxylic acids and various phenolic
compounds. The phytochemical analysis was performed using Liquid chromatography-electrospray
ionisation-tandem mass spectrometry (LC-ESI-MS/MS) technique.

Insufficient available data on the phytochemistry of these two species prompted us to perform
comparative analysis using LC-MS. In the aerial and underground parts of the plants cultivated in
the same location, we analyzed not only alkaloids but also carboxylic acids and various phenolic
compounds. The phytochemical analyses were set for a better insight into the relationships between
the species that were apparently diversified enough, to separate the Pseudofumaria genus from the
Corydalis. Changes in the taxonomic position of the species were based on morphological features only,
therefore phytochemical characteristics may provide additional valuable information about the closely
related and yet different taxa. Moreover, the antimicrobial properties against selected pathogenic
bacteria and fungi (P. aeruginosa, S. aureus, C. albicans) as expected from the high alkaloid content,
provide a foundation for phytotherapeutic potential of these underutilized herbs.

2. Results

2.1. Qualitative Analysis

Phytochemical analysis of aerial and underground parts of C. solida and P.lutea revealed two major
groups of metabolites in the extracts, benzophenanthridine alkaloids and polyphenolic compounds.
A total of 21 compounds were detected—twelve in negative and nine in positive electrospray ionization
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mode. Two protoberberine derivatives: coptisine and berberine, two protopine derivatives: protopine
and allocryptopine, and three phenanthridine derivatives: sanguinarine, chelerythrine, and chelidonine,
as well as five of their derivatives: a protopine derivative, a coptisine derivative, tetrahydrocoptisine,
tetrahydroberberine and a chelidonine derivative were identified. Among the non-alkaloid compounds,
there were: three carboxylic acids, two hydroxycinnamic acids, one quinic acid ester, one phenolic
aldehyde and two flavonoids (Tables 1 and 2).

The assignment of allocryptopine was based on the parent ion at m/z 369 and the product ions at
m/z 352, 188, 290. Protopine showed the precursor ion at m/z 320, and a putative protopine derivative at
m/z 354 with product ions at m/z 320, 260, 196. Coptisine gave parent ion at m/z 320. Tetrahydrocoptisine
and a putative coptisine derivative showed parent ions at m/z 324. The assignment of berberine was
based on the parent ion at m/z 336. Its derivative—tetrahydroberberine—showed the parent ion at
m/z 340 and product ions at m/z 176, 149. The most abundant precursor ions at m/z 332 and 348 were
assigned for sanguinarine and chelerythrine, respectively. Chelidonine exhibited the parent ion at
m/z 370 and product ions at m/z 356 and 339 (Tables 1 and 2).

Malic acid presence was based on the parent ion at m/z 133, trans-aconitic acid at m/z 173, and quinic
acid at m/z 191. The assignment of p-coumaric acid and trans-caffeic acid was based on the parent ions
at m/z 163 and 179, respectively. Chlorogenic acid showed the parent ion at m/z 353. The assignment
of two flavonoids—rutin and quercetin was based on the presence of parent ions at m/z 609 and 301,
respectively. The identification of vanillin was based on the parent ion at m/z 151 and quinine sulfate at
m/z 747 (Tables 1 and 2).

Table 1. The content (µg/g d.w. ± SD) of quantitated compounds in aerial parts of C. solida and P. lutea.

No Compound Parent Ion (m/z) Product Ion (m/z) Ion Mode Content Mean ± SD

ALKALOIDS C. solida P. lutea

1 protopine derivative 354 320, 260, 196 + p p
2 allocryptopine 369 352, 188, 290 + 328 ± 13.99 * LOD
3 coptisine 320 292, 204, 262 + 154 ± 7.42 * 1526 ± 24.12
4 berberine 336 320, 292, 321 + 128 ± 6.79 * 197 ± 12.10
5 chelidonine derivative 370 356, 339 + p nd
6 chelidonine 354 275, 189, 247 + 58 ± 3.67 * 3 ± 0.69
7 chelerythrine 348 332, 304, 333 + 18 ± 1.31 * 4 ± 0.26
8 tetrahydroberberine 340 176, 149 + p p
9 tetrahydrocoptisine 324 176, 149 + p p
10 coptisine derivative 324 190 + p p
11 sanguinarine 332 274, 317, 246 + 35 ± 2.78 * 12 ± 0.89
12 protopine 320 303, 107, 124 + 440 ± 16.10 * 1036 ± 30.62

Other Compounds

13 malic acid 133 115, 71 - LOQ LOQ
14 trans-aconitic acid 173 85, 129 - LOQ LOQ
15 quinic acid 191 85, 93 - LOQ LOQ
16 trans-caffeic acid 179 135, 134, 89 - 21 ± 1.52 * 32 ± 4.90
17 chlorogenic acid 353 191, 85, 93 - 1 ± 0.13 * 32 ± 1.51
18 p-coumaric acid 163 119, 93, 117 - 28 ± 1.71 * 16 ± 1.85
19 vanillin 151 136, 92, 108 - 11 ± 0.93 13 ± 1.69
20 quercetin 301 151, 65, 121 - 177 ± 9.67 * 3247 ± 66.43
21 rutin 609 300 - LOQ LOQ

p—present, identification was based on mass spectra with no reference substances; nd—not detected; LOD—limit of
detection; LOQ—limit of quantification; means marked with an asterisk (*) within lines differ at significance level
p ≤ 0.05 in a Mann–Whitney U test.
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Table 2. The content (µg/g d.w. ± SD) of quantitated compounds in underground parts of C. solida
and P. lutea.

No Compound Parent Ion (m/z) Product Ion (m/z) Ion Mode Content Mean ± SD

ALKALOIDS C. solida P. lutea

1 protopine derivative 354 320, 260, 196 + p p
2 allocryptopine 369 352, 188, 290 + 516 ± 21.52 * 6 ± 1.37
3 coptisine 320 292, 204, 262 + 233 ± 5.13 * 307 ± 17.36
4 berberine 336 320, 292, 321 + 78 ± 3.58 * 326 ± 8.40
5 chelidonine derivative 370 356, 339 + p nd
6 chelidonine 354 275, 189, 247 + 1 ± 0.05 * 5 ± 0.20
7 chelerythrine 348 332, 304, 333 + 7 ± 0.37 * 6 ± 0.12
8 tetrahydroberberine 340 176, 149 + p p
9 tetrahydrocoptisine 324 176, 149 + p p
10 coptisine derivative 324 190 + p p
11 sanguinarine 332 274, 317, 246 + 8 ± 0.28 * 36 ± 3.53
12 protopine 320 303, 107, 124 + 1125 ± 32.63 * 1934 ± 25.98

Other Compounds

13 malic acid 133 115, 71 - LOQ LOQ
14 trans-aconitic acid 173 85, 129 - LOQ LOQ
15 quinic acid 191 85, 93 - LOQ LOQ
16 trans-caffeic acid 179 135, 134, 89 - nd nd
17 chlorogenic acid 353 191, 85, 93 - 6 ± 1.26 * nd
18 p-coumaric acid 163 119, 93, 117 - LOD nd
19 vanillin 151 136, 92, 108 - nd nd
20 quercetin 301 151, 65, 121 - 19 ± 2.88 * 76 ± 4.64
21 rutin 609 300 - nd nd

p—present, identification was based on mass spectra with no reference substances; nd—not detected; LOD—limit of
detection; LOQ—limit of quantification; means marked with an asterisk (*) within lines differ at significance level
p ≤ 0.05 in a Mann–Whitney U test.

2.2. Quantitative Analysis

The quantities of most of the detected compounds varied significantly between the species and
organs and the proportions between each compound made up markedly different profiles (Figures 1
and 2). Protopine and its derivative were present in aerial and underground parts of both studied species.
The content of protopine varied between 440 and 1036 µg/g of dry weight (d.w.) in the aerial parts,
and between 1125 and 1934 µg/g d.w. in underground parts of C. solida and P. lutea. Allocryptopine was
present in significant concentrations in the herb and corms of C. solida (328, 516 µg/g d.w., respectively),
and in low amounts (6 µg/g d.w.) in the herb and roots of P. lutea (Tables 1 and 2). All five protoberberine
derivatives were present in aerial and underground parts of the studied species. The coptisine content
varied in the range of 307–1526 µg/g in P. lutea and 154–233 µg/g in C. solida. Berberine amounts
varied between 197 and 326 µg/g in P. lutea, and between 128 and 78 µg/g in C. solida. The amounts of
phenanthridine derivatives, such as sanguinarine, chelethrine and chelidonine in both species ranged
from 1 to 36 µg/g d.w. (Tables 1 and 2).

Ten different polyphenolic compounds were detected in aerial parts and seven in underground
parts of C. solida and P. lutea (Tables 1 and 2). Trans-caffeic acid was present only in aerial parts
(21–32 µg/g d.w.), and so were p-coumaric acid (16–28 µg/g d.w.), vanillin (11–13 µg/g d.w.) and rutin
(LOQ). Chlorogenic acid (1–32 µg/g d.w.) and quercetin (19–3247 µg/g d.w.) were found in aerial and
underground parts of both species (Tables 1 and 2).
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2.3. MIC Evaluation

To show potential biological applicability of gained extracts (from both aerial and underground
parts of both species), we have performed microbiological tests to assess their usefulness in eradication
of common nosocomial pathogens (P. aeruginosa, S. aureus, C. albicans).

Extracts of C. solida and P. lutea herbs and underground parts were examined for their antimicrobial
potential in microtiter-plate based assay against the microbes in a suspension. All of the extracts
exhibited strong antimicrobial activity against Gram-positive, Gram-negative bacteria and C. albicans
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yeasts. P. lutea herb extract was the most effective (MIC at 0.39 mg/L) against all of the three pathogens
(Table 3). Root extract of the species as well as both extracts of C. solida exhibited weaker activity
against S. aureus (MIC at 1.56 mg/L) than against other tested strains (MIC at 0.39 mg/L) (Table 3).

Table 3. Minimum Inhibitory Concentration (MIC) [mg/L] of water–methanolic extracts from S. solida
and P. lutea herb and underground parts.

Plant Material S. aureus P. aeruginosa C. albicans

C. solida herb 1.56 0.39 0.39
C. solida corms 1.56 0.39 0.39

P. lutea herb 0.39 0.39 0.39
P.lutea roots 1.56 0.39 0.39

Octenisept (method suitability control) 0.0001 0.00152 0.0001

3. Discussion

The chromatographic analysis revealed diverse phytochemical profiles of C. solida and P. lutea.
Isoquinoline alkaloids and the non-alkaloid compounds were found in aerial and underground parts
of both studied species.

Herb and roots of P. lutea contained twice as much protopine as C. solida. Moreover, there was
almost ten times more coptisine and almost twenty times more quercetin in the aerial parts of P. lutea
than in those of C. solida. Additionally, P. lutea roots contained three times more berberine and
sanguinarine than corms of C. solida (Tables 1 and 2, Figures 1 and 2). Protopine and protoberberine
derivatives were previously found in P. lutea along with several other groups such as aporphine and
two narceine derivatives. The latter two were soon recognized as artifacts [9,20].

In our research, the amounts of berberine in the herb and roots of P. lutea reached nearly 197
and 326 µg/g d.w., but its presence has not always been found in the previous studies on this species.
Preininger et al. in 1978 [10] isolated fourteen different alkaloids from P. lutea among which two
protoberberine derivatives—corysamine and palmatine. The identity of the compounds was confirmed
by comparing their UV and IR spectra with the reference substances. The authors did not find
berberine in their plant material, but they did not specify which plant organs were used. Moreover,
no phenanthridine derivatives were detected.

In turn, the herb and corms of C. solida were from several dozen to several hundred times richer
in allocryptopine than P. lutea (Tables 1 and 2, Figures 1 and 2). Additonally, C. solida herb contained
several times more phenanthridine derivatives such as chelidonine, chelerythrine and sanguinarine
than the other species (Table 1, Figure 1). Sanguinarine was previously detected in the corms of C. solida
by Temizer et al. in 1992 [21]. The authors also found three protoberberine derivatives such as berberine,
ophiocarpine and scoulerine, and one alkaloid from another chemical group—protopine. Tubers of
C. solida examined by Sturm et al. in 2007 [22] also contained two protoberberine derivatives (corydine,
palmatine), and one aporphine derivative bulbocapnine. No protopine and phenanthridine type
alkaloids were detected in their plant material [22]. In turn, from the extract of whole C. solida plants,
a spirobenzylisoquinoline alkaloid named corysolidine was isolated in 1986 by Rahimizadeh et al. [23].
On the other hand, Kilic et al. in 2019 [24], similarly to our results, found large proportions of protopine
in the corms of C. solida ssp. incisa. The plant material was collected in Turkey, and five protopine type
alkaloids and eight protoberberine type were detected in the extracts. The authors used an advanced
LC-QTOF-MS technique for the compounds identification, nevertheless it is difficult to compare their
results with ours, because they examined the subspecies of C. solida.

Yet in other studies, on another taxon—Corydalis solida subsp. tauricola—a total of 23 alkaloids
were isolated from aerial parts, among which no protopine was identified. Twenty-one of them were
previously identified (allocryptopine, berberine, ophiocarpine, scoulerine, sinactine, corydalidzine,
dehydrocorydaline, sanguinarine, norsanguinarine, bulbocapnine, isoboldine, reticuline, α-hydrastine,
bicuculline, ochotensine, sibiricine, oxocularine, oxosarcocapnidine, fumariline, cularine), and two
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were new (taurine, tauricoline) [25]. All of these structures can be found in PubChem or ChemSpider
databases but tauricoline—this alklaoid has been only mentioned in the study of Sener et al. (1990) [25].
Some other authors used extracts containing alkaloids but they presented only the TLC chromatogram
(visualized in UV365nm) of C. solida ssp. slivenensis and C. solida ssp. laxa herbs and tubers [26].
The authors presented their results only without the use of reference substances. Corydalis solida ssp.
laxa from Steninge close to Uppsala (Sweden) is probably a hybrid between C. solida and C.pumila as
herbarium specimens from 1948 combine the features of both species. It should be noted that C. solida
observed on Aland and the Uppland coast, on the eastern coast of Sweden, was also called “laxa”,
but it presents morphologically diversified characteristics such as ovaries that smoothly attenuate into
a short style, lower petals free of gibbosity, and broad leaf lobes [27].

Trying to capture similarity or indicate differences between these taxa, it is also worth paying
attention to the phytochemical profile of these species (Figures 1 and 2). Unfortunately, the published
data for various taxa, additionally collected from different locations are insufficient. Regarding
phytochemical data for C. pumila, one published research study can be found. It has been presented
that in corms of C. pumila, several alkaloids such as bulbocapine, corydine, corydaline, palmatine,
tetrahydropalmatine were detected [22], but no more detailed phytochemical characteristics are
available in the literature. Our results showed that, except quercetin, both plants contained relatively
small and comparable amounts of non-phenolic carboxylic acids (malic, trans-aconitic, quinic),
hydroxycinnamic acids (trans-caffeic acid and p-coumaric acid), chlorogenic acid, and vanillin in aerial
parts (Table 1). The underground parts were even poorer in these metabolites (Table 2, Figures 1
and 2). Conversely, malic acid was previously detected in considerable amounts of 3.9 mg/g in the herb
aqueous extracts of P. lutea, and so were (-)-caffeoylmalic acid, p-coumaroylmalic acid, feruloyl-malic
acid, caffeic acid, p-coumaric acid, ferulic acid, sinapic acid [28].

Since the observations of the morphology and taxonomy of species within the genus Corydalis show
many complexities, and there are very few data on the phytochemistry of these plants, we believe that
there is a need for comprehensive phytochemical studies of representatives of the current Corydalinae
subtribe. Based on our research, further detailed analyses would allow us to determine the proportions
between individual compounds, especially these of alkaloid and polyphenol groups contained in
many other Corydalis species, and thus select the most valuable raw material. This would be justified
because of the wide spectrum of biological activities of both isoquinoline alkaloids and polyphenolic
compounds confirmed in the literature, especially antimicrobial [29–35].

From all tested samples, the herb extract of P. lutea was the most effective against all three
pathogens (MIC at 0.39 mg/L, Table 3). It contained large proportions of coptisine, berberine, protopine
and quercetin (Table 1). In our earlier studies, individually tested protopine and coptisine, presented
antibacterial properties against S. aureus at a concentration of less than 50 mg/L (73% CFU reduction),
while berberine was less effective (MIC at 125 mg/L). Additionally, coptisine showed antibacterial activity
against P. aeruginosa and C. albicans, similar to allocryptopine (MIC at > 50–125 mg/L) [35]. Protopine
and protoberberine derivatives such as coptisine and berberine have several pharmacological activities.
Beside antimicrobial activity, analgesic, anti-inflammatory, anticancer, antithrombotic, hypoglycaemic,
hypolipidaemic, hepatoprotective, and neuroprotective properties were also reported [36–39].
Apart from protoberberine alkaloids, several benzophenanthridine derivatives, such as chelidonine,
chelerythrine and sanguinarine were also present in extracts of C. solida and P. lutea. Although these
substances were detected in relatively small amounts (from dozen or so to several dozen µg/g d.w.,
Tables 1 and 2), they may cause the reinforcement of the antimicrobial properties of extracts.
Furthermore, the contribution of polyphenolic constituents in the plant extract, should not be neglected.
This class of compounds may be strongly involved in the microbes eradication [40]. In one of the
most recent studies on polyphenolic compounds contained in extracts of Anthemis praecox aerial parts,
quercetin rich extracts presented antimicrobial activity, although stronger against Gram-positive than
Gram-negative bacteria [41]. It should be noted that a general trend in antimicrobial activity presented
in Table 3 indicates higher efficiency of tested extracts against P. aeruginosa and C. albicans than against
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S. aureus. In the studies of Orhan et al. (2006) [42], a large number of alkaloids that were isolated from
several Corydalis and Fumaria species, were also more active against Gram-negative than Gram-positive
bacteria. P. aeruginosa is closely related with Pseudomonas putida, a microbial cohabitant of C. solida
and P. lutea environment and growth-promoting rhizobacteria. Several deadly plant pathogen strains
belong to Pseudomonas syringae. Yeast-like fungi, to whom C. albicans belongs to, can colonize, co-exist or
cause diseases in a vast variety of plant species. In turn, S. aureus, is a highly-specialized opportunistic
pathogen of animal and men. One may thus assume that observed higher potential of analyzed plants
to eradicate C. albicans and P. aeruginosa than S. aureus may be related to the ability of analyzed plants to
combat microorganisms which exist in plants’ habitat in order to avoid the negative impact of microbial
overgrowth [43–46]. This hypothesis, along with the presented data on the higher antimicrobial
efficacy of plant extracts versus individually tested alkaloids, indicates the necessity of further detailed
phytochemical and bioactivity investigations. The complex analysis would allow to set down new
plant-derived products of desired medicinal properties.

4. Material and Methods

4.1. Plant Material

Whole plants of C. solida and P. lutea were collected from Botanical Garden of Maria
Curie-Skłodowska University in Lublin on 20th of April 2018. C. solida was replanted from Stone pit
of Kazimierz Dolny, Poland in 1976, P. lutea was replanted from the garden of a private person from
Świdnik, Poland in 2006, and from that time both species are in the collection of Botanical Garden of
Maria Curie-Skłodowska University in Lublin (Geographical location: 51◦6′ N, 22◦30′ E, 200 m a.s.l.),
under the codes: 1910P, 4223A, respectively. Plants grew on loess soils without additional treatments
such as fertilization. C. solida grew in a shadowed place, P. lutea grew in an exposed, sunny location.
The average temperature in April 2018 was 14.2 ◦C and precipitation was 36.5 mm (data from the
official report of the Meteorological Observatory of the Meteorology and Climatology Department,
the Maria Curie-Skłodowska University in Lublin). Continental influences with large amplitudes
of annual temperatures, a long summer and a long cool winter predominate in the Lublin Upland.
During the years 1951–2010 average annual perennial temperature was +8.3 ◦C, and average annual
multi-annual precipitation was 550.6 mm.

Plants were collected, dried in a heated herbal drier at 25 ◦C for 72 h and separated into aerial and
underground parts. In case of C. solida there were corms, and in case of P. lutea–roots.

Plant Material Extraction

Ten individual plants of each species were used for extraction. Three independent experimental
repetitions were performed followed by two analytical repetitions. Dried plant material was ground to
powder using mortar and pestle and extracted with 80% methanol acidified with 0.1% formic acid (v/v)
in the ultrasonic bath (IS-20, Intersonic, Olsztyn, Poland) twice for 30 min. The extracts were prepared
in a solvent-to-solid ratio 1:20 (v:w) according to the procedure performed in our previous studies [47].
The content of compounds was expressed in micrograms per g of dry weight [µg/g d.w.].

4.2. Phytochemical Analysis

The isoquinoline alkaloids and phenolic compounds identification and quantification of
C. solida and P. lutea were performed using liquid chromatography equipped with electrospray
ionization-tandem mass spectrometry with a triple quadrupole analyzer.

Reference substances such as protopine, berberine, sanguinarine, chelidonine, chelerythrine
were purchased from Extrasynthese (Genay, France); allocryptopine, coptisine, malic acid, t-aconitic
acid, quinic acid, caffeic acid, chlorogenic acid, p-coumaric acid, vanillin, rutin, and quercetin were
purchased from Sigma-Aldrich (St. Louis, MO, USA).
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4.2.1. Liquid Chromatography Mass Spectrometry

The analyzes were conducted using a Shimadzu Prominence UFLC system (Shimadzu, Kyoto,
Japan). LC system was equipped with a binary solvent manager—LC-30 ADXR; a degasser—DGU-20A3;
a column oven—CTO-10ASVP; an autosampler—SIL 20AXR; a system controller—CBM-20A.
For compound separation, Kinetex column C18, 2.6 µm particle size, 100 × 3.0 mm (Phenomenex,
Torrance, CA, USA) was used at a flow rate of 0.40 mL min−1. The mobile phase consisted of a mixture
A–B composed of 10mM ammonium formate in water (A) and 0.1% formic acid in methanol (B).
The methanol percentage was changed linearly as follows: 0 min, 10%; 10 min, 85%; 13 min, 85%;
16 min, 10%. Sample volume injection was 10 mL. Tandem mass spectrometer—LCMS-8030 (Shimadzu,
Kyoto, Japan)—with a triple quadrupole mass spectrometer equipped with ESI source cooperating in
both positive and negative ionization modes was used. LabSolution Ver. 5.6 (Shimadzu, Kyoto, Japan)
software was used for quantitative data processing.

4.2.2. Identification and Quantification

The multiple reaction monitoring (MRM) mode was used for identification and quantification
of alkaloids and the remaining compounds. The identification was based on the retention time
compared with the corresponding standards together with the ion intensity ratio of the chosen parent
ion (Q), product ion (q) and previously identified compounds reported in the literature [48]. The limit
of detection (LOD) was calculated according to a signal-to-noise ratio (S/N) of 3 and the limit of
quantitation (LOQ) to S/N ratio of 10. The linearity of the method was studied for all of the chosen
compounds based on five concentration points assessed in triplicate. The square correlation coefficient
(r2) ≥ 0.99 was achieved for most of the compounds, or was very close. Quantitation was based on
external standardization.

4.3. Experimental Design for Bioactivity Assays

In order to determine the antimicrobial activity of the tested substances, MIC (Minimum Inhibitory
Concentration) assessment was conducted in 96-well titration micro-plates. Three reference strains
were analyzed: Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 15442, Candida albicans
ATCC 1032 (obtained from ATCC, Manasas, VA, USA). Initially, the 0.5 McFarland (MF) density of
the tested strain’s suspension in Tryptic Soya Broth (TSB) medium was prepared and diluted to 105

Colony-Forming Units (CFU)/mL. Next, 100 µL of TSB medium was poured into the wells of the plate.
Subsequently, 100 µL of the methanolic extract was added to the first well. Then, 100 µL of this solution
(consisting of a mixture of methanolic extract and TSB) was transferred to the next well of 96-well plate.
This operation was repeated 9 times. Finally, every of 10 wells of 96-well plate in a row, was filled
with 100 µL of a solution containing decreasing concentrations of analyzed extracts. Next, 100 µL of
bacterial/fungal suspension (105 cfu/mL) was added to each well. The final volume of 200 µL was
obtained for each well. The plate was incubated at 37 ◦C and shaken (400 rpm/min.) for 24 h. Control of
microorganisms’ growth (the culture without any of plant extracts) and control of sterility (medium
only) were also performed. Moreover, antimicrobial activity of 100% methanol, 0.1% solution of formic
acid, mixture of 100% methanol and 0.1% formic acid (4:0.5 ratio) and Octenisept (Schülke, Norderstedt,
Germany)—clinically used antiseptic product of confirmed antimicrobial activity was examined
as the positive control. After incubation, 20 µL of 1% solution of triphenyl tetrazolium chloride,
TTC (Sigma-Aldrich, München, Germany) was introduced to the wells and incubated for 2 h/37 ◦C.
A change of TTC to red formazan indicated the presence of metabolically active microorganisms.
The MIC value was determined as the first colourless well, next to the red well.

4.4. Statistical Evaluation

Presented data of alkaloids and phenolic compounds content are mean values from 6 independent
extractions ± standard deviation (SD). Statistical significance of the quantitative differences between
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extracts was estimated by one-way ANOVA with nonparametric Mann–Whitney U test at significance
level p ≤ 0.05. All analyses were conducted using Statistica 13.1PL (StatSoft, Krakow, Poland, 2016).

5. Conclusions

The above data indicate the existence of much controversy regarding the types and number of
alkaloids present in C. solida and P. lutea. It should be noted that there are relatively few studies on
the phytochemical characterization of both species. Many of them were published in the seventies
and nineties of the last century. Since then, analytical techniques have undergone enormous progress,
leading to reduced measurement times and increased precision. Based on this, to make a broad picture
of the phytochemical profiles of plants belonging to Corydalis genus, it would be necessary to examine
the aerial and underground parts of multiple Corydalis species and related taxa, collected from different
locations and different vegetation periods. Well-characterized plant material can stand a chance of
applying it against clinical strains of pathogenic bacteria and fungi.
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Evaluation of antiamoebic and antimicrobial activities in vitro of Chaenomeles japonica (Thunb.) lindl. ex
spach extracts. Acta Biol. Cracs. Bot. 2019, 61, 47–58. [CrossRef]

41. Belhaoues, S.; Amri, S.; Bensouilah, M. Major phenolic compounds, antioxidant and antibacterial activities of
Anthemis praecox Link aerial parts. S. Afr. J. Bot. 2020, 131, 200–205.

42. Orhan, I.; Özcelik, B.; Karaoglu, T.; Sener, B. Antiviral and antimicrobial profiles of selected isoquinoline
alkaloids from Fumaria and Corydalis species. Z. Naturforsch. 2007, 62c, 19–26.

43. Mergaert, P. Role of antimicrobial peptides in controlling symbiotic bacterial populations. Nat. Prod. Rep.
2018, 35, 336.

44. Geddes, B.A.; Paramasivan, P.; Joffrin, A.; Thompson, A.L.; Christensen, K.; Jorrin, B.; Brett, P.; Conway, S.J.;
Oldroyd, E.D.; Poole, P.S. Engineering transkingdom signaling in plants to control gene expression in
rhizosphere bacteria. Nat. Commun. 2019, 10, 3430.

45. Khan, M.S.A.; Zahin, M.; Hasan, S.; Husian, F.M.; Ahmad, I. Inhibition of quorum sensing regulating bacterial
functions by plant essential oils with special reference to clove oil. Lett. Appl. Microbiol. 2009, 49, 354–360.

46. Manefield, M.; de Nys, R.; Naresh, K.; Read, R.; Givskov, M.; Steinberg, P.; Kjelleberg, S. Evidence that
halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene
expression by displacing the AHL signal from its receptor protein. Micro. Soc. 1999, 145, 283–291.

47. Sowa, I.; Zielinska, S.; Sawicki, J.; Bogucka-Kocka, A.; Staniak, M.; Bartusiak-Szczesniak, E.;
Podolska-Fajks, M.; Kocjan, R.; Wojciak-Kosior, M. Systematic evaluation of chromatographic parameters
for isoquinoline alkaloids on XB-C18 core shell column using different mobile phase compositions. J. Anal.
Methods Chem. 2018, 3, 1–8.

48. Grosso, F.; Ferreres, Gil-Izquierdo, A.; Valentão, P.; Sampaio, M.; Lima, J.; Andrade, P.B. Box–Behnken
factorial design to obtain a phenolic-rich extract from the aerial parts of Chelidonium majus L. Talanta 2014,
130, 128–136.

Sample Availability: Samples of the plant material and test extracts are available from the authors.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.24425/abcsb.2019.127747
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Qualitative Analysis 
	Quantitative Analysis 
	MIC Evaluation 

	Discussion 
	Material and Methods 
	Plant Material 
	Phytochemical Analysis 
	Liquid Chromatography Mass Spectrometry 
	Identification and Quantification 

	Experimental Design for Bioactivity Assays 
	Statistical Evaluation 

	Conclusions 
	References

