Skip to main content
. 2020 Aug 14;10(8):1596. doi: 10.3390/nano10081596

Table 4.

Operative conditions and efficiency for H2S-removal over various catalysts.

Catalysts NTP Technology Operative Conditions H2S Conversion (%) Ref.
CdS/Al2O3 DBD 10 kHz, 6.12 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
90.9 [66]
ZnS/Al2O3 DBD 10 kHz, 6.12 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
82.9 [66]
Zn0.4Cd0.6S/Al2O3 DBD 10 kHz, 6.12 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
97.9 [66]
Zn0.6Cd0.4S/Al2O3 DBD 10 kHz, 6.12 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
100 [68]
Zn0.2Cd0.8S/Al2O3 DBD 10 kHz, 6.12 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
92.8 [68]
Zn0.8Cd0.2S/Al2O3 DBD 10 kHz, 6.12 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
84.9 [68]
Cr0.20–ZnS/Al2O3 DBD 10 kHz, 5.57 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
100 [69]
Cr0.25–ZnS/Al2O3 DBD 10 kHz, 5.57 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
89.7 [69]
Cr0.15–ZnS/Al2O3 DBD 10 kHz, 5.57 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
87.4 [69]
Cr0.10–ZnS/Al2O3 DBD 10 kHz, 5.57 eV/H2
20% O2 in Ar
Reacting flow rate: 30 mL min−1
1 atm, 120 °C
81.8 [69]
1-wt% MoS2/Al2O3 DBD 10 kHz, 95 kJ·L−1
H2S/CO2 ratio = 20:15
Reacting flow rate: 35 mL min−1
1 atm, 120 °C
94 [70]
5-wt% MoS2/Al2O3 DBD 10 kHz, 95 kJ·L−1
H2S/CO2 ratio = 20:15
Reacting flow rate: 35 mL min−1
1 atm, 120 °C
99 [70]
10-wt% MoS2/Al2O3 DBD 10 kHz, 95 kJ·L−1
H2S/CO2 ratio = 20:15
Reacting flow rate: 35 mL min−1
1 atm, 120 °C
97 [70]
15-wt% MoS2/Al2O3 DBD 10 kHz, 95 kJ·L−1
H2S/CO2 ratio = 20:15
Reacting flow rate: 35 mL·min−1
1 atm, 120 °C
92 [70]
3-wt% MoOx/Al2O3 DBD 10 kHz, 1 W
5% H2S/Ar
Reacting flow rate: 150 mL min−1
1 atm, 160 °C
48 [71]
5-wt% MoOx/Al2O3 DBD 10 kHz, 1 W
5% H2S/Ar
Reacting flow rate: 150 mL min−1
1 atm, 160 °C
52 [71]
7-wt% MoOx/Al2O3 DBD 10 kHz, 1 W
5% H2S/Ar
Reacting flow rate: 150 mL min−1
1 atm, 160 °C
45 [71]
Fe/WSAC
Treated for 10 min at 6.8 kV
DBD 7.8 kHz, 6.8 kV
500 ppm of H2S in N2
Reacting flow rate: 60 mL min−1
1 atm, 60 °C
100 for 270 min [72]
Fe/WSAC
Treated for 10 min at 6.8 kV with a gas gap of 5.5 mm and a dielectric thickness of 1.5 mm
DBD 7.8 kHz, 6.8 kV
500 ppm of H2S in N2
Reacting flow rate: 60 mL min−1
1 atm, 60 °C
100 for 210 min [73]
La0.9MnO3 DBD 10 kHz, 593.7 J·L−1
100 ppm of H2S in air
Reacting flow rate: 2 L min−1
1 atm, 80 °C
96.4 [74]
Mn2O3 DBD 50 Hz, 22 kV
200 mg m−3 H2S, 1200-mg·m−3 O3 in air
Reacting flow rate: 0.2 m3 h−1
100 [75]
Ag2O DBD 50 Hz, 22 kV
200 mg m−3 H2S, 1200-mg m−3 O3 in air
Reacting flow rate: 0.2 m3 h−1
98 [75]
CuO DBD 50 Hz, 22 kV
200 mg m−3 H2S, 1200-mg·m−3 O3 in air
Reacting flow rate: 0.2 m3 h−1
82 [75]
Fe2O3 DBD 50 Hz, 22 kV
200 mg m−3 H2S, 1200-mg m−3 O3 in air
Reacting flow rate: 0.2 m3 h−1
75 [75]