Table 3.
Details regarding various outputs from the in-house method in the case of chitosan (as an example).
Sl. No. | Kinetic Model | Equation | Ea (kJ·mol−1) | A (s−1) | R2 |
---|---|---|---|---|---|
1 | P1 Power Law | α 1/n | * - | - | - |
2 | E1 Exponential law | ln(α) | * - | - | - |
3 | A2 Avrami–Erofeev Model | [−ln(1 − α)]1/2 | 43.0 | 1.029 × 103 | 0.9933 |
4 | A3 Avrami–Erofeev Model | [−ln(1 − α)]1/3 | 26.0 | 1.880 × 101 | 0.9931 |
5 | A4 Avrami–Erofeev Model | [−ln(1 − α)]1/4 | 18.0 | 2.631 × 100 | 0.9930 |
6 | B1 Prout–Tompkins | [−ln(α/(1 − α))] + C | * - | - | - |
7 | R1 Contracting area | 1 − (1 − α)1/2 | 86.0 | 1.682 × 107 | 0.9944 |
8 | R3 Contracting volume | 1 − (1 − α)1/3 | 89.0 | 6.174 × 106 | 0.9942 |
9 | D1 One dimensional | α 2 | 164 | 8.417 × 1013 | 0.9952 |
10 | D2 Two dimensional | (1 − α)ln(1 − α) + α | 175 | 9.164 × 1014 | 0.9744 |
11 | D3 Three dimensional | [1 − (1 − α)1/3]2 | 187 | 1.235 × 1016 | 0.9765 |
12 | D4 Ginstling–Brounshtein | (1 − 2α/3) − (1 − α)2/3 | 179 | 2.181 × 1015 | 0.9751 |
13 | F1 First order | −ln(1 − α) | 95.0 | 2.330 × 107 | 0.9880 |
14 | F2 Second order | 1/(1 − α) | 32.0 | 1.487 × 101 | 0.9050 |
15 | F3 Third order | 1/(1 − α)2 | 72.0 | 1.400 × 105 | 0.7580 |
* No values for Ea were given by the software, and the software yielded a zero value as the fitting factor.