Table 3.
ML Models | Parameter Details | Task |
---|---|---|
Linear Regression | Intercept fit: True | Prediction |
(LnR) | Normalize: True | |
Logistic Regression | Intercept fit: True | Classification |
(LgR) | Normalize: True | |
Class weight: Balanced | ||
Regularization: L2 | ||
Multilayer Perceptron | Hidden layers: 32, 16, 4 | Prediction & Classification |
(MLP) | Activation: ReLU | |
Optimizer: Adam | ||
Batch size: 128 | ||
Random Forest | Estimators: 100 | Prediction & Classification |
(RF) | Bootstap: True | |
Maximum depth: 5 | ||
Support Vector Machine | Kernel: RBF | Prediction & Classification |
(SVM) | Degree: 3 | |
C: 1.0 | ||
Epsilon: 0.2 |