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Abstract: Undoped as well as (Co, Mn) co-doped Zinc oxides have been effectively developed on
glass substrates, taking advantage of the spray pyrolysis procedure. The X-ray diffraction XRD as
well as X-ray photoelectron spectroscopy (XPS) measurements have recognized a pure hexagonal
wurtzite form of ZnO, and no other collateral phases such as MnO2 or CoO2 have been observed
as a result of doping. The calculated values of the texture coefficient (TC) were between 0.15 and
5.14, indicating a dominant orientation along the (002) plane. The crystallite size (D) varies with the
(Co, Mn) contents. The dislocation density (δ) as well as the residual microstrains increased after Co
and Mn doping. Furthermore, the surface morphology of the films has been affected significantly by
the Co and Mn incorporation, as shown by the scanning electron microscopy (SEM) investigation.
The study of the optical properties exhibits a red shift of the band gap energy (Eg) with the (Co, Mn)
co-doping. The magnetic measurements have shown that the undoped and (Co, Mn) co-doped ZnO
thin films displayed room-temperature ferromagnetism (RTFM).

Keywords: diluted magnetic semiconductor; nanocrystallites; optical properties; XRD; SEM; room
temperature ferromagnetism

1. Introduction

Over the past few years, there has been a growing interest in ZnO, which is recognized as a diluted
magnetic semiconductor (DMS) [1–4]. A diluted magnetic semiconductor can be achieved through the
incorporation of transition-metal (TM) elements including Ni, Cr, Co, Fe, and Mn into a non-magnetic
semiconductor. DMS materials have inspired a great deal of academic and industrial research regarding
their great potential in several fields, such as optoelectronics, sensors, light emitting diodes (LED),
nanoelectronics, photonics, and spintronic devices [5–13]. Metal oxide semiconductors such as TiO2,
SnO2, In2O3, and ZnO are known to exhibit DMS behavior as a result of TM-doping [14–23]. Thanks to
its fascinating features, such as large energy bandgap Eg (≈3.37 eV), relatively great exciton binding
energy (≈60 meV), high electrical conductivity, as well as high temperature magnetic response [24–26],
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ZnO material is a II-VI binary semiconducting material and is considered to be one of the best candidates
for the modern electronic industry. ZnO crystallizes in three main crystallographic varieties—namely,
wurtzite, zinc blend, and rock salt. However, at room temperature the hexagonal wurtzite form is the
most stable one [27].

Several techniques have been used to prepare TM-doped ZnO compounds. For instance,
Zn0.8Co0.2O and Zn0.8Ni0.1Co0.1O nanoparticles have been elaborated by Vijayaprasath et al. [26]
using the chemical co-precipitation method. According to their magnetic measurements, induced
ferromagnetism has been observed either in Co or Ni-doped ZnO, while a weak ferromagnetic behavior
was noticed as a result of the co-doping of Co with Ni/ZnO nanoparticles. Khan et al. [28] have
synthesized pure and (Co, Mn) co-doped ZnO nanoparticles by the chemical precipitation technique.
Based on the X-ray diffraction (XRD) analysis, there was no change in the wurtzite-type structure of
their synthesized ZnO samples with doping, whereas there is a decrease in the average nanoparticle
size after doping ZnO with (Co, Mn). On the other hand, a significant transition from the diamagnetic
state for pure ZnO nanoparticles to an obvious ferromagnetic state for Zn0.96−xMn0.04CoxO (where x
ranged from 0 to 4 wt.%) was reported [28]. The highest magnetization was observed for 1 wt.%—e.g.,
Zn0.95Mn0.04Co0.01O—with a remnant magnetization (Mr) of about 0.25 × 10−2 emu/g. The study of
the magnetic properties of ZnO material prepared by the sol gel auto-combustion method revealed
the absence of ferromagnetism behavior in these samples despite the Mn2+ doping, as reported by
Birajdar et al. [29]. However, they exhibit a paramagnetic nature at room temperature. The optical band
gap of ZnO nanopowders elaborated by the co-precipitation method has been found to be significantly
affected by Al and (Al, Mn) doping, as reported by Belkhaoui et al. [30]. In their previous investigation,
Kamoun et al. [31] explored the effect of Eu doping content on certain physical properties of sprayed
ZnO compound, where they reported that the lattice parameters were at the maximum values for
samples with a ratio of 1% [Eu]/[Zn].

In spite of the extensive studies of the doping and/or co-doping effect on the physical properties
of zinc oxide, the room-temperature ferromagnetism (RTFM) effect is still the subject of an extensive
debate regarding its origin. The present work aims to examine the impact of the incorporation of
Co and Mn atoms on the physical properties of the ZnO compound. For this purpose, ZnO and
(Co, Mn) co-doped ZnO nanocrystalline films have been synthesized by the spray pyrolysis technique,
which was already described in our previous paper [31]. A comprehensive characterization of the
structural, morphological, optical, and magnetic properties of the synthesized (Co, Mn) co-doped ZnO
nanocrystalline films was performed.

2. Materials and Methods

2.1. Undoped and (Co, Mn) Co-Doped ZnO Nanocrystalline Films Synthesis

Pure ZnO nanocrystalline films have been synthesized on glass substrates at 460 ◦C, under the
conditions described previously by Kamoun et al. [31]. Briefly, ZnO nanoparticles were obtained from
a mixture of zinc acetate (Zn(CH3CO2)2: 10−1 M) and propanol. The pH of the precursor mixture was
adjusted to 5 by adding acetic acid. The carrier gas used was nitrogen (pressure ≈ 0.35 bar), which
was purged through a 0.5 mm diameter nozzle. The nozzle-to-substrate plane distance was fixed
at the optimal value of 27 cm, as demonstrated by K. Boubaker et al. [32], and the spray solution
flow rate was 4 mL/min. After deposition, the ZnO films were cooled down to room temperature.
Similarly, (Co, Mn) co-doped ZnO nanocrystalline films have been prepared by adding cobalt sulphate
heptahydrate and manganese chloride tetrahydrate (CoSO4·7H2O, ≥ 99% and MnCl2·4H2O, ≥ 98%,
Sigma-Aldrich (St. Louis, MO, USA) as Co and Mn cations precursors to the host precursor solution.
The atomic ratios of the (Co, Mn) dopants were (0%, 0%), (1%, 1%), (2%, 1%), (1%, 2%), and (2%, 2%).
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2.2. Characterization Techniques

The crystallographic structure characteristics of the undoped and (Co, Mn) co-doped ZnO samples
were performed employing an X-ray diffractometer equipment type Philips PW 1729, equipped with
a monochromatic radiation source (Cukα, λ = 1.54056 Å, Philips PW 1729 system, Cambridge, MA,
USA). The X-ray photoelectron spectroscopy (XPS) analyses were carried out using a Thermo-VG
Scientific MultiLab, ESCA Probe with Al Kα 1486.7 eV (Fisher Scientific, Waltham, MA, USA) as an
exciting source in order to identify the chemical elements and their oxidation states.

In addition, the surface morphology of the thin films has been explored by electronic scanning
microscopy (class EDAX XL 30 (S.E), EDAX, Mahwah, NJ, USA). The optical properties of all the ZnO
samples, in terms of the transmission (T%) and optical band gap energy (Eg), were analyzed in the
250–2500 nm range with a spectrophotometer device (type Perkin Elmer Lambda 950). The magnetic
properties studies were accomplished using a vibrating sample magnetometer (VSM, Microsense EV9,
DMG MORI Manufacturing USA, Inc., Davis, CA, USA). The magnetization (M) measurements were
conducted at room temperature in the field range from −20 kOe to 20 kOe.

3. Results and Discussion

3.1. Crystallographic Structure

The XRD spectra of the undoped and (Co, Mn) ZnO samples are outlined in Figure 1, which
clearly demonstrates the main peaks for ZnO, such as (010), (002), (011), (012), (110), (013), and
(112) orientations. According to the JCPDS Card n◦: 036-1451, these orientations are assigned to the
hexagonal wurtzite structure of ZnO material. In addition, all the samples show c-axis-oriented growth
(002). The incorporation of (Co, Mn) seems to be without noticeable impact on the crystal structure of
the ZnO samples. Indeed, no change in the preferential orientation and no secondary phases such
as MnO2 or CoO2 in the ZnO host material were observed as a result of doping. The same behavior
was reported by other research groups [3,5,33–35]. Besides this, it is worth mentioning that some of
these diffraction peaks become weaker or disappear as the (Co, Mn) content changes. This change in
intensity is accompanied by a very small shift towards larger angles in the broad peaks of (Co, Mn)
co-doped ZnO nanocrystalline films with reference to the undoped ones. The shift in the position of
the peak to higher angles as a result of (Co, Mn) co-doping may be explained by the contraction of
the lattice parameters due to the size difference between the Zn atoms and the dopants. Moreover,
since there is no secondary phases detected in the (Co, Mn) co-doped ZnO nanocrystalline films, the
Co2+ and Mn2+ dopants have either replaced the Zn2+ or integrated inside the interstitial sites with no
noticeable alteration in the ZnO host structure [36].
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The mean grain size (D) of the deposited nanocrystalline films has been estimated by the Rietveld
method [37]. The evaluated grain size (D) values are recorded in Table 1. On the basis of these results,
it is evident that there is a significant impact of the (Co, Mn) content on the (D) value. D is equal to
104.0 nm for the undoped ZnO sample and 26.4–43.0 nm for the (Co, Mn) co-doped ZnO samples. The
highest value of 43.0 nm was obtained for the (Co 1%, Mn 2%) co-doped ZnO. Although our results
differ to some extent from those of Poornaprakashet et al. [7] and Sundaramet et al. [3], they have a
number of similarities with those reported by Abdullahi et al. [25] and Voicu et al. [35]. The decrease
in the grain size with the (Co, Mn) incorporation may be due to the distortion generated by the foreign
impurities in the host ZnO lattice, as well as by a reduction in the nucleation rate along with a decrease
in the growth rate of ZnO nanocrystalline films induced by the presence of the Co2+ and Mn2+ dopants.

Table 1. Mean grain size values (D), perfect crystal parameters (a0, c0) of ZnO and (a, c) of (Co%, Mn%)
co-doped ZnO samples, and (σ2)1/2 is the rate of micro deformation.

ZnO (Co%:Mn%)

Structural Parameters 0%:0% 1%:1% 1%:2% 2%:1% 2%:2%

D (nm) ± 0.1 104.0 30.0 43.0 34.0 26.4
a(nm) ± 10−4 0.3256 0.3255 0.3254 0.3256 0.3253
c(nm) ± 10−4 0.5214 0.5211 0.5210 0.5213 0.5214

c/a 1.60 1.60 1.60 1.60 1.59
A(%) = (a − a0)/a0 0.46 −0.43 0.43 0.43 0.21
C(%) = (c − c0)/c0 0.51 −0.44 0.44 0.44 −0.09

<σ2>1/2 (%) 10−4 10−4 2.10−3 10−5 10−4

Occupancy Zn:1
O:1

Zn:1
O:1

Zn:1
O:1

Zn:0.9
O:1

Zn:0.87
O:1

The experimental values of the crystal parameters a and c are obtained by the Rietveld refinement
for undoped and (Co, Mn) co-doped ZnO nanocrystalline films (Table 1). The ratio c/a is equal to 1.60
for all the samples except for (Co 2%, Mn 2%), where the c/a is 1.59. In addition, the lattice strains A
and C along the a-axis and c-axis, respectively, were estimated using the following formulae:

A = (a − a0)/a0, (1)

As well as:
C = (c − c0)/c0. (2)

The values calculated with Equations (1) and (2) are reported in Table 1, where one can see that
A and C for ZnO are equal to 0.46% and 0.51%, respectively. The variations in A and C with the
amount of co-doping can also be observed. The negative values of A and C may be explained by the
compression of crystal parameters induced by co-doping ZnO, especially for (Co, Mn) equal to (Co
2%, Mn 2%), for which there is a small compression along the c-axis; for (Co 1%, Mn 1%), there is a
small compression of both the a and c axis, while for other the (Co, Mn) content the crystal seems to
have a small expansion (Table 1). The rate of micro deformations (σ2)1/2 is equal to 10−4% for ZnO,
while it varies in the range of (10−5–2.10−3) for all the (Co, Mn) co-doped ZnO samples. The occupancy
coefficients are (Zn:1—O:1) for ZnO, (Co 1%, Mn 1%), and (Co 1%, Mn 2%) co-doped ZnO, but this
value becomes (Zn:0.9—O:1) and (Zn:0.87—O:1) for (Co 2%, Mn 1%) and (Co 2%, Mn 2%) co-doped
ZnO, respectively.

Furthermore, additional insights on the impact of the Co and Mn atoms incorporation on the
structural properties of the sprayed ZnO material can be obtained from the texture coefficient (TC),
the dislocation density (δ), and the internal strain (ε). The value of the texture coefficient (TC), which
indicates the abundance of grains in a (hkl) orientation, was calculated using the Harris method as
follows [38,39]:

TC (hkl) = [Ihhk/I0] ⁄ [n−1
× (
∑

Ihkl)⁄I0)], (3)
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where n, Ihkl, and I0 are the number and the intensity of reflections, respectively. The measured
intensity of the (hkl) orientation and the corresponding intensity of the XRD reference are provided by
the JCPDS 036-1451 card. The results are summarized in Table 2. The TC value varies from 0.15 to 5.14
for all the samples, indicating a dominant orientation along the (002) plane. As the (Co:Mn) content
varies, the TC value changes randomly. This result could reveal that the insertion of (Co, Mn) elements
may deteriorate the crystallinity of the growing ZnO films owing to the ionic radii differences between
the Zn, Co, and Mn atoms [28]. In addition, the (Co, Mn) doping causes a reduction in the intensity
and widening of diffraction peaks, which means that smaller crystallites develop in the doped ZnO
compared to the undoped ZnO as a consequence of the induced lattice disorder.

Table 2. Values of the texture coefficient (TC) of undoped and (Co%, Mn%) co-doped ZnO
nanocrystalline films.

TC

(hkl) 0% 0% 1% 1% 1% 2% 2% 1% 2% 2%

(010) 0.2 0.44 — — —
(002) 5.14 2.92 2.72 3.14 2.39
(011) 0.40 0.55 0.37 0.15 0.39
(012) 0.55 0.46 0.54 0.27 —
(013) 0.46 0.63 0.37 0.44 0.38

—: Absent peak.

The amount of defects representing the displacement of the crystal structure when additional
impurities are incorporated into a crystal can be evaluated by calculating the dislocation density (δ).
The dislocation density, δ, defined as the number of intercepted positions by the dislocation lines per
unit area in the plane perpendicular to the dislocation lines (lines/m2) [40], was estimated using the
Williamson and Smallman formula [40–45], as given by the following equation:

δ = 1⁄D2, (4)

where D is the crystallite size of the ZnO samples. The calculated values of dislocation density are
summarized in Table 3.

The dislocation density is equal to 0.92 × 1014 lines/m2 for the undoped ZnO (0%, 0%) film. The
dislocation density increases from 5.4 to 14.3 × 1014 lines/m2 as the dopant content increases. These
results emphasize that there is an increase in lattice imperfections in the (Co, Mn) co-doped ZnO.

The internal strain (ε) of ZnO and (Co%, Mn%) co-doped ZnO nanocrystalline films has been
estimated using the following relationship [3]:

ε = β × cosθ⁄4 = 0.96λ/4D. (5)

The corresponding calculated values of (ε) are recapped in Table 3. Compared to the undoped
ZnO nanocrystalline films, the strain value seems to be increased with doping. It equals 0.59 × 10−2

for pure ZnO, whereas it ranges from 1.61 × 10−2 to 1.79 × 10−2 for (Co%, Mn%) co-doped ZnO. This
behavior is due to the incorporation of the doping elements Co and Mn in the ZnO unit cells, which
generates alteration either in the size and/or of the shape of the synthesized ZnO nanocrystalline
films [26], accompanied by the creation nearby of the Co2+ and Mn2+ ions of charge imbalance as well
as the development of some crystallographic defects.
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Table 3. Internal lattice strain (ε) of undoped and (Co, Mn) co-doped.

ZnO (Co%, Mn%)

Structural Defects (0%, 0%) (1%, 1%) (1%, 2%) (2%, 1%) (2%, 2%)

δ(1014 lines/m2) 0.9 11.1 5.4 8.6 14.3
ε (10−2) 0.59 1.61 1.79 1.7 1.74

3.2. X-ray Photoelectron Spectroscopy Analysis

X-ray photoelectron spectroscopy (XPS) is a quantitative technique that offers further details about
the incorporation of the Co and Mn dopants into the host lattice of ZnO. Figure 2 illustrates the full
XPS spectra of all the ZnO samples, as well as the high resolution XPS spectra of Zn and O.

In the XPS spectra, the standardization of the peak positions was conducted according to the C1s
peak at 284.6 eV. In Figure 2a, four peaks corresponding to the Zn, O, Co, and Mn elements (in the
case of (Co, Mn), co-doped samples) can be identified, which confirm the existence of Co and Mn
dopants in the ZnO host material. No other extra peaks have been detected, which also demonstrate
the single-phase structure of the ZnO synthesized in our work. To further investigate the oxidation
states of the Zn, O, Co, and Mn elements, a refined scan closely to each peak has been carried out for
the ZnO and (Co, Mn) co-doped ZnO samples. The Zn LMM Auger spectra (Figure 2b) exhibit only
one peak, localized at a binding energy ranging from 497.8 to 498.2 eV (Table 4), which most likely
originated from the interstitial Zinc (Zni) as well as Zn-O bonds.
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The high-resolution XPS spectra (not shown) of the Co and Mn peaks for all the co-doped samples
has shown only one broad peak centered around 781.1 and 640.4 eV (Table 4), in agreement with
the binding energies of Co 2p3/2 and Mn 2p3/2, respectively. Figure 2c shows two marked peaks
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localized at 1021.6 and 1044.6 eV, in accordance with the binding energies of Zn 2p3/2 and Zn 2p1/2,
respectively, for ZnO [46]. As the atomic ratios Co(%) = [Co]/[Zn] and Mn(%) = [Mn]/[Zn] change, the
binding energy of Zn 2p3/2 increases from 1021.6 for ZnO to 1022.6 for the (Co 2%, Mn 2%) co-doped
ZnO sample. In addition, the spin-orbital splitting energy (∆E) is around 23.1 eV, revealing that Zn
is present as the Zn2+ state regardless the Co and Mn doping level used. The weakness of the peak
intensities of the Co 2p and Mn 2p XPS spectra probably owe to the low level of Mn and Co doping.
The high-resolution XPS spectra analysis of the oxygen element and the deconvolution of the associated
asymmetric peak (O 1s) of the undoped ZnO sample have shown two Gaussian signals with low and
high binding energies. The first one, centered at about 530.5 eV, could be assigned to O2− ions tied to
Zn2+ in the ZnO lattice. The peak of the high binding energy localized at 531.8 eV can most likely be
assigned to oxygen vacancies [47].

Table 4. XPS measurements of binding energy of O 1s, Zn LMM, Zn 2p3/2, Co 2p3/2, and Mn 2p3/2 of
the undoped and (Co%, Mn%) co-doped ZnO.

Binding Energy (eV)

Mn 2p3/2 Co 2p3/2 Zn 2p3/2 Zn LMM O 1s (Co%, Mn%)

—— —— 1021.6 497.8 530.5 (0%, 0%)
640.4 781.1 1021.9 497.8 530.4 (1%, 1%)
640.2 781.83 1022.1 498.2 530.7 (1%, 2%)
640.4 780.77 1021.9 497.9 530.3 (2%, 1%)
642 780.69 1022.6 498.2 531.8 (2%, 2%)

——: absent peak.

3.3. Surface Morphology

The scanning electron micrographs of three samples corresponding to ZnO, (Co 1%, Mn 1%)
co-doped ZnO, and (Co 2%, Mn 1%) co-doped ZnO are presented in Figure 3. For ZnO, a uniform grain
size distribution was observed (Figure 3a), with a mean grain size of about 65 nm. As (Co, Mn) is added
to ZnO, the surface morphology becomes less uniform, which is associated with a decrease in the
corresponding crystallite size (Figure 3b,c). The change is the surface morphology may be explained
by the differences in the ionic radius of Zn2+, Co2+, and Mn2+, which are approximately equal to 0.60,
0.65, and 0.80 Å, respectively [28]. Thus, it would appear that the incorporation of (Co, Mn) transition
metal increases the disorder in the ZnO thin film, which also affected its crystallinity.
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3.4. Optical Investigations 

Figure 3. SEM (scanning electron microscopy) images of the surface morphology of the ZnO and
(Co, Mn)-co-doped ZnO samples: (a) ZnO; (b) (Co 1%, Mn 1%) co-doped ZnO; (c) (Co 2%, Mn 1%)
co-doped ZnO.

3.4. Optical Investigations

The transmittance spectra of the ZnO and (Co, Mn) co-doped ZnO samples are shown in Figure 4a.
The (Co 2%, Mn 1%) co-doped ZnO film is more transparent than ZnO in the visible range. In the
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near infra-red region, the transmittances of the (Co, Mn) co-doped ZnO samples are greater than those
of ZnO.

The fundamental absorption edge (Eg) of the films is in the range of 250–400 nm and can be
attributed to a direct transition, where the absorption coefficient, α, can be correlated to the optical
bandgap Eg, as given by [48–50]:

αhν = K(hν − Eg)
1
2 , (6)

where hν and K represent the photon energy and a constant of proportionality, respectively.
The minor absorption observed in the intrinsic front absorption edge in the wavelength range of

290–390 nm may be due to the Urbach tails caused by the presence of the states in the band gap near to
the bottom of the conduction band and/or to the maximum of the valence band, which may be due to
the lattice defects.
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Figure 4. (a) Transmittance (T) spectra; (b) (αhν)2 vs. the incident photon energy (hν) of the ZnO and
(Co, Mn) co-doped ZnO samples.

The extrapolation to the energy axis of the straight line zone of (αhν) 2 against (hν) graphs
gives the Eg values for each sample (Figure 4b, Table 5). The optical bandgap slightly decreases with
co-doping contents. In fact, the optical bandgap Eg of 3.25 eV for the ZnO sample decreases to 3.21 eV
for the (Co 2%, Mn 2%) co-doped ZnO (Table 5). The optical band gap variation may be explained by
the fluctuation in the grain size of the corresponding ZnO nanocrystalline films due to the insertion of
the Co and Mn dopants. Our results are in agreement with other research groups [31,48,51–53].

Table 5. Band gap energy (Eg) values of the undoped and (Co, Mn) co-doped ZnO.

ZnO (Co%, Mn%) (0%, 0%) (1%, 1%) (1%, 2%) (2%, 1%) (2%, 2%)

Eg (eV) 3.25 3.23 3.22 3.24 3.21

3.5. Magnetic Properties

The magnetization (M) measurements were performed at room temperature as a function of the
applied magnetic field (H) for ZnO and (Co, Mn) co-doped ZnO (Figure 5). From this figure showing the
M–H curves for all the samples, an explicit ferromagnetic behavior at room temperature can be deduced.
Although the presence of ferromagnetism at room temperature in certain oxide semiconductor thin
films, nanorods, nanowires, and nanoparticles has been reported in the literature [54–57], there is no
information about (Co, Mn) co-doped ZnO grown by spray pyrolysis.

A visible decrease in magnetization was observed for (Co1%, Mn1%) ZnO, which has a similar
M-H variation to that of ZnO films. When the atomic ratio of Co or Mn dopants increases, the shape of
the M–H curve changes. The magnetization of the (Co, Mn) co-doped ZnO thin films tend to increase
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as the applied magnetic field increases, with the non-expected saturation of the magnetization values.
This behavior is comparable to those reported on the (Co, Ni), (Co, Ga), and (Co, Mn) co-doped ZnO
nanoparticles synthesized via the co-precipitation route by Vijayaprasath et al. [58], Lu et al. [2], and
Khan et al. [28], respectively.
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co-doped ZnO samples.

Moreover, several other researchers reported on the absence of room temperature ferromagnetism
for Co-doped [59] or (Co, Mn) co-doped zinc oxide [60,61]. However, another significant trend
recognized as “d0 ferromagnetism” has been observed by other research groups in some un-doped
semiconducting oxides [62–64]. The RTFM effect observed in metal oxide compounds is still a subject
of extensive debate regarding its origin, and it may strongly depend on the processing parameters,
such as the synthesis method, synthesis temperature, grain size, annealing treatment, substrate
type, film thickness, and most likely on the doping/co-doping process, as well as on dopant natures.
Khan et al. [28] suggested that the RTFM observed in the corresponding co-doped ZnO nanocrystalline
films could result from either extrinsic or intrinsic magnetism sources. Gacic et al. [65] believe that
magnetism results from the formation of certain local clusters or from some secondary phases generated
in the host matrix, but not by the transition metal atoms used as dopants. Chen et al. [64] reported that
oxygen-related vacancies may play an important role in the RTFM detected in ZnO pellets. In our
samples, the RTFM probably originates from the structural defects generated in ZnO samples grown
by spray pyrolysis.

4. Conclusions

Undoped and (Co, Mn) co-doped ZnO nanocrystalline films with various Co and Mn contents
were successfully synthesized on glass substrate by spray pyrolysis. The crystallographic structure,
surface morphology and optical and magnetic characterization of the films were studied. The XRD
study revealed the development of the (002) preferential direction according to the hexagonal wurtzite
structure of ZnO, and no collateral phases such as MnO2 or CoO2 have been observed as evinced
by the XRD and XPS studies. It has been shown that the crystallite size (D), dislocation density (δ),
and residual microstrain (ε) parameters are significantly affected by Co and Mn incorporations in
the ZnO material. The SEM has shown that the morphology and size of the nanocrystalline grains
were affected by the amounts of (Co, Mn) dopants. The optical investigations have shown a relatively
high optical transmittance, with a slight blue shift in the band gap energy (Eg) with respect to the
Co and Mn contents. The Eg varies between 3.25 and 3.21 eV, respectively, for the ZnO and (Co 2%,
Mn 2%) co-doped ZnO samples. This result suggested that the highest feature of the sprayed ZnO
nanocrystalline films can be tuned by varying the Co and Mn content in the ZnO lattice. Magnetic
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measurements have shown that the undoped and (Co, Mn) co-doped ZnO thin films exhibited room
temperature ferromagnetism. This RTFM in our samples may originate from the spray pyrolysis
technique growth. The present investigation not only shows a room temperature d0 ferromagnetism in
pure ZnO thin films, but also demonstrates a fine-tunable RTFM in (Co, Mn) co-doped ZnO diluted
magnetic semiconductor (DMS) ZnO material, which is of great interest in the field of spintronic devices.
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