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INTRODUCTION

Diagnostic imaging plays a central role in the evaluation and management of oncologic 

disease involving the musculoskeletal system (Figs. 1–5). Standard imaging modalities used 

in current practice include conventional radiography, computed tomography (CT) scanning, 

Magnetic resonance imaging (MRI), and skeletal scintigraphy.1,2 In recent years, PET 

imaging has also emerged as a complementary modality in musculoskeletal imaging, using 

various radiopharmaceutical agents to improve detection and characterization of the 

pathophysiology of disease.3 Fusion of PET-acquired images with CT scans or MRI has 

significantly improved the overall diagnostic accuracy.4 The objective of this article is to 

review the current role of PET/CT scans and PET/MRI hybrid imaging in the evaluation of 

primary malignancies of the skeletal system, with an emphasis on clinical usefulness, 

imaging findings, and current limitations.
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ROLE OF HYBRID IMAGING IN BONE MALIGNANCY

Viable malignant primary bone tumors are usually 18F-fluorodeoxyglucose (FDG) avid.4,5 

PET imaging using FDG produces images that allow for the diagnosis of these neoplasms, 

initial staging, selection of biopsy sites, evaluation of treatment response, and assessment for 

tumor recurrence.3,4,6,7 When CT images are contemporaneously acquired, the PET and CT 

data are spatially co-registered, allowing for significantly improved localization of metabolic 

abnormalities. Integrated PET/CT devices allow for reduced scanning time and improved 

PET image quality and quantitation using CT attenuation correction reconstruction 

techniques.6

In the FDG PET component of these studies, lesions are assessed primarily based on their 

maximum standardized uptake value (SUVmax) and graded accordingly.8 As methods 

evolve, metabolic activity will become a useful marker for differentiating between benign 

and malignant lesions. Moreover, dual time point imaging, which involves measuring the 

SUVmax at multiple sequential intervals after radiotracer injection, may also be beneficial in 

differentiating benign lesions from malignant processes.9–11

Recently, interest in hybrid PET/MRI has grown, particularly in evaluation of the 

musculoskeletal system. This new modality couples the physiologic information acquired 

from PET with the unparalleled soft tissue resolution and contrast of MRI to provide more 

accurate diagnoses.12 In addition, MRI can be used to provide additional functional 

information using perfusion techniques and diffusion-weighted imaging.13–15 With hybrid 

PET/MRI, a patient’s oncologic disease can potentially be fully characterized and staged in 

a single imaging session.14

The morphologic characteristics of tumors are critical in making the correct diagnosis.2,7,16 

The MRI and CT components of hybrid imaging provide important morphologic 

information that PET scans alone cannot provide and, therefore, it is essential that the 

interpreting radiologist be familiar with the conventional imaging appearance of bone 

tumors.9,10 The morphologic characteristics of lesions can be preliminarily evaluated on the 

whole-body CT or MRI portion of the examination, which is obtained contemporaneously 

with the PET dataset, and then further correlated with dedicated small field-of-view MRI 

sequences or other anatomic imaging as necessary.2,4,17

CLINICAL APPLICATIONS

Osteosarcoma

Osteosarcoma is the most common primary malignant bone tumor.18,19 Accurate initial 

staging and restaging after treatment is critical to patient care. Prognosis strongly depends 

on tumor size and the presence of metastatic disease at initial presentation. To put this into 

perspective, the 5-year survival decreases drastically from 70.1% in localized disease to 

31.6% in the presence of metastasis.20–24 Response to preoperative neoadjuvant 

chemotherapy is also a very important prognostic factor for disease-free survival.25,26
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Imaging plays a key role in the management of osteosarcoma, with the initial diagnosis 

frequently made with conventional radiography, and with local staging performed with MRI 

to assess local soft tissue extension, bone marrow infiltration, and the presence of osseous 

skip lesions.20,21 FDG PET scanning has a promising role in the management of 

osteosarcoma given its ability to help distinguish viable primary and recurrent neoplasm 

from successfully treated disease and benign entities.

Like most other malignant tumors, osteosarcoma has an increased rate of glycolysis and 

consequently demonstrates increased uptake of FDG.4 Therefore, FDG PET readily 

demonstrates local and systemic sites of activity that correlate well with disease severity.
27,28 FDG PET/CT scanning is highly useful for the evaluation of osteosarcoma, with a 

sensitivity of nearly 100% in initial staging, 85.7% in locally recurrent disease, and 95% in 

identifying distant metastasis.29,30 Although PET/CT scanning has some limitations in the 

evaluation of pulmonary and lymph node metastases, it has been shown to have superior 

accuracy over bone scans in the detection of osseous dissemination.29,30

One of the main strengths of FDG PET scanning in osteosarcoma is in determining the 

metabolic response to treatment. SUV measurements have been found to parallel 

histopathologic findings, with high SUV values correlating with increased mitotic counts 

and lower values corresponding with areas of tumor necrosis. For example, Cheon and 

colleagues25 and Ye and colleagues26 demonstrated that a reduction in SUVmax after 

chemotherapy correlates well with degree of tumor necrosis and subsequent patient 

outcome. In a recent study, Davis and colleagues27 followed 34 patients with osteosarcoma 

and surveyed SUVmax on routine posttreatment surveillance for up to 10 weeks. The percent 

change of SUVmax from baseline to week 10 served as a metabolic predictor that correlated 

well with histologic response to therapy. A separate metaanalysis of 8 studies comprising 

178 patients with osteosarcoma found that a postchemotherapy SUVmax of 2.5 or less and a 

ratio of SUVmax posttherapy to SUVmax pretherapy of 0.5 or less was a valuable predictor of 

histologic response to chemotherapy.31 In another prospective study assessing therapeutic 

response in pediatric osteosarcomas, FDG PET scanning was also able to help discriminate 

responders from nonresponders.31 Hence, PET/CT scanning may play an important role in 

the early identification of patients who are not responding to treatment and may benefit from 

a change in therapy.

FDG PET scanning also holds promise in its ability to distinguish posttherapy changes from 

disease recurrence, a challenging but important task. Studies have shown that FDG-PET can 

differentiate posttreatment changes from disease recurrence with greater sensitivity and 

specificity than other imaging modalities.32 In particular, the degree of FDG uptake as 

calculated by SUVmax may be helpful in distinguishing viable osteosarcoma from treated 

disease.24 Although there remain some overlap in ranges of SUV values between malignant 

and nonmalignant processes, work continues to refine measurement techniques and 

guidelines to improve the specificity of FDG PET scanning.28,33

Although the value of PET/MRI for the staging and follow-up of osteosarcoma has not yet 

been well-established, some promising early results have been observed.34,35 A study by 

Eiber and colleagues36 compared the performance of PET/MRI and PET/CT scanning for 
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the detection of bone lesions. These investigators found that anatomic localization and 

allocation of PET-positive lesions was superior on PET/MRI compared with PET/CT 

scanning, whereas detection and characterization was found to be on par with PET/CT 

scanning, possibly owing to inclusion of primarily FDG-avid lesions. The SUVmean in bone 

lesions was on average 12.4% ± 15.5% lower for PET/MRI than for PET/CT scanning, 

although this difference between modalities was not statistically significant.

At present, MRI is the preferred imaging modality for local tumor staging of osteosarcoma. 

PET scanning lends itself well to nodal staging, whereas PET scanning and MRI together 

are highly accurate for the detection of metastases.34 Hence, whole body PET/MRI with 

concurrent diagnostic MRI imaging of the primary site of osteosarcoma can allow for 

complete TNM staging in a single session, providing convenience and resource savings as 

well as decreasing radiation exposure. In addition, the PET component can guide diagnostic 

biopsies and in turn allow for correct staging and grading, with subsequent impact on 

treatment selection and outcome.16,34

Ewing’s Sarcoma

Ewing’s sarcoma is the second most common primary malignancy of bone, with a peak 

incidence in children and adolescents aged 4 to 15 years. FDG PET/CT scanning has 

become a valuable imaging modality in staging, restaging, and assessment of treatment 

response in patients with Ewing’s sarcoma, largely owing to its ability to provide metabolic 

information that is, not feasible with other modalities.37–39

Similar to the case with osteosarcoma, MRI is mainstay imaging in staging of Ewing’s 

sarcoma. However, both MRI and CT imaging are limited in distinguishing viable from 

nonviable neoplastic tissues.38,40 FDG PET scanning has been shown to detect tumor 

progression and regression even before morphologic alterations are seen on conventional 

imaging modalities, based on differences in intensity of FDG uptake.35,37,41 PET/CT 

scanning in particular is already in use for this purpose in Ewing’s sarcoma, and is able to 

differentiate viable from nonviable tumor with high sensitivity and specificity.42 Typical 

viable Ewing’s sarcoma demonstrates SUVs ranging from 3 to 10, with higher values 

correlating well with higher tumor grade. PET/CT scanning is also highly efficacious in 

detecting lymph node and bone metastases, with sensitivity values of 90% to 98% compared 

with 25% to 83% for conventional imaging methods, with good specificity as well (97% for 

PET/CT scanning vs 78% for conventional imaging).41,43 The exception was in the detection 

of lung metastases, which was more accurate with CT scanning.41

Besides providing prognostic data, findings on PET/CT scanning during and after treatment 

can also guide decision making about continuing or altering therapy in patients with Ewing’s 

sarcoma. For example, a study by Bredella and colleagues44 demonstrated that a 30% 

decrease or increase in SUV reliably distinguished between adequate response to therapy 

and progression of disease, respectively. In addition, Hawkins and colleagues45 showed that 

patients with tumors displaying a SUVmax of less than 2.5 after neoadjuvant chemotherapy 

demonstrated an improvement in 4-year progression-free survival compared with those with 

higher SUVmax (72% vs 27%, respectively) and that this effect was independent of initial 

disease stage.
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A major limitation of PET/CT scanning in the pediatric population predominantly affected 

by Ewing’s sarcoma is the relatively high radiation dose, particularly compared with whole 

body MRI, which does not involve ionizing radiation.39 The introduction of whole-body 

PET/MRI allows for simultaneous regional staging and whole body evaluation for metastatic 

disease.6,12 PET/MRI is especially helpful in overcoming some of the limitations of PET/CT 

scanning, specifically in the evaluation of disease in organs with relatively high background 

activity such as the brain, liver, kidney, and spinal canal.7,13,14 PET/MRI may soon become 

the imaging modality of choice for staging of Ewing’s sarcoma.

Chondrosarcoma

The diagnosis of chondrosarcoma can be challenging owing to the diverse nature of chondral 

neoplasms, the significant overlap with benign entities on conventional imaging, and 

difficulties in accurate sampling on tissue biopsy owing to tumor heterogeneity. FDG PET 

scanning was initially dismissed as an unreliable modality in the evaluation of chondroid 

neoplasms, but recent literature has demonstrated promising results. Generally, benign 

chondroid lesions such as enchondromas and osteochondromas are not FDG avid (SUVmax 

< 2). In contrast, most chondrosarcomas demonstrate low-grade FDG avidity (SUVmax > 2), 

with variable metabolic activity seen ranging from SUVmax of 1.3 to 12.4. SUVmax has been 

shown to correlate with tumor grade.46–49 Unfortunately, there is significant overlap in 

SUVmax values between benign and malignant chondroid lesions, with SUVmax values 

between 2.0 and 4.5 having particularly poor specificity, and with up to 46% of lesions 

reported in a recent metaanalysis having SUVmax values in this range. However, recent large 

studies have demonstrated that, overall, when using an SUVmax threshold of 2.2 to 2.3, the 

sensitivity and specificity exceeds 90% in differentiating between benign/low-grade lesions 

from high-grade chondroid neoplasms.46–51 Classifying lesions between benign/low-grade 

lesions and high-grade neoplasms helps clinicians to decide whether observation or active 

treatment is the optimal treatment strategy.47,48

The heterogeneity of chondroid tumors poses an ever-present risk of undersampling during 

biopsy and difficulty in obtaining appropriate excisional margins. FDG PET scanning 

ameliorates this problem by providing direct visual and quantitative assessment of tumor 

metabolic activity and extent. By targeting regions for biopsy with the greatest metabolic 

activity, radiologists and surgeons can reduce core needle biopsy sampling error, and 

consequently, the rate of false-negative biopsies. Subsequent correlation of imaging findings 

with histopathology also helps eliminate the potential error of undersampling.46,50,51 In 

addition, as in other sarcomas, whole body imaging in PET/CT scanning can be used for 

initial staging of chondrosarcoma and as an adjunct in postoperative imaging surveillance.52

There is a paucity of data on the use of PET/MRI in chondrosarcoma. One study by Purohit 

and colleagues53 assessed laryngeal chondrosarcomas using PET/MRI, showing that 

PET/MRI successfully highlights regions of hypermetabolic dedifferentiated neoplasm (with 

concurrent low apparent diffusion coefficient values on diffusion-weighted imaging MRI 

sequences) in a background of hypo-metabolic, low-grade chondroid tissue. These 

investigators concluded that PET/MRI can provide additional functional information to 

supplement the morphologic mapping and histopathology of these tumors. Given the 

Behzadi et al. Page 5

PET Clin. Author manuscript; available in PMC 2020 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



importance of accurate characterization of these heterogeneous lesions, it is expected that 

future research will highlight a potential role for PET/MRI in the management of 

chondrosarcoma.

Primary Bone Lymphoma

Primary bone lymphoma is an extranodal lymphoma that arises from the medullary cavity 

and manifests as a localized solitary lesion. Primary bone lymphoma is relatively 

uncommon, representing only 1% of all malignant lymphomas.54,55,56 The tumor favors 

sites of persistent bone marrow formation, such as the femur, pelvis, tibia, fibula, and 

humerus.54,56,57

The role of FDG PET/CT scanning in the diagnosis, staging, and restaging of Hodgkin 

disease and non-Hodgkin lymphoma is well-established.58,59 Accurate staging is essential 

for treatment planning and provides important prognostic information. PET/CT scanning can 

detect lymphoma with 90% sensitivity and 91% specificity, although overall positive 

predictive value is low, especially for disease progression.59

The usual appearance of primary bone lymphoma on FDG PET scanning is as a focal 

hypermetabolic lesion. There are few reports on the initial diagnosis of primary bone 

lymphomas using FDG PET or PET/CT scanning.56,60,61 However, studies have 

demonstrated PET/CT scanning to be an effective modality for evaluation after therapy, 

particularly in documenting treatment response. In patients who respond successfully to 

treatment, FDG PET scanning will show a rapid decline in FDG uptake compared with 

baseline imaging. Similarly, any newly identified FDG-avid lesions are deemed to be 

recurrences. Hence, PET/CT scanning has the potential to assist in the management of 

patients with primary bone lymphoma.62,63

PET/MRI has shown encouraging results in early studies.64,65 Sensitivity for assessment of 

disease burden is similar in PET/MRI and PET/CT scanning. In addition, the added 

information from diagnostic MRI sequences can help to characterize changes in the cellular 

content of lesions, particularly using diffusion-weighted imaging sequences and MRI 

spectroscopy.64,66

Multiple Myeloma

Multiple myeloma (MM) is a debilitating malignancy that is part of a spectrum of diseases 

ranging from monoclonal gammopathy of unknown significance to plasma cell leukemia.67 

The use of conventional radiography has traditionally been used in cases of newly diagnosed 

or relapsed myeloma, with the whole body skeletal survey used to assess extent of disease.68 

Radiographs typically demonstrate focal osteolytic lesions, but have a lower sensitivity in 

diffuse osseous involvement. They also do not provide any indication of disease activity 

except by monitoring changes over time.

FDG PET/CT scanning has been shown to have high sensitivity, specificity, and prognostic 

value in patients with MM, superior to conventional radiographs and comparable with MRI, 

providing valuable prognostic and therapy assessment information for the management of 

patients.69 In a systematic review consisting of almost 800 patients with MM, FDG PET/CT 
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scanning had a sensitivity and specificity of 80% to 90% and 80% to 100%, respectively, in 

the detection of osteolytic lesions.70 Clinical use of FDG PET/CT scanning in myeloma has 

been validated in recent years with the revised Durie/Salmon PLUS staging system.71 PET 

also has the advantage of identifying the degree of metabolic activity associated with focal 

lesions, which has been found to correlate with disease activity.72,73 Solitary plasma cell 

neoplasms (plasmacytomas) are also FDG avid.72,73 However, FDG PET scanning is 

somewhat less reliable when evaluating more diffuse or heterogeneous marrow involvement, 

with variable SUV measurements.7 In addition, differentiating myelomatous lesions from 

background marrow FDG uptake can be difficult, particularly in the setting of diffuse 

marrow involvement.7

MRI in myeloma demonstrates T2 hyperintensity and T1 hypointensity in involved areas of 

bone, with variable contrast enhancement seen. The overall MRI pattern may be described as 

normal, focal, diffuse (change of signal of the entire fatty bone marrow), or a variegated/salt-

and-pepper pattern (heterogeneous appearance of the entire bone marrow).7

Zamagni and colleagues74 prospectively compared FDG PET/CT scanning, MRI, and whole 

body planar radiographs in the assessment of bone disease in 23 patients with newly 

diagnosed MM. PET/CT scanning was superior to plain radiographs, and highly sensitive to 

lesions out of the field of view of MRI, for both intramedullary and extramedullary disease. 

However, PET/CT scanning failed to depict some spine and pelvic lesions detected on MRI. 

A study by Shortt and colleagues75 showed that a combination of data acquired from PET 

and whole body MRI improved specificity and positive predictive value. Bartel and 

colleagues69 performed FDG PET/CT scanning in 239 patients at baseline and after 

neoadjuvant therapy, but before stem cell transplantation. Better overall and event-free 

survivals were correlated with complete normalization of FDG PET uptake before 

autologous stem cell transplantation.

Most studies and review articles pertaining to PET scanning and MRI have examined the 2 

modalities separately.76 However, preliminary reports suggest a role for combined PET/MRI 

in MM and other plasma cell dyscrasias. With the ability to image the whole body using 

both PET scanning and MRI, each of which can assess lesion distribution and 

characteristics, PET/MRI offers unique opportunities for assessing disease burden, 

monitoring for progression, and assessing response to treatment. For example, recent studies 

have demonstrated that PET/MRI can be effective in high-risk patients for initial staging and 

can serve as a baseline to assess treatment response as well as relapse of disease. If a 

patient’s biochemical marker levels are increasing after therapy, PET/MRI can be used to 

assess for the presence of new lesions or an increase in size, avidity, or number of lesions on 

PET scanning.7,76

Giant Cell Tumor

Giant cell tumor of bone (GCT) is an uncommon primary intramedullary neoplasm, most 

prevalent in young adults. GCT is generally considered to be benign. However, these lesions 

are variable in behavior and can be locally aggressive, have a high local recurrence rate after 

treatment (up to 40%), and may even produce pulmonary metastases.77,78 The management 

of GCT can be challenging and sometimes controversial.
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On radiography and CT scanning, GCT typically manifests as an eccentric lytic lesion 

centered in the epiphysis of a long bone that extends to the articular surface and usually has 

a well-defined nonsclerotic margin. On MRI, GCT is hypointense on T1-weighted 

sequences, and heterogeneously intermediate to hypointense on T2-weighted sequences 

related to hemosiderin deposition within the tumor.77

On PET scanning, GCT tends to have an unusually high FDG uptake compared with other 

benign neoplasms of bone, and may be misdiagnosed as a malignant lesion.51,78–81 A recent 

study by Muheremu and colleagues82 demonstrated a mean lesional SUVmax of 9.2 ± 3.8 in 

20 patients with proven GCT. Therefore, it is important to consider the diagnosis of GCT as 

well as soft tissue sarcomas in solitary musculoskeletal lesions with high FDG uptake.

Evaluation for pulmonary metastases of GCT can be challenging on PET. When lesions are 

small, they resemble pulmonary nodules, whose characterization is limited by their small 

size and limited spatial resolution of PET. In addition, over time these metastases can grow 

and show significant FDG uptake, mimicking primary malignant pulmonary lesions.83 

PET/CT scanning has been recognized as a valuable tool for early response evaluation of 

GCTs to new treatment options, such as denosumab.84–87

SUMMARY

The hybrid modalities of FDG PET/CT scanning and PET/MRI have transformed oncologic 

imaging by providing whole body scans that combine the sensitivity of metabolic imaging 

with the specificity of anatomic imaging. FDG PET/CT scanning has usefulness in the 

diagnosis, staging, and assessment of therapeutic response to treatment of several primary 

musculoskeletal malignancies. Although data on PET/MRI are limited at present, emerging 

studies demonstrate potentially promising applications, which allows for detailed local 

staging and tissue characterization, all while reducing patient’s exposure to radiation.
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KEY POINTS

• The hybrid modalities of FDG PET/CT and PET/MRI have improved 

oncologic imaging that combine the sensitivity of metabolic imaging with the 

specificity of anatomic imaging.

• PET/CT is a valuable modality in the diagnosis, staging, and assessment of 

therapeutic response to treatment of several primary musculoskeletal 

malignancies.

• PET/MRI is promising modality, which allowed detailed local staging and 

tissue characterization, all while reducing patient’s exposure to radiation.
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Fig. 1. 
A 19-year-old man presented with left knee pain for 1 month. The radiograph (A, B) shows 

aggressive osteolytic lesion of the distal left femur with sunburst periosteal reaction. The 

lesion demonstrates heterogeneous increased metabolic activity on PET/CT with 

fludeoxyglucose F 18 (FDG) with a maximum standardized uptake value of 8.8 (C). On 

MRI, the lesion demonstrates heterogeneous intermediate signal intensity on T1-weighted 

imaging (D), hypersignal on short tau inversion recovery imaging (E), and heterogeneous 

postcontrast enhancement (F) with cortical breakthrough, aggressive periosteal reaction, and 

associated soft tissue mass. Histopathologic evaluation confirmed osteosarcoma.
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Fig. 2. 
A 21-year-old man presented with right hemipelvic pain. Initial radiographs were interpreted 

as unremarkable, but retrospectively demonstrated asymmetric thinning of the right iliac and 

suspect rarefaction of the right iliac bone compared with the contralateral side (A). On MRI 

(B), a large enhancing destructive lesion involving the anterior right iliac crest was 

identified, the biopsy of which showed Ewing’s sarcoma. PET/CT with fludeoxyglucose F 

18 for initial staging demonstrated a heterogeneously hypermetabolic lesion centered at the 

right iliac crest with maximum standardized uptake value of 8.2 and several metastatic foci 

involving the posterior right iliac crest, left hemisacrum, and thoracolumbar spine (C, D). 

MRI of the spine confirmed metastatic disease to the vertebrae (E).
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Fig. 3. 
A 72-year-old man with history of pathologically proven chondrosarcoma presented with 

recurrent mass at the right iliac fossa. Computed tomography scanning demonstrated a large 

heterogeneous mass with chondroid matrix, concerning for recurrent chondrosarcoma (A). 

On PET with fludeoxyglucose F 18, a 19.4 × 13.3 × 17.6 cm heterogeneous destructive mass 

centered at the right iliac bone was identified, demonstrating peripheral hypermetabolism 

and central hypometabolism, representing large central necrosis. The maximum standardized 

uptake value was 9.4 (B, C).
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Fig. 4. 
A 40-year-old man with left knee pain demonstrated a permeative osteolytic lesion of the 

distal left femur (A). On MRI, a large marrow-replacing lesion was identified, which shows 

decreased T1-weighted uptake (B) and heterogeneously increased short tau inversion 

recovery (C) hypersignal intensity with heterogeneous postcontrast enhancement (D, E). The 

lesion is intensely hypermetabolic on PET with maximum standardized uptake value of 17.3 

(F). The lesion was pathologically diagnosed as T-cell lymphoma. There is a small, 

metabolically active soft tissue density pulmonary nodule within the right lobe with 

maximum standardized uptake value of 3.7 (G, H), concerning for a metastatic lesion. The 

pulmonary lesion was completely resolved on postchemotherapy PET (I).
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Fig. 5. 
A 65-year-old woman with generalized bone pain and anemia was diagnosed with multiple 

myeloma. PET-computed tomography (CT) scans revealed widespread osseous (A) 

myelomatous lesions with several infiltrative lesions of the spine (B) and superimposed 

pathologic fractures, as confirmed on MRI (C, D) and CT (E). The maximum standardized 

uptake value of the lesions in the lumbar spine was up to 17.2.
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