Skip to main content
. 2020 Aug 13;10(8):551. doi: 10.3390/brainsci10080551

Table 7.

Performance summary of classifying Low and High MWL with LgR, MLP, SVM and RF classifier models using EEG and MI-based feature on the holdout test set. In this task, the total number of observations was 1710, where low MWL was considered as the positive class. The number of observations with positive and negative class were 917 and 793, respectively. The highest accuracies obtained by using different feature sets are marked with (*).

Criteria Using EEG-Based Features Using MI-Based Features
LgR MLP SVM RF LgR MLP SVM RF
True Positive 736 776 342 864 688 715 576 783
False Negative 181 141 575 53 229 202 341 134
False Positive 362 293 138 157 410 230 146 175
True Negative 431 500 655 636 383 563 647 618
Sensitivity 0.80 0.85 0.37 0.94 0.75 0.78 0.63 0.85
Specificity 0.54 0.63 0.83 0.80 0.48 0.71 0.81 0.78
Precision 0.67 0.73 0.71 0.85 0.63 0.76 0.80 0.82
Recall 0.80 0.85 0.37 0.94 0.75 0.78 0.63 0.85
F1 score 0.73 0.78 0.50 0.89 0.68 0.77 0.70 0.84
Accuracy 0.68 0.75 0.58 0.88 * 0.63 0.75 0.72 0.82 *
Balanced Accuracy 0.67 0.74 0.60 0.87 * 0.62 0.74 0.72 0.82 *