Table 6.
Patch-wise comparisons of the accuracy, sensitivity, and specificity metrics for the BreakHis dataset. The magnification factor is 200×, and other abbreviations (A, F, TA, PT, DC, LC, MC, and PC) are listed in Table 3. The best results are shown in bold.
Class | Model | Accuracy | Sensitivity | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without Data | Data | ||||||||||||||||||
Augmentation | Augmentation | ||||||||||||||||||
Benign | Malignant | Benign | Malignant | ||||||||||||||||
Binary | DNet | 0.896 | 0.909 | 0.75 | 0.97 | 0.75 | 0.99 | ||||||||||||
MSI-MFNet | 0.92 | 0.98 | 0.76 | 0.99 | 0.94 | 0.99 | |||||||||||||
A | F | PT | TA | DC | LC | MC | PC | A | F | PT | TA | DC | LC | MC | PC | ||||
Multi | DNet | 0.838 | 0.861 | 0.601 | 0.843 | 0.718 | 0.837 | 0.862 | 0.85 | 0.97 | 0.909 | 0.611 | 0.87 | 0.673 | 0.776 | 0.92 | 0.893 | 0.945 | 0.936 |
MSI-MFNet | 0.88 | 0.87 | 0.595 | 0.87 | 0.79 | 0.89 | 0.96 | 0.745 | 0.98 | 0.92 | 0.62 | 0.861 | 0.78 | 0.82 | 0.890 | 0.90 | 0.98 | 0.98 | |
Specificity | |||||||||||||||||||
Without Data | Data | ||||||||||||||||||
Augmentation | Augmentation | ||||||||||||||||||
Benign | Malignant | Benign | Malignant | ||||||||||||||||
Binary | DNet | 0.97 | 0.74 | 0.95 | 0.93 | ||||||||||||||
MSI-MFNet | 0.98 | 0.76 | 0.99 | 0.94 | |||||||||||||||
A | F | PT | TA | DC | LC | MC | PC | A | F | PT | TA | DC | LC | MC | PC | ||||
Multi | DNet | 0.979 | 0.986 | 0.973 | 0.988 | 0.878 | 0.962 | 0.972 | 0.971 | 0.982 | 0.975 | 0.973 | 0.979 | 0.904 | 0.936 | 0.951 | 0.963 | ||
MSI-MFNet | 0.99 | 1.0 | 0.99 | 1.0 | 0.90 | 0.98 | 0.98 | 0.99 | 1.0 | 0.99 | 0.99 | 0.99 | 0.93 | 0.96 | 0.97 | 0.98 |