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INTRODUCTION
Radiotherapy remains the most effective non- surgical 
cancer treatment modality.1 The speciality has undergone 
an unparalleled period of development over the past two 
decades due to major technical advances in treatment 
planning, delivery and understanding of radiobiological 
response at the cell, tissue and whole organism levels.2–6 
This has enabled the implementation of advanced delivery 
modalities into routine clinical practice including intensity- 
modulated radiotherapy (IMRT) and volumetric modu-
lated arc therapy (VMAT). However, these approaches 
remain limited by dose constraints in surrounding organs 
at risk (OARs). This has led to the development of novel 
delivery modalities that aim to exploit physical beam 
delivery parameters for biologically optimised treatments.

The goal of this review of spatial fractionation and ultra- 
high dose rate radiotherapy for the 125th anniversary 
issue of the BJR is to refresh our current perspectives on 
the potential of increasing therapeutic efficacy through 

innovative local radiation exposures, and to explore the 
potential underlying biological mechanisms that can be 
exploited for patient benefit.

Spatially fractionated radiotherapy (GRID)
Spatially fractionated radiotherapy challenges the conven-
tional radiotherapy paradigm by aiming to deliver a highly 
heterogeneous dose to the tumour volume. The concept 
of GRID was first demonstrated over a century ago by 
Alban Köhler7 and was developed as a means of reducing 
skin injury with low energy X- rays by placing an atten-
uating grid directly on the skin of the patient to reduce 
skin dose directly under the grid. At a depth of several 
millimetres, the uniform dose distribution is lost and 
so does not affect the dose distribution in the tumour.8 
Evidence from both clinical and preclinical studies has 
clearly demonstrated that dividing the target volume 
into discrete subvolumes can limit normal tissue damage 
from orthovoltage sources which have been recently been 
reviewed.9,10 The possible biological mechanisms and 
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ABSTRACT

The effects of various forms of ionising radiation are known to be mediated by interactions with cellular and molecular 
targets in irradiated and in some cases non- targeted tissue volumes. Despite major advances in advanced conformal 
delivery techniques, the probability of normal tissue complication (NTCP) remains the major dose- limiting factor 
in escalating total dose delivered during treatment. Potential strategies that have shown promise as novel delivery 
methods in achieving effective tumour control whilst sparing organs at risk involve the modulation of critical dose 
delivery parameters. This has led to the development of techniques using high dose spatial fractionation (GRID) and 
ultra- high dose rate (FLASH) which have translated to the clinic. The current review discusses the historical develop-
ment and biological basis of GRID, microbeam and FLASH radiotherapy as advanced delivery modalities that have 
major potential for widespread implementation in the clinic in future years.
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extent to which GRID contributes to overall tumour control 
in the context of modern- day chemoradiation regimens is not 
clearly understood.

Interestingly, several in vitro and in vivo studies have implicated 
radiation- induced abscopal effects as potential mediators of 
response to GRID.11–14 The first introduction to the concept of 
abscopal effects was made in a report published in the British 
Journal of Radiology which for the first time suggested that radia-
tion responses may occur remotely following local or whole body 
irradiation scenarios.15,16 In the later half- century and beyond, 
there have been a growing numbers of reports describing obser-
vations of the abscopal effect both experimentally and in the 
clinic.17–25 Futhermore, the prospect that GRID can increase 
total tumour dose and possibly activate beneficial bystander or 
abscopal immune effects whilst minimising effects to normal 
tissues offers intriguing opportunities for further investigation.

Whilst the abscopal effect remains a controversial and poorly 
controlled phenomenon, accurate assessment of tumour and 
immune response through circulating biomarkers may enable 
more widespread integration of GRID in the clinic. As advanced 
imaging and radiotherapy technologies continue to develop, the 
ability to deliver GRID has also greatly improved. Whether or 
not the advanced technology and treatment planning available 
for new beam geometries can finally unlock the full potential 
of abscopal effects remains an open question. Ultimately, the 
answer may require integrating knowledge of complex radio-
biological mechanisms driving these responses with innovative 
technological solutions.

Ultrahigh dose rate applications (FLASH and 
microbeam):
In addition to optimised spatial delivery of radiation beams, there 
is currently major interest in exploiting unique radiobiological 
responses occurring at mean dose rates in excess >40 Gy/s, deliv-
ered as a single or a few pulses over intervals of milliseconds, 
known as FLASH- RT. It is important to note that ultrahigh dose 
rates have been used for decades in spatial fractionation applica-
tions known as microbeam radiation therapy (MRT). However, 
recent work and technological advances in radiation delivery 
and control have allowed open field FLASH research which 
has succesfully translated to treatment of a single patient with 
multiresistant T- cell cutaneous lymphoma.26 FLASH- RT has the 
potential to deliver a paradigm shift in curative radiotherapy, 
yet the mechanistic underpinnings of response remain largely 
unknown but are thought to be due radiochemical depletion 
of oxygen at ultrahigh dose rates which affects radioresistance 
conferred on the irradiated normal tissue more than on tumor 
tissues.27–30

On a basic level, both FLASH and GRID represent alterna-
tive dose delivery modalities that can exploit certain differ-
ences between normal tissue and tumours. These techniques 
have resulted in unexpected beneficial effects that could not be 
predicted based on classical understanding of dose rate effects 
and targeted responses. Understanding the biological underpin-
nings and the optimum physical parameters of these techniques 

will require significant multidisciplinary effort to drive further 
biologically based clinical trials in the future.29

Classifications and delivery of major forms of SFRT
Spatially fractionated conventional radiotherapy 
(GRID):
The field of GRID is the closest manifestation of the early work 
by Kohler and many others using relatively low energy photons 
and a screen or patterned blocking sheet to divide the exposure 
into high and low exposure segments. As the development of 
higher voltage sources occurred, interest began in re- evaluating 
the original GRID concept to avoid normal tissue morbidities 
at depth. Mohuiddin and associates were the pioneers of these 
studies which began in the 1980’s and continue today.31–33 A 
number of other centres have also joined efforts in the hope of 
providing patients with a boost of antitumour control whilst 
keeping normal tissue responses at an acceptable level. For 
example, as demonstrated by Peñagarícano and colleagues in 
a small series of patients.34 The approach was initially imple-
mented in three- dimensional plans with one or two fields created 
by MLC shaping, cerrobend blocks or customised blocks that can 
be placed in the linear accelerator head.35,36 MLC or cerrobend- 
based GRID makes the implementation straightforward. This 
has the potential benefit of implementing GRID in developing 
countries in which financial constraints limit the use of advanced 
GRID techniques. After initial studies over the years suggested 
that patients may benefit from GRID applications to their tumour, 
several new strategies for applying GRID with photons in IMRT 
plans or with protons have emerged with advancing technolog-
ical capabilities.36–38 These advanced GRID techniques allow for 
the delivery of spatial fractionation to deep seated bulky tumours 
and dose sparing of normal tissues. However, it remains to be 
seen if the dose distribution is sharp enough to retain optimal/
effective peak to valley ratios related to the biological mecha-
nisms of action (Figure 1). Nonetheless, these additional options 
expand the possibilities of utilising spatial fractionation in a wide 
variety of patients in some indications where therapeutic gain 
could be achieved in deep seated tumours.39 Even after more 
than a century of clinical and research experience, the use of 
GRID remains a simple strategy to avoid normal tissue damage 
whilst increasing the dose to the tumour (Figure 2). Advanced 
mechanisms of action and potential synergism with cutting- edge 
drug or antibody therapies are still to be fully exploited, which is 
a current inspiration of a number of centres around the world.

Microbeam (MRT with photons or protons):
Very high dose rates of the order of up to 100 Gy/s or higher have 
been investigated for decades in a spatial fraction format using 
synchrotron generation and known as microbeam therapy.40,41 
There is much to learn from the early work done by a number 
of groups that employed the synchrotron- produced beams at 
Brookhaven National Laboratory in New York, and the Euro-
pean Synchrotron Research Facility in Grenoble, France among 
others.42–44 One of the original questions was, what width of beam 
in a repeating pattern could be used without increasing normal 
tissue damage. It was found that beam widths approaching 
0.5 mm or higher became quite destructive to tissues, especially 
when repeated at centre to centre distances of the same width, 

http://birpublications.org/bjr


3 of 7 birpublications.org/bjr Br J Radiol;93:20200217

BJRGrid, microbeam and FLASH radiotherapy

while below this distance relative tissue sparing was observed, 
even when the peak doses were in the 100's of Gy. Part of this 
result may have to do with the unique way in which normal vs 
tumour cells react to ultrahigh dose rates, and part of the expla-
nation lies in the preservation of tissue stem cell/functional units 
at a level and distribution that allows tissue repair and function 
to resume quickly after exposure.

Ultrahigh dose rate radiotherapy (FLASH with 
electrons, photons or protons):
The concept of ultrahigh dose rate applications in radiotherapy 
has experienced a recent explosion in interest from all three of 
the major disciplines that make up the field of radiotherapy: clin-
ical, biology and physics. The interest is driven by several recent 
publications that have demonstrated an enhanced therapeutic 
ratio when ultrahigh does rate (typically characterised by 40 Gy/s 
or greater) are applied to model tumour systems in several animal 
models.29,45–47 As well as dose- rate, it is clear that other param-
eters such as the intrapulse dose rate, frequency (Hz), overall 
time of exposure, oxygenation and the target volume are also 
important.27,48 The majority of the FLASH experiments and clin-
ical applications in certain isolated cases have been with electron 
beams which necessitate a superficial target and can be applied to 
large areas, if not volumes. However, there are demonstrations in 
the literature that FLASH is possible with both photons, protons 
or other heavy ions, and some biological advantages have been 
demonstrated using modifications of existing radiotherapy 
equipment, heavy ion or proton facilities.49–52 Although there are 
distinct differences in the concept of spatial and FLASH radio-
therapy applications, high doses and dose- rates are a constant 
requirement and the dependency of biological responses to 

different beam sizes and dose rate combinations achievable with 
different modalities requires further investigation (Figure 3).

Biological mechanisms of response 

Bystander effects
One of the biological phenomena associated with response 
to spatial fractionation has been the bystander effect. Orig-
inal bystander work was largely performed in vitro and mostly 
with low dose exposures.53–56 The potential clinical impact of 
th bystander effect remains to be fully elucidated.57 However, 
a number of groups have demonstrated bystander effects, 
including cell killing, following high dose spatial fractionation 
in vitro and in vivo.14,58,59 Furthermore, evidence of adaptive/
bystander like responses has been observed within and between 
modulated fields, which would also have special relevance to the 
application of GRID therapy approaches.60,61

Vascular/angiogenic effects
The use of stereotactic, high dose radiotherapy has brought 
the potential impact of vascular damage to the front line in 
explaining why many tumours are controlled at total doses that 
would not be mathematically predicted to kill all cells.62,63 It 
follows that vascular damage is likely important in both conven-
tional X- ray spatial fractionation as well as ultra high dose, 
spatially fractionated microbeam applications. There have been 
a number of studies published with a focus on vascular pertur-
bations, damage and inflammation induced by spatial fraction-
ation.40,64–66 In addition, a general response to vascular stress or 
damage is an angiogenic response similar to wound healing have 
been demonstrated in a number of preclinical studies of spatially 

Figure 1. Application of spatially fractionated dose distributions to a deep seated pelvic tumour using an IMRT based method. (A, 
C, D) GTV iso- dose peak and valley dose distribution in axial, coronal, and sagittal views and (B) dose profile across the axial view. 
Note the variable dose- gradient slope in the valley dose regions, as well as the difference in peak dose regions due to anatomic 
placing of the spatially fractionated dose. These variations and valley doses are characteristic features of clinically delivered spa-
tial fractionation that need to be recognised in interpreting mechanisms and outcomes. GTV, gross tumour volume;IMRT, intensity 
modulated radiotherapy.
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fractionated radiotherapy with obvious implications for tumour 
control.67

Immune effects; abscopal influence of local/spatial 
exposures
The immune response is closely related to vascular damage 
and plays a central role in responses to high dose spatial and 
ultrahigh dose rate exposures. This response may be distinctly 
different in magnitude and outcomes following spatial frac-
tionation. In whole tumour exposures, the amount of abscopal 
effect may be driven by extensive vascular damage and inflam-
mation across the entire tumour volume.25 Constrastingly, GRID 
and microbeam treatment may allow a more intact physiolog-
ical response to radiation fields as the low dose volumes retain 
viable vasculature and immune cells. Supporting this hypoth-
esis, a number of studies have found that spatial fractionation 
induces a more beneficial overall immune reaction than other 
approaches.11,12 It follows that the production or expression of 

an abscopal response against remotely located tumours could 
be enhanced since the irradiated tumour has retained a greater, 
more functional ability to recruit immune cells, or to allow anti-
gens to interact with the immune system and enhance a systemic 
response.

Oxygen availability and radiochemistry 
considerations 

Recent advances concerning the intracellular mechanisms of 
response to FLASH have postulated that oxygenation radical 
dynamics/depletion are responsible for the observed differ-
ences between tumour and normal tissues.68,69 In addition, an 
important role for differential redox biology in tumours relative 
to normal tissues has been proposed.28 There are now reports 
emerging in different model systems suggesting in certain tissues 
or cells that the FLASH effect may not always be protective 
following electron or proton irradiation.70,71 Whether or not 
whole tissue exposures to ultrahigh dose rates will ultimately 
be of clinical benefit, there are also indications that spatial frac-
tionation promotes the reoxygenation and revascularisation 
of residual tumour or normal tissue.40,67,72,73 Detailed under-
standing of the dose response relationship and distribution 
of radiation exposure to physiological changes within targets 
tissue will greatly facilitate the development of these approaches 
towards viable clinical treatment options in certain tumour types.

Outstanding challenges for spatial fractionation 
and ultrahigh dose rate approaches
Some promising results have been acheived in the clinc using 
GRID followed by conventional radiation or chemoradia-
tion.33,34,38,39,74 In addition, initial clinical experience with 
FLASH has been promising. The idea of using radiation as a tool 
as a part of optimised sequencing with chemotherapy, targeted 
agents or immunotherapy continues to gain credibility and as 

Figure 2. Example application of spatially fractionated dose 
in a patient with bulky mass in the neck from carcinoma of 
the head and neck using a GRID collimator designed to fit in a 
linear accelerator. Panel A: Commercially available GRID block 
(Radiation Products Design, Inc.). Panel B: Hand drawing of 
the GRID field as indicated by light guides from linear accel-
erator on patient that received GRID radiotherapy for a large 
neck nodal lesion. Panel C: Expected dose at 3 and 10 cm in 
the gross tumour volume using a 6 MV linear accelerator. Note 
the peak and valley doses are more consistent across the field 
when using the collimator in comparison to the IMRT appli-
cation in Figure 1. Prescription was 20 Gy in one fraction. This 
patient proceeded to have a full course of adjuvant chemo-
radiotherapy (66 Gy in 30 fractions) after completing GRID 
therapy. IMRT, intensitymodulated radiotherapy.

Figure 3. Schematic representation of dose rate and beam 
sizes for different clinical and experimental radiotherapy tech-
niques.
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the immunotherapy field matures, and it may well be highly 
influential in determining how GRID, microbeam & FLASH 
can be optimsed for patient benefit. A closely related issue is the 
possible sparing of immune cells during spatial fractionation as 
a reduction in immune cell killing that meaningfully contrib-
utes to tumour control could provide even greater rationale for 
implementation of these approaches. In addition, a few cyto-
kine biomarkers have been studied in clinical and preclinical 
studies (e.g. TNF-α and IL-2), but these are yet to be validated in 
large patient populations. As is typical for promising preclinical 

therapy approaches, the use of any of these concepts needs 
further preclinical and clinical study results to validate their 
potential for widespread translation.

Current outlook
GRID, microbeam and FLASH radiotherapy are intriguing strat-
egies that aim to optimise therapeutic index in radiotherapy. 
Further benefits may be derived using charged particles to create 
much more conformal dose distributions and radiobiological 
advantages, yet these remain to be fully demonstrated.
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