Skip to main content
. 2020 Aug 13;10(8):551. doi: 10.3390/brainsci10080551

Table 3.

Parameters used in building different models for prediction and classification tasks.

ML Models Parameter Details Task
Linear Regression Intercept fit: True Prediction
(LnR) Normalize: True
Logistic Regression Intercept fit: True Classification
(LgR) Normalize: True
Class weight: Balanced
Regularization: L2
Multilayer Perceptron Hidden layers: 32, 16, 4 Prediction & Classification
(MLP) Activation: ReLU
Optimizer: Adam
Batch size: 128
Random Forest Estimators: 100 Prediction & Classification
(RF) Bootstap: True
Maximum depth: 5
Support Vector Machine Kernel: RBF Prediction & Classification
(SVM) Degree: 3
C: 1.0
Epsilon: 0.2