Skip to main content
. 2020 Jul 24;12(8):2031. doi: 10.3390/cancers12082031

Table 1.

MSI-MFNet architecture. Note that each “Conv” layer shown in the table corresponds to the sequence BN-ReLU-convolution. The blocks are as follows: MSI: multi scale input; I: input; DB-x: depth block (1–4), MF: multi feature and O: output.

Block Layers Output Size H × W Parameters Repetition # of Param. % of Param.
MSI Input-1 a × a Upscale 1x - - -
Input-2 b × b Upscale 0.5x - - -
Input-3 c × c Upscale 0.33x - - -
Input-4 d × d Upscale 0.25x - - -
I Concat MSI (1–4) 224 × 224 - - - -
ZP 230 × 230 1 × 1 - - -
Convolution 112 × 112 7 × 7, Stride 2 - 9408 0.1
BN 112 × 112 - - 256 -
Activation 112 × 112 ReLU - - -
ZP 114 × 114 1 × 1 - - -
MP 56 × 56 3 × 3, Stride 2 - - -
DB-1 Conv 56 × 56 1 × 1 × 6 338,304 1.8
Conv 3 × 3
Conv 56 × 56 1 × 1 - 33,792 0.2
AP 28 × 28 2 × 2, Stride 2 - - -
GAP-1 128 - - - -
DB-2 Conv 28 × 28 1 × 1 × 12 930,048 4.9
Conv 3 × 3
Conv 28 × 28 1 × 1 - 133,120 0.7
AP 14 × 14 2 × 2, Stride 2 - - -
GAP-2 256 - - - -
DB-3 Conv 14 × 14 1 × 1 × 48 8,180,736 43.3
Conv 3 × 3
Conv 14 × 14 1 × 1 - 1,612,800 8.8
AP 7 × 7 2 × 2, Stride 2 - - -
GAP-3 896 - - - -
DB-4 Conv 7 × 7 1 × 1 × 32 7,083,520 37.3
Conv 3 × 3
GAP-4 1920 - - - -
MF Concat GAP (1–4) 3200 - - - -
O Dropout 3200 - - - -
BN 3200 - - 12,800 0.1
Softmax 2/4/8 - - 25,608 0.1