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Abstract

metastasis after RT in NPC.

Background: To develop and validate an MRI-based radiomics nomogram for differentiation of cervical spine ORN
from metastasis after radiotherapy (RT) in nasopharyngeal carcinoma (NPC).

Methods: A radiomics nomogram was developed in a training set that comprised 46 NPC patients after RT with 95
cervical spine lesions (ORN, n = 51; metastasis, n = 44), and data were gathered from January 2008 to December
2012. 279 radiomics features were extracted from the axial contrast-enhanced T1-weighted image (CE-TTWI). A
radiomics signature was created by using the least absolute shrinkage and selection operator (LASSO) algorithm. A
nomogram model was developed based on the radiomics scores. The performance of the nomogram was
determined in terms of its discrimination, calibration, and clinical utility. An independent validation set contained 25
consecutive patients with 47 lesions (ORN, n = 25; metastasis, n = 22) from January 2013 to December 2015.

Results: The radiomics signature that comprised eight selected features was significantly associated with the
differentiation of cervical spine ORN and metastasis. The nomogram model demonstrated good calibration and
discrimination in the training set [AUC, 0.725; 95% confidence interval (Cl), 0.622-0.828] and the validation set (AUC,
0.720; 95% Cl, 0.573-0.867). The decision curve analysis indicated that the radiomics nomogram was clinically useful.

Conclusions: MRI-based radiomics nomogram shows potential value to differentiate cervical spine ORN from
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Background

Nasopharyngeal carcinoma (NPC) is a unique malig-
nancy with distinct geographic and racial distribution
differences. It is particularly prevalent in South-Eastern
Asia, Northern Africa, and Southern China [1]. With the
application of radiochemotherapy, the local control of
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NPC has been prominently improved [2]. Osteoradione-
crosis (ORN) is a common complication of NPC after
radiotherapy (RT), which frequently occurs in the man-
dible, maxilla, and skull base [3, 4]. Recently, RT induced
ORN has been drawn much more attention. However,
ORN of the cervical spine only has been described in
several case reports and few retrospective studies [5-10].

As the clinical treatment difference between ORN and
metastasis, antibiotic administration, sequestrectomy, or
hyperbaric oxygen therapy for ORN and RT or chemo-
therapy for bone metastasis, so it is crucial to distinguish
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ORN from metastasis [10]. Because biopsy of a cervical
spine lesion is risky, and pathologic specimens are sel-
dom available in clinical practice, MRI plays a key role
in the diagnosis of cervical spine ORN. However, cer-
vical spine ORN may be misinterpreted as bone metasta-
sis due to its similar clinical and imaging presentation
with metastasis [6, 8, 9]. Thus, the accurate diagnosis of
cervical spine ORN still remains to be challenging.

Radiomics are involved in the transformation of conven-
tional medical images (MRI, CT, and PET/CT) into
analyzable quantitative parameters extracted by data
characterization algorithms. Radiomics has been widely ap-
plied to differentiate benign and malignant tumors [11, 12],
predict tumor grading [13], lymph node metastasis [14, 15],
tumor recurrence [16, 17], and patients survival [18, 19].
Besides, MRI-based radiomics has also been used to assess
the effects of age on trabecular bone structure and osteo-
porosis [20], the spatial heterogeneity of the lumbar verte-
bral bone marrow [21], and subchondral bone alterations
of knee osteoarthritis [22]. Especially, MRI-based radiomics
features may be used to assess the early structural change
of femoral head after RT in prostate cancer [23], and
identify vertebral bone marrow metastases in patients with
malignancy [12, 24, 25].

Radiomics analysis allows the calculation of quantita-
tive texture parameters to reflect lesions’ histopatho-
logical features, which may provide potential value for
differentiating benign and malignant diseases. To our
knowledge, no comprehensive radiomics-based study
has been addressed for the differentiation of ORN from
metastasis to date. In this study, we aimed to explore the
value of MRI-based radiomics to differentiate of cervical
spine ORN from metastasis in NPC.

Methods

Patients

This retrospective study was approved by the institutional
review board at Affiliated Cancer Hospital & Institute of
Guangzhou Medical University, and the requirements of
patients’ informed consent were waived. Between January
2008 to December 2015, clinical, pathologic, and radio-
logical data of 6451 consecutive NPC patients after RT
were reviewed. A total of 123 patients that showed emer-
ging cervical spine lesions on follow-up MRI were selected
for further analysis. The inclusion criteria were as follows:
(a) underwent pre-treatment MRI and showed no abnor-
mal signal changes in the cervical spine; (b) after lesion de-
tection, histopathology assessment or MRI follow-up at
least 6 months were performed for confirming the nature
of the lesions; (c) no distant metastasis apart from cervical
spine that necessitated systemic chemotherapy, because the
chemotherapy may alter imaging features of the cervical
spine lesion; (d) no history of cervical spine trauma during
follow-up. According to the inclusion criteria, 52 patients
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were excluded due to the following reasons:(1) Pre-
treatment MRI was unavailable (7 = 8); (2) showed abnor-
mal signal changes in the cervical spine at pre-treatment
MRI (n =12); (3) insufficient MRI was performed to con-
firm the diagnosis of the cervical spine lesions (1 = 25); (4)
receive systemic chemotherapy due to distant metastasis
(n=5); (5) underwent cervical spine trauma (n=2). Pa-
tients” inclusion flowchart was displayed in Fig. 1.

Consequently, 71 patients were enrolled in this study,
46 NPC patients (ORN, 7 = 30; metastasis, n = 16) gath-
ered from January 2008 to December 2012 were assigned
to the training set, and 25 NPC patients (ORN, #n = 14;
metastasis, #=11) gathered from January 2013 to De-
cember 2015 were assigned to the validation set.

MR image acquisition, segmentation and radiomics
feature extraction

MR images were acquired using a 1.5-T system unit
(Intera Achieva; Philips). The MRI protocol included an
axial turbo spin echo (TSE) T1-weighted, an axial TSE
T2-weighted, a coronal short time inversion recovery
(STIR) sequence, and an axial and a sagittal contrast-
enhanced TSE T1-weighted sequence. Contrast-enhanced
T1WI was performed after intravenous administration of
0.1 mmol/kg gadopentetate dimeglumine (Magnevist,
Bayer Schering). Details of the MRI acquisition were
showed in Supplemental Materials (Table S1).

All lesions showed contrast-enhancement, thus axial en-
hanced T1-weighted images were retrieved from PACS in
the “.dicom” format for image feature extraction. Segmen-
tation for regions of interest (ROIs) was performed using
a software package MaZda 4.6 (URL: http://www.eletel.p.
lodz.pl/programy/mazda/). Before ROIs placement, the
gray-level of image was normalized by adjusting image in-
tensities in the range ofu + 30 (u, gray-level mean; o, gray-
level standard deviation) [26, 27]. All lesions ROIs were
manually delineated in the largest cross-sectional area of
lesion (Fig. 2a). In total, 279 radiomics features derived
from six statistical image descriptors (Histogram, Grey-
level co-occurrence matrix, Run-length matrix, Absolute
gradient, Autoregressive model and Wavelet) were ex-
tracted (Fig. 2)b. Details of radiomics feature information
are in the Supplementary Data (Table S2).

The inter-observer reproducibility of radiomics feature
extraction was estimated using interclass correlation co-
efficients (ICC). The ROI segmentation was performed
independently by two radiologists experienced in skel-
eton MRI interpretation (J.X.Y. and B.G.L. with 10 years
of experience). An ICC value >0.75 indicates good
agreement of the feature extraction [14, 28].

Feature selection and radiomics nomogram development
A radiomics nomogram was constructed in the training set.
To identify the most discriminating radiomics feature for
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123 patients had cervical spine lesions at follow-up MRI after RT
between January 2008 and December 2015

Exclusion:

(1) Pre-treatment MRI was unavailable (n = 8)

(2) Abnormal signal at pre-treatment MRI (n = 12)
(3) Diagnosis of lesion can not be confirmed (n = 25)
(4) Systemic chemotherapy (n = 5)

(5) Cervical spine trauma (n = 2)

| Patients included (n = 71) |

| Training set ( n = 46) | | Validation set (n = 25) |

|ORN(n=25)| |Metastasis (n=21)| | ORN (n= l4)| |Metastasis (n= 11)|

Fig. 1 Flowchart of the study population

A Image segmentation B Feature extraction

279 radiomics feature were extracted:
(1) Histogram (n =9)
2) Grey-ievel co-occurrence matrix (n = 220)
(3) Run-length matrix (n = 20)
9 (4) Absolute gradient (n =5)
(5) Autoregressive model (n = 5)

(6) Wavelet (n = 20)
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Fig. 2 The workflow of the radiomics signature development. a the image derived from our hospital, and patients’ informed consent was waived
by the institutional review board, a region of interest (ROI) was manually delineated in the largest cross-sectional area of the lesion at CE-TTW
image using a software package MaZda 4.6. b Feature extraction, a total of 279 radiomics features derived from six statistical image descriptors
were extracted. ¢ Radiomics nomogram development, features with ICC values greater than 0.75 were selected for subsequent procedure, the
remaining features were reduced by using a combination feature selection algorithm of FCM, and then a radiomics nomogram was constructed
using the LASSO algorithm
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differentiating cervical spine ORN from metastasis, feature
selection was performed before radiomics signature devel-
opment. ICC was calculated for the 279 radiomics features,
and those features that showed ICC value greater than 0.75
were selected for subsequent procedure. Then the
remaining features were reduced by using a combination
feature selection algorithm (combination of fisher coeffi-
cient [FC], classification error probability combined with
average correlation coefficients (CEP+ACC) and mutual in-
formation [MI]; FCM) that comprised 30 radiomics fea-
tures with the most discriminative ability [27, 29].

The least absolute shrinkage and selection operator
(LASSO) logistic regression algorithm usingl0-fold cross-
validation based on minimum criteria was adopted for final
feature selection for radiomics nomogram development
[15, 28]. A formula was created using a linear combination
of the selected features that were weighted by their respect-
ive LASSO coefficients; then a radiomics nomogram was
constructed based on the radiomics score calculated by for-
mula that reflected the possibility of ORN. The procedure
of feature selection and radiomics nomogram development
was showed in Fig. 2c. The calibration of the nomogram
was assessed using a calibration curve, and the Hosmer—
Lemeshow test was performed to assess the goodness-of-fit
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of the nomogram [30]. The diagnostic efficiency of the
nomogram for discrimination of ORN and metastasis was
assessed by ROC analysis in the training set, and the diag-
nostic sensitivity and specificity was also calculated.

Validation of the radiomics nomogram

Validation of the radiomics nomogram was accom-
plished with the validation set. A radiomics score was
calculated for each lesion in the validation set using the
formula constructed in the training set. The diagnostic
efficiency and calibration of the nomogram model were
also assessed in the validation set.

Clinical utility of the radiomics nomogram

To assess the clinical use of the nomogram, we used
the decision curve analysis (DCA) to calculate the
net benefits for a range of threshold probabilities in
the combined training and validation set. The net
benefit is identified as the proportion of true posi-
tives minus the proportion of false positives,
weighted by the relative harm of false-positive and
false-negative results [31].

Fig. 3 Images in a patient after radiotherapy that was diagnosed with cervical spine ORN by surgery pathology, these images derived from our
hospital and patients’ informed consent were waived by the institutional review board. a Sagittal T1-weighted image shows hypointensity
change in C6, C7 vertebral body, and paravertebral soft tissue, and the spinal canal is pressed (white arrow). b Sagittal FS T2-weighted image
shows hyperintensity change in C6, C7 vertebral body and paravertebral soft tissue, and the spinal canal (white arrow) and prevertebral
endorhachis are pressed (red arrow). ¢ Axial CE-TTW image shows marked enhancement of C6 alike soft mass, and the lesion protrudes into the
spinal canal (white arrow). d Pathological assessment shows inflammatory cell infiltration was identified in the lesion, without malignancy




Zhong et al. BMC Medical Imaging (2020) 20:104

Reference standard

The pathological assessment was performed for only
one ORN patient. The reference standard without
pathological assessment was based on the MRI and
clinical follow-up for confirming the diagnosis of the
lesions [9, 10]. Lesions with progressive enlargement
that presented as soft-tissue masses were identified as
bone metastasis. Lesions that shrank or remained
stable on MRI for more than 6 months without fur-
ther treatment were interpreted as ORN. If a lesion’s
diagnosis could not be identified based on the follow-
up procedure, it would be eliminated.

Statistical analysis

LASSO logistic regression was performed by using R
statistical software (version 3.3.1, http://www.rproject.
org/), the “glmnet” package was adopted. Nomogram
construction and calibration plots were performed using
the “rms” package, and the Hosmer—Lemeshow test was
conducted using the “generalhoslem” package. DCA was
performed using the “dca.R.” Other statistical analysis
was performed using the SPSS 16.0 (SPSS Inc., Chicago,
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IL, USA), the overall performance was determined by
assessing the area under the receiver operating charac-
teristic (ROC) curve (AUC). Mann—Whitney U test and
Pearson chi-square test (or Fisher test) were used for
continuous and categorical variables, respectively. Statis-
tical tests; P < 0.05 indicated statistical significance.

Results

Patient characteristics

Only one patient underwent cervical spine surgery and
diagnosed as ORN (Fig. 3), the diagnosis of the other 70
patients was based on the MRI follow-up process (Fig. 4).
The training set showed similar baseline clinical charac-
teristics with that of validation cohorts (P > 0.05), except
for the frequency of cervical lymphadenopathy (P <
0.001). The patients’ detailed characteristics are summa-
rized in Table 1.

Number and locations of ORN and metastasis

The number and locations of lesions are shown in
Table 2. Based on the reference standard, a total of 95
cervical spine lesions were identified in training set

muscle edema (red arrow) has significantly shrunken

Fig. 4 Images in a patient who was diagnosed with ORN of the cervical spine after radiotherapy for NPC, these images derived from our hospital,
and patients’ informed consent was waived by the institutional review board. a Coronal FS T2-weighted image shows hyperintensity in the left
aspect of C1 (white arrow) and shows muscle edema in the left neck (red arrow). b Axial T2W image shows hyperintensity in the left aspect of C1
(white arrow) and paravertebral muscle edema (red arrow). ¢ Axial enhanced T1W image shows irregular endplate destruction and enhancement
in the left aspect of C1 (white arrow), and shows marked enhancement in bilateral paravertebral muscles (red arrow). d At MRI follow-up
examination after 10 months, the Axial T2W image shows the area of hyperintensity in the left aspect of C1 (white arrow) and paravertebral

~
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Table 1 Characteristics of patients in training set and validation set
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Characteristics Training set (n = 46) P value Validation set (n = 25) P value
ORN Metastasis ORN Metastasis
Number of patients (n) 25 (54.3%) 21 (45.7%) 14 (56.0%) 11 (44.0%)
Gender
Male 19 (76.0%) 15 (71.4%) 0.725 11 (78.6%) 8 (72.7%) 0.739
Female 6 (24.4%) 6 (28.6%) 3 (21.4%) 3 (27.3%)
Age (years) 500+108 491+117 0.790 51.8+10.7 489+ 105 0.735
Over stage®
I 2 (8.0%) 1 (4.8%) 0.886 1(7.1%) 1(9.1%) 0.901
Il 10 (40.0%) 7 (33.3%) 4 (28.6%) 2 (18.2%)
Il 8 (32.0%) 6 (28.6%) 6 (42.9%) 4 (36.4%)
VA 3 (12.0%) 4 (19.0%) 2 (14.3%) 2 (18.2%)
IVB 2 (8.0%) 3 (14.3%) 1(7.1%) 2 (18.2%)
Involvement multiple lesions 19 (76.0%) 16 (76.2%) 10 (71.4%) 9 (81.8%)
Overall RT dose (Gy) 695+123 674+£178 0617 732+£96 73.0£109 0.637
Concurrent chemotherapy 22 (88.0%) 20 (95.2%) 0373 13 (92.9%) 10 (90.9%) 0476
Interval time from first RT to lesion detection (mouth) 36.1+263 413+256 0498 3134225 3214162 0.060
Cervical \ymphadenopathyb 2 (8.0%) 7 (33.3%) 0.033 0 (0.0%) 4 (36.4%) 0.006
Radiation-induced brain necrosis 2 (8.0%) 1 (4.8%) 0.654 1 (7.1%) 0 (0%) 0.275

2, According to the 7th UICC/AJCC staging system; °, short axis larger than 1 cm on axial images; ORN Osteoradionecrosis;

RT Radiotherapy

(ORN, # =51; metastasis, n =44), and 47 lesions were
identified in validation set (ORN, # = 25; metastasis, 7 =
22). ORN most frequently occurred in the upper cervical
spine (C1/C2) (Fig. 4), which accounted for 47.1% (24/
51) of all ORNSs in the training set and 13/25 (52.0%) of
all ORNSs in the validation set.

Radiomics nomogram model construction

A radiomics nomogram was developed in the train-
ing set. In total, 279 radiomics features were ex-
tracted from CE-T1W images. Of these features, 186
features showed good agreement (ICC>0.75) were

Table 2 Number and locations of the cervical spine ORN and
metastasis in training set and validation set

Locations Training set Validation set
ORN Metastasis ORN Metastasis

1 12 3 5 2

2 13 5 8 3

a3 6 8 4 4

c4 5 6 2 4

cs 8 10 3 5

c6 5 8 3 3

7 2 4 0 1

Total 51 44 25 22

ORN Osteoradionecrosis;

selected for further reduction using the FCM feature
selection algorithm. After feature selection, 30 radio-
mics features were remained for subsequent LASSO
algorithm analysis, and these features from the two
measurers were averaged for the subsequent analysis.
Using LASSO logistic regression analysis, eight fea-
tures were determined for the construction of the
radiomics signature (Fig. 5a and b), and 87.5% (7/8)
of the features derived from GLCM, these features
and their coefficients were shown in Table 3. Radio-
mics score was calculated for each lesion by using a
formula resulting from the eight features weighted
by their coefficients. The formula was expressed as
follow:

Y =1.29 + (0.0000324 x Vertl RLNonUni)

-10.289 x S (5, -5)DifVarnc]

- [0.00964 x S (5, 5)SumOfSqs]
-[0.00186 x S (5,0) SumOfSqs]
-10.267 x S(4,4)SumOfSqs]
-10.00215 x S(3, - 3)SumOfSqs|

- [0.00301 x S(0,2)SumOfSqs]
+[0.0414 x S(1,0)SumVarnc]|.
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Performance and validation of the radiomics nomogram
Based on the radiomics scores in the training set, a
nomogram was constructed (Fig. 6a), and the calibration

Table 3 Calculation formula for radiomics signature curve of the nomogram for both training set and valid-
Parameters Textural groups Coefficients ~ ation set were plotted (Fig. 6b and c). Using ROC ana-
Intercept 129 lysis in the training set, the nomogram model showed
Vert_RLNonUNI Run-length matrix S g9od d1§cr1m1natory ability in ‘the fhfferentlatlon of cer-
_ vical spine ORN and metastasis, with the AUC of 0.725
SGroitvarc GLom ~0.289 (95% [CI], 0.622-0.828) (Fig. 5¢), the sensitivity of 84.3%
S(5,5)5umOfsas GLCM —0.00964 (43/51), the specificity of 61.4% (27/44). Application of
5(5,05umOfSgs GLCM —0.00186 the model in the validation set still showed good diag-
S(4,4)SumOfSas GLCM ~0.267 nostic efficiency, with the AUC of 0.720 (95% [CI],
S(3,-3)SumOfsqgs GLCM ~0.00215 0573—0867) (Flg Sd), the sensitivity of 80.0% (20/25),
5(02)5um0fSqs GLCM 000301 the specificity (?f 61‘L.0% (14/22). The dlagno‘st}c perform-
ance of the radiomics nomogram in the training and val-

S(1,0)SumVarnc GLCM 0.0414

idation sets as shown in Table 4.
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Clinical use of radiomics nomogram

The decision curve analysis (DCA) for the radiomics
nomogram is presented in Fig. 7. The DCA showed that
if the threshold probability of a lesion for diagnosis as
ORN is >12%, using the radiomics nomogram to diag-
nose ORN adds net benefit than either the treat-all-
patients scheme or the treat-none scheme.

Discussion

In this study, we have developed and validated an MRI-
Based radiomics nomogram for the differentiation of
cervical spine ORN from metastasis in patients with
NPC after RT. We found that the radiomics nomogram
showed good calibration and discrimination, with an AUC
of 0.725 in the training set and 0.720 in the validation set,

respectively. Our results indicated that MRI-Based radio-
mics may be used as a noninvasive tool for differentiating
cervical spine ORN from metastasis after RT.

NPC is one of the highly invasive and metastatic head
and neck cancer, and cervical spine ORN is a serious
complication in NPC after RT [4, 5]. Accurately diag-
nose cervical spine ORN and distinguish it from bone
metastasis is quite important, because an improper diag-
nosis may create excessive and hurtful chemoradiother-
apy for patients. Recently, MRI has been recommended
as a very useful technique for the identification of benign
and malignant vertebral diseases [32, 33]. There are sev-
eral studies have clarified the value of MRI for diagnosis
of ORN, displayed that cervical spine ORN could be
misdiagnosed as bone metastasis, because cervical ORN

Table 4 Diagnostic performance of radiomics mode in the training and validation sets

Variables Az (95%Cl)

Sensitivity

Specificity Accuracy

0.725 (0.622,0.828)
0.720 (0.573,0.867)

Training set

Validation set

84.3% (43/51),
80.0% (20/25)

73.7% (70/95)
72.3% (34/47)

61.4% (27/44)
64.0% (14/22)
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could show soft-tissue masses and present abnormal en-
hancement [6, 9, 10].

Recently, radiomics features have shown great prospect
in the identification of malignant and benign bone marrow
diseases, including differentiation of primary malignant and
benign bone tumors [12], discrimination of benign and ma-
lignant vertebral compression fractures [25], and differenti-
ation metastatic and completely responded sclerotic bone
lesion [24]. Particularly, a recent study demonstrated that
MRI-based radiomics features could be used to assess the
early structural change of femoral head after RT and may
show potential value to predict RT-induced femoral frac-
tures [23]. However, the value of radiomics features in the
characterization of ORN and metastasis is still unclear. In
this study, we found eight radiomics features based on CE-
T1WI were significantly associated with the differentiation
of cervical spine ORN and metastasis. Meanwhile, in line
with previous studies performed in other fields [12, 26, 28],
we found these discriminative features that selected to dif-
ferentiate ORN and metastasis were most frequently de-
rived from GLCM categories.

In the present study, we firstly explored the perform-
ance of an MRI-based radiomics nomogram for differen-
tiation of cervical spine ORN from metastasis. We found
that the radiomics nomogram constructed in the train-
ing set showed good discrimination efficiency, with an
AUC value of 0.725, the sensitivity of 84.3% and the spe-
cificity of 61.4%. Then, we verified the value of this
radiomics nomogram in the validation set and still
showed good discrimination, with an AUC of 0.720, sen-
sitivity of 80.0%, specificity of 64.0%. Thus, MRI-based
radiomics may be a non-invasive imaging biomarker for
differentiating cervical spine ORN from metastasis after
RT. The results supported previous studies in which
MRI-based radiomics could be applied to differentiate
vertebral metastasis from benign lesions [25, 34].

The major issue for the clinical application of the
nomogram is based on the need to interpret individual
net benefits. Nevertheless, the discrimination efficiency
and calibration may not acquire the clinical conse-
quences of a particular level of discrimination or degree
of miscalibration [35, 36]. To address this issue, we



Zhong et al. BMC Medical Imaging (2020) 20:104

assessed the clinical use of the nomogram by using
decision curve analysis (DCA) in the combined train-
ing and validation set. This new strategy offers insight
into clinical outcomes based on the threshold prob-
ability, from which the net benefit could be obtained
[14, 28]. In this study, DCA indicated that if the
threshold probability of a lesion for diagnosis as ORN
is >12%, in this case, using the radiomics nomogram
to diagnose ORN adds net benefit than either the
treat-all-patients scheme or the treat-none scheme. In
line with a previous study showed that the threshold
probability was >10% for prediction of lymph node
metastasis in colorectal cancer [15].

Our study had some limitations. First, this was a retro-
spective study performed in a single center with a rela-
tively small sample size. Thus, multicenter validation is
needed to achieve strong evidence for its clinical applica-
tion. Second, as described in previous studies [6, 9, 10],
pathologic confirmation for cervical spine ORN and
bone metastasis was not available attributed to the rela-
tively high risks related to biopsy of the cervical spine
(eg, injury to the vertebral artery or the cervical spinal
cord). Third, only radiomics features are selected to con-
struct a nomogram model, because the object of this
study was cervical spine lesion, considering the fact that
patients could involve single or multiple lesions, include
patients’ clinical factors could create selection bias.

Conclusions

MRI-based radiomics nomogram may serve as a nonin-
vasive visual diagnostic tool for differentiation cervical
spine ORN from metastasis in patients with NPC after
RT. Multicenter external validation is necessary to ac-
quire high-level evidence for its clinical application.
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