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ABSTRACT
Identification of immunogenic tumor antigens that are efficiently processed and delivered by dendritic 
cells to prime the immune system and to induce an appropriate immune response is a research hotspot in 
the field of cancer vaccine development. High biosafety is an additional demand. Tumor-derived exo-
somes (TEXs) are nanosized lipid bilayer encapsulated vesicles that shuttle bioactive information to the 
tumor microenvironment facilitating tumor progression. However, accumulating evidence points toward 
the capacity of TEXs to efficiently stimulate immune responses against tumors provided they are appro-
priately administered. After briefly describing the function of exosomes in cancer biology and their 
communication with immune cells, we summarize in this review in vitro and preclinical studies eliciting 
the potency of TEXs in inducing effective anti-tumor responses and recently modified strategies further 
improving TEX-vaccination efficacy. We interpret the available data as TEXs becoming a lead in cancer 
vaccination based on tumor antigen-selective high immunogenicity.
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Introduction

Chemotherapy and radiotherapy are the most frequent types of 
adjuvant therapies in progressed cancer, which are curative for 
some tumor types.1,2 Although they have been shown to have 
pivotal benefits in the elimination of primary tumors, the 
challenges imposed by tumor recurrence and metastasis 
remain largely unsolved. Therefore, alternative therapeutic 
modalities are urgently warranted. Immunotherapy is 
a promising pillar in cancer therapy with the advantage of 
having no or minor side effects. Unfortunately, despite exciting 
progress, therapeutic efficacy has been limited and rather 
sporadic; this has been ascribed to the poor or absent immu-
nogenicity of most tumor antigens as well as immunosuppres-
sive features of many tumor cells.3,4

Dendritic cells (DCs) are known as the most potent profes-
sional antigen-presenting cells, which activate helper T cells 
(Th) via presenting antigenic peptides in MHCII molecules. 
This finding has created new hopes for boosting cancer immu-
notherapy, these as activated Th cells can support maturation 
and activation of CD8+ cytotoxic T cells.5 DCs also could 
strengthen NK activity through by facilitating antibody secre-
tion via Th or directly via B cells.6,7 Indeed, the elaboration of 
in vitro expansion and activation of DCs, and loading DCs with 
tumor antigens provided considerable advantages in tumor 
immunotherapy.8

However, in spite of clinical benefits of DC vaccination in 
cancer treatment, not all patients respond and missing 
responses could not consistently be coordinated with the 

patients’ data. Low tumor antigen immunogenicity, immune 
escape, and tumor-induced immunosuppression were fre-
quently identified as responsible factors.9,10 Nonetheless, pro-
gress in chemotherapy and checkpoint inhibitors together with 
the increasing knowledge on the power of exosomes in inter-
cellular communication and their mode of action are promis-
ing that these drawbacks can be overcome such that 
immunotherapy may become a reliable and efficient adjuvant 
therapy during cancer progression.

Tumor-derived exosomes (TEXs) have discrete sets of pro-
teins such as major histocompatibility complex class I and II 
(MHC-I and MHC-II), phosphatidylserine, milk fat globulin- 
E8 (MFGE8), rab7, liposome-associated membrane protein 1 
(LAMP1), CD9, CD81, Annexin II, CD54, and CD63 that 
facilitate exosome-binding and uptake by relative ligands on 
DCs.11-14 In addition, TEXs express and transfer a wide spec-
trum of tumor-associated antigens to DCs that can prime 
tumor-specific cytotoxic T lymphocytes (CTL) and induce 
potent antitumor immunity.15-18 Further, immunostimulatory 
components are enriched in exosomes as compared to cells and 
previous studies in mice showed that TEXs improved vaccine 
efficacy compared to tumor lysates.14,19,20 This relies on upta-
ken TEXs being preferably transferred to the MHC-II-loading 
compartment, which is accompanied by a minor loss due to 
lysosomal degradation. Finally, the peptide-loaded DCs pro-
mote CD4+ T helper cell activation.14 DCs recruit TEXs via 
exosomal LFA-1 and CD54 that are major ligands for 
exosomes.21 The majority of previous studies used DC- 
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derived exosomes as vaccines ignoring the potential of TEXs as 
an independent vaccine to stimulate DCs.22-27 However, TEXs 
being a rich reservoir of the whole panel of tumor antigens, 
TEXs can stimulate a broad array of T cell clones to respond 
toward the multiple antigenic epitopes.28 Moreover, TEXs can 
easily be isolated and purified from patients’ sera and malig-
nant effusions. Thus, TEXs are an attractive alternative source 
of tumor antigens for cell-free cancer vaccines in personalized 
tumor immunotherapy,16,29 and it is becoming increasingly 
appreciated that TEXs can serve as a new promising cell-free 
therapeutic tool in cancer immunotherapy.13,14,30-33

To our knowledge, there has been no comprehensive review 
on the stimulatory efficacy and the antitumor immune 
responses induced by TEXs. Here, we will first introduce exo-
somes with a particular focus on the composition and targets of 
TEXs and their crosstalk with the tumor and the immune 
system. Following that, we will focus on the TEX application 
to induce immune responses.

Exosomes: biogenesis, structure, composition and 
function

Exosomes are cell-derived nanoscale (30–140 nm in diameter) 
vesicles possessing a lipid bilayer. They are found in almost all 
biological fluids including blood, serum, urine, breast milk, 
amniotic fluid, nasal secretions, saliva, cerebrospinal fluid 
(CSF), and bile as well as cell culture supernatants.34-41 

Exosomes were first identified as small vesicles involved in 
the maturation of sheep reticulocytes. Subsequently, these 
functional vesicles were named as exosomes by Johnstone in 
1989.42,43

The most significant factor in exosomes discrimination 
from other extracellular vesicles is their mode of biogenesis, 
target binding, and uptake. Exosomes are formed by endocy-
tosis of several plasma membrane microdomains and creation 
of early and late endosomes, which receive their selective cargo 
and become integrated into multivesicular bodies (MVBs). 
When MVBs fuse with the plasma membrane, exosomes 
are released into the extracellular environment through 
exocytosis.44-49 Exosomes are the body’s most efficient system 
in mediating biological data exchange.

In addition to constitutive exosome membrane and cytoso-
lic molecules, exosomes contain a large variety of membrane 
proteins and soluble factors related to cell-type specific func-
tions (e.g. integrins, selectins, Rab proteins, SNAREs, tetraspa-
nins such as CD9, CD81, CD63, growth receptors), lipids (e.g. 
steroids, sphingolipids, glycerophospholipids), nucleic acids 
(mRNAs, miRNAs, sRNAs, DNAs), and others.40,45,50-54 

According to the current version of Exocarta (http://www. 
exocarta.org), the largest exosome content database, 41,860 
proteins, more than 7,540 RNA and 1,116 lipid molecules 
have been identified from more than 286 exosomal studies.55 

These exosomal-shuttle molecules play key roles in exosome 
function. Exosomes can interact (by deliver or uptake) with 
their recipient cells via different mechanisms such as specific 
receptor binding, direct fusion with the plasma membrane, and 
phagocytosis.51 By their distribution throughout the body, 
these vesicles transfer information from host cells to target 
cells over long distances. Furthermore, due to the presence of 

exosomes in biofluids and origin-dependent content, which 
closely reflects various physiological and pathological condi-
tions, they may also serve as an ideal noninvasive or minimally 
invasive tool for diagnosis and monitoring the efficacy of 
treatment regimes.

Depending on the cell or tissue origin, exosomes have 
diverse biological functions in both normal and pathophysio-
logical conditions which include beside others elimination of 
unnecessary proteins and molecules, blood coagulation, pro-
pagation of pathogens (prions and viruses), programmed cell 
death, angiogenesis, inflammation, modulation and regulation 
of immune response, and antigen presentation, where cell-cell 
communication promotes signaling and transcription.56-61

Several exosome isolation methods can be applied based on 
the sample volume, experimental design, research main ques-
tions, and type or origin of exosomes from cell culture super-
natants or biological fluids. Most commonly employed 
isolation methods are differential ultracentrifugation, density 
gradients, and commercial exosome isolation kits making use 
of precipitation, bead-based, or immunoaffinity-based 
methods.61-64 Exosomes are visualized and characterized 
based on size distribution, specific exosomal markers, enriched 
proteins and RNAs and other selective contents. Most com-
mon techniques are transmission electron microscopy (TEM), 
cryo-EM, flow cytometry, ELISA, western blot, RNA profile 
using chip-based capillary electrophoresis, RNA sequencing, 
RNA microarrays, polymerase chain reaction (PCR), nanopar-
ticle tracking analysis (NTA), and Dynamic Light Scattering 
(DLS).62,65 Each of the aforementioned isolation and charac-
terization methods has some potential advantages as well as 
limitations, which warrants careful attention to the research 
purposes before choosing the isolation and characterization 
protocols.

TEXs in tumor cell and stroma modulation

Malignant cells secrete larger amounts of exosomes than non- 
transformed cells. There is evidence that TEXs can be 
involved in all steps of cancer development including onco-
genesis and tumor growth via apoptosis inhibition and pro-
motion of drug resistance, tumor cell spreading and 
metastatic settlement as well as angiogenesis, tumor immune 
escape, and immunosuppression.64 In the following, we 
briefly summarize and give some examples on these multitude 
of activities sparing the communication with the immune 
system that will be discussed in detail in the following section.

The crosstalk of TEXs with non-transformed cells might 
suffice to promote oncogenesis.66 Thus, uptake of malignant 
breast cancer cell-derived exosomes has been shown to educate 
non-tumorigenic epithelial cells to generate tumors.67 

Similarly, TEXs have been demonstrated to induce malignant 
transformation in prostate cancer.68

Furthermore, the heterogeneous tumor cell mass contains 
a small subpopulation so-called cancer stem cells (CSCs) with 
self-renewal and differentiation potential, considered to be the 
main cause of tumor recurrence.69-71 One of the prominent 
features of CSCs is their plasticity and dynamic equilibrium, 
where CSC-TEXs play a crucial role. Although their mechan-
isms of action are rarely investigated, CSC-TEXs can induce 
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a stemness phenotype by stemness-related molecule transfer 
and targeting upstream or downstream genes, by recruiting 
and altering the phenotype and function of stromal cells, as 
well as by enhancing tumor aggression and metastatic 
features.72-74 Thus, CSC-TEXs can remodel the tumor niche 
through influencing resident tumor cells as well as the tumor 
microenvironment including fibroblasts and immune cells, 
which leads to local tumor progression.68 In prostate cancer, 
differential microRNA patterns were observed in bulk cell- 
TEXs and CSC-TEXs. The CSC-TEXs miRNA profile sug-
gested an involvement in angiogenesis, proliferation, and pre- 
metastatic niche formation.75 Similar results were found for 
CD90+ liver cancer cell-derived exosomes and CD105+ CSC- 
TEXs have a set of pro-angiogenic mRNAs, microRNAs, and 
lncRNA known to contribute to the stimulation of angiogen-
esis via endothelial cell phenotype modulation and lung pre- 
metastatic niche formation.76,77 Other studies indicated TEXs 
being involved in oncogenic cell signaling pathways especially 
mediated by molecules such as p53, MAPK, and Wnt.78 For 
example, CD82 and CD9 tetraspanins, which are enriched in 
exosomes, can suppress Wnt signaling.79

Further, TEXs molecular constituents can be associated 
with enhanced tumor growth. For instance, in colorectal can-
cer, TEXs enhance the proliferation of endothelial cells and 
tumor growth by their enriched content of cell cycle-involved 
mRNAs.80 Moreover, activation of PI3K/Akt and MAPK/ERK 
pathways by TEXs could promote cell proliferation in gastric 
cancer.81 TEXs have also been shown to inhibit the differentia-
tion of bone marrow cells and alter macrophage physiology 
and function in favor of tumor growth.82-85 There are similar 
reports on the induction of tumor growth by TEXs from 
melanoma, hepatoma, glioblastom, and many other 
cancers.86-88

TEX exchange can instigate migratory behavior and 
metastatic potential in recipient cells through transfer of 
their cytoplasmic contents such as miRNA and pre-miRNA 
transcripts into either tumor cells or cells in the tumor 
microenvironment.89,90 CD44 transfer to surrounding peri-
toneal mesothelial cells through ovarian TEXs can promote 
invasive potential of cancer cells.91 Findings also suggested 
that deregulation of the extracellular matrix (ECM) through 
proteinases, glycoproteins, and matrix metalloproteinases 
released from TEXs could help invadopodia maturation 
and fibroblast remodeling of the tumor ECM leading to 
tumor cell invasiveness and migration.92-95 Furthermore, 
circulating TEXs have been proposed to prepare a pre- 
metastatic niche for incoming tumor cells.96 Exosomal 
release of cytokines, growth factors, and microRNAs can 
support recruitment of bone marrow-derived cells 
(BMDCs) to potential metastatic sites modulating pre- 
metastatic organ cells.87,97 Moreover, exosomal integrin 
expression patterns were demonstrated dictating organ 
sites of forthcoming metastasis.98

TEXs may also contribute to epithelial-to-mesenchymal 
transition (EMT), one of the hallmarks of tumor progression 
and invasion, through oncogenic transmission and TGFβ 
upregulation.99,100 Additionally, TEXs can inhibit apoptosis 
in many cancer cell lines.101 For instance, bladder TEXs inhibit 
apoptosis through Bcl-2 and Cyclin D1 proteins upregulation 

and Bax and caspase-3 proteins reduction.102 Exosomal survi-
vin released from cancer cells also mediates inhibition of 
apoptosis in vitro.103

Angiogenesis is one of the crucial steps in tumor growth. 
In various types of cancers, uptake of TEXs by endothelial 
cells accelerates angiogenesis.95,104-109 These pro-angiogenic 
activities of exosomes occur through reprogramming of 
endothelial cells by different molecules including exosomal 
miR-135b in multiple myeloma, miR-130 in gastric cancer, 
and miRNA-210 in leukemia and breast cancer.110-113 Hence, 
TEXs can affect tumor progression and metastasis through 
vascular remodeling.

Of special interest for immunotherapy is the capacity of 
TEXs to promote cancer resistance to conventional therapies. 
Thus, TEXs horizontally transfer exosomal miRNAs involved 
in target cell drug resistance.114,115 Similarly, the transfer of 
long non-coding RNAs via TEXs led to increased tamoxifen 
resistance in breast cancer cells.116 Also, high survivin level in 
TEXs decreased radiation efficacy.117 Moreover, exosome- 
mediated miR-32-5p delivery could increase drug resistance 
through activation of the PI3K/AKT pathway and inhibition of 
PTEN.118

TEXs in tumor immunology

As mentioned, TEXs are enriched in tumor antigens, but also 
promote immune escape.119,120 The literature abounds with 
evidence suggesting TEXs as mediators of immune cell-tumor 
cell communication, and regulators of immune responses 
through both immunosuppressive and immunostimulatory 
functions, promoting either tumor progression or regression. 
In the following section, the double-edged role of TEXs in 
suppression and activation of immune responses against can-
cer is summarized based on immune cell types (Figure 1).

Natural killer (NK) cells

TEXs have been shown to inhibit tumor immune surveil-
lance by exerting immunosuppressive impacts on NK cells as 
the main anti-tumor weapons of the innate immune system. 
Indeed, TEXs hamper NK at multiple levels by interfering 
with activation and, particularly, effector functions. Thus, 
TEXs account for significant down-regulation of NK- 
specific triggering surface molecules (natural killer group 
2D (NKG2D) and CD69) by inhibition of Stat5, Jak3, 
CyclinD3 expression, increasing the number of myeloid- 
derived suppressor cells (MDSCs), decreasing of perforin 
secretion, all resulting in impaired migration and cytotoxic 
potential of peripheral NK cells.121-124 In addition, TEXs 
promote a decrease in the number of NK cells in the spleen 
and lungs through induction of tumor-infiltrating natural 
killer (TINK) through activation of the TGF-ß/SMAD path-
way mediated by exosomal TGF-ß1, which also suppress IL- 
2 stimulated NK cell cytotoxicity.121,125-127 In contrast, some 
TEX constitutive markers facilitate NK activation; For 
instance, co-culture of NK cells with heat shock protein 70 
(HSP-70) surface-positive TEXs, as an attractant and target 
structure, stimulates NK recruitment and cytolytic activity 
through granzyme B release of CD94+ NK cells.128 
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Moreover, the HSP-70-stimulated NK up-regulate the 
expression of CD69, NKG2D, and NKp44 stimulating recep-
tors, while the CD94 inhibitory receptor becomes down- 
regulated.129

Macrophages

TEXs exert an important impact on macrophages by forcing 
them toward the immunosuppressive M2 phenotype.130 

Previous studies reported that TEXs stimulate pro- 
inflammatory activity and TLR-mediated NF-κB activation in 
macrophages, resulting in increased secretion of pro- 
inflammatory cytokines/chemokines, such as IL-6, TNFα, GM- 
CSF, and CCL2; this leads to prolonged survival of tumor- 
associated macrophages in the inflammatory 
microenvironment.83,131 Indeed, TEXs mediate upregulation 
of Wnt 5α in macrophages; subsequently macrophage- 

derived exosomes transfer Wnt 5α into tumor cells which 
leads to enhanced tumor invasion through the activation of β- 
catenin-independent Wnt signaling.84

Dendritic cells (DCs)

Differentiation of monocytes toward DCs, the professional 
antigen-presenting cells (APCs) and the bridge between the 
innate and adaptive immunity, can be modulated by TEXs 
via expression of PGE2, HSP72, and TGF-β, that have been 
reported to induce the production of inhibitory cytokines, 
decrease the expression of co-stimulatory molecules, 
increase the expression of STAT3, and inhibit the matura-
tion and T cell stimulatory capacity of DCs through induc-
tion of IL-6 phosphorylation.82,132,133 Further, under TEXs 
impact, DC maturation and antigen-specific responses can 
become impaired via downregulation of TLR4 and MHC-II 

Figure 1. Schematic representation of dual functions of TEXs in suppression and activation of immune responses against cancer.
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expression as well as induction of IL-4, TNF-α, IL-12, and 
TGFβ1.132,134 Moreover, TEXs uptake by immature DCs 
has been demonstrated to block DC maturation by exo-
some-mediated mechanisms and also to induce tumor sup-
pression via redirecting toward myeloid-derived suppressor 
cell (MDSCs) differentiation and proliferation.133,135

Despite these immunosuppressive effects, TEXs express 
tumor antigens as well as markers, which facilitate TEXs 
uptake by DCs and direct tumor antigens toward multivesicu-
lar bodies. After processing, peptides are loaded into newly 
generated MHC-II molecule grooves and are presented to Th 
cells promoting their activation. Several studies documented 
that in vitro uptake of TEXs by DC enhance the expression 
levels of co-stimulatory receptors (CD80, CD86), CD11c and 
MHC, and induce phenotypic and functional DC 
maturation.130,136,137

T cells

TEXs block CD8+ T cells proliferation, activation and 
cytotoxic activity and increase their immunosuppressive 
functions. They are also responsible for induction of Fas 
or programmed cell death-1 (PD-1) ligands-mediated 
apoptosis of antitumor CD8+ effector T cells in several 
cancers.130,138-140 The expression of CD73, CD39 immu-
noregulatory proteins, TGF-β1 cytokine, and galectin-1 
(Gal-1) in TEXs can induce a suppressive phenotype in 
CD8+ and CD4+ T cells.130,141,142 In addition, TEXs impair 
the lymphocyte response to IL-2143 and have been shown 
to induce IL-8 production in epithelial cells suppressing 
T cell responses.144 Finally, TEXs can contribute to tumor 
escape via induction of CD4+ CD25+ FOXP3+ T regulatory 
cell (Treg) expansion, accompanied by increasing expres-
sion levels of TGF-β, IL-10, and CTLA4. They also indir-
ectly facilitate Treg generation through inducing 
tolerogenic DCs.133,145

On the other hand, through expression of MHC class I and 
class II complexes on their surface, TEXs can directly present 
antigen, activate T cells, and induce antigen-specific MHC class 
II-restricted T-cell responses. Also, many studies unraveled 
TEXs expressing some markers that could facilitate CD8+ 

T cell activation and stimulate tumor-specific CTL responses 
in vivo and anti-tumor immune responses in mice.13,140,146 

However, the TEXs armament may preferentially suffice for 
memory T cell activation, whereas activation of naïve T cells 
requires TEXs modulation.

B cells

The effect of TEXs on B cell activation and function is not well 
delineated. Few studies have shown that TEXs induce differ-
entiation of naïve B cell to a regulatory phenotype with pro-
duction of inhibitory cytokines that leads to antitumor 
immune response inhibition.147,148 In addition, TEXs could 
reduce antibody-dependent cell cytotoxicity (ADCC) through 
interfering with tumor-reactive antibodies binding to tumor 
cells.149 In contrast, TEXs were also described to drive antibody 
production, the underlying mechanism remaining to be 
explored.139

TEX-based cancer vaccination

Many studies proved the feasibility and functionality of TEXs 
to stimulate immune responses against cancer in mouse mod-
els. For instance, a study by Bu et al., in syngeneic mice showed 
that vaccination with L1210 leukemia-released exosomes pre-
vented tumor formation and elicited protection to tumor 
challenge.150 Lee and colleagues demonstrated that vaccination 
with TEXs not only elicited significant protection against 
tumor growth and primed Th1 immune responses to an estab-
lished melanoma but also could inhibit pulmonary metastasis 
in metastatic melanoma mouse models.151 This capability of 
TEXs to trigger T cell-mediated antitumor immune responses 
and suppress tumor growth has been reported in other studies, 
as well.14,15,33,137 Furthermore, TEXs harbor tumor antigens 
from their donor cells. Following uptake by DCs, these tumor 
antigens are presented as peptides in the MHC grove and can 
prime naïve T cells to generate anti-tumor responses.136 

However, because of TEXs-induced immunosuppression and 
limited TEX immunogenicity, TEXs alone application fre-
quently resulted in unsatisfying anti-tumor immune effects 
in vivo. Thus, several strategies were developed to improve 
the efficacy of TEXs vaccination. Some of which are listed in 
Table 1 and will be discussed in the following sections.

TEXs modifications to advance tumor 
immunotherapeutic efficacy

Tumor cells and TEXs can be modified (either genetically or 
non-genetically) to enrich tumor antigens, microRNAs, and 
immunostimulatory molecules in TEXs with the aim of enhan-
cing tumor cell elimination directly or in concert with killing 
by immune cells. Heat shock proteins (HSPs), highly enriched 
in cancer cells and TEXs, have potent adjuvant capability. They 
served as one of the approaches in strengthening cancer immu-
notherapy. Indeed, HSP can increase immunogenicity of TEXs 
and improve cancer vaccine efficacy.158,159 Chen and collea-
gues demonstrated that heat shock treatment increases TEX 
proteins relevant to potentiate immune response induction and 
reported on efficient immunostimulatory functions of A20 
lymphoma/leukemia cell line-derived heat-shock exosomes 
(HS-TEX) via the up-regulation of MHC, co-stimulatory mole-
cules and cytokines, including IL-1β, IL-12p40, TNF-α, 
RANTES, and also MIP-1α in DC. The stronger protective 
antitumor immunity of HS-TEXs compared to untreated 
TEXs in immunized mice confirmed these results.30 Similar 
findings also were obtained with Hsp70-enriched TEXs iso-
lated from heat-treated MUC1-expressing CT26 cells. These 
HS-TEXs showed increased expression of MHC-II and 
enhanced immune-stimulating activity. HS-TEXs, as an MHC- 
independent vaccine, stimulated strong Th1 type immune 
responses via the increased production of IgG2a antibody 
and IFN-γ, resulting in elimination of cancer cells in autolo-
gous and allogeneic tumor-bearing mice.167 This approach has 
also been employed by Xie and colleagues via transfection of 
heat-shocked J558 tumor cells with vectors expressing mem-
brane-bound inducible HSP70 to generate TEXHSP expressing 
membrane-bound HSP70. They demonstrated that TEXs bear-
ing membrane-bound HSP stimulated IL-12 secretion by 
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TEXHSP-activated DCs and induced stronger antitumor immu-
nity mediated by CD4+ Th1, CD8+ CTL, and NK cells than 
TEXs expressing cytoplasmic HSP70.160 Thus, HSP70 up- 
regulation in TEX membranes may be an effective strategy to 
enhance immune response induction.

Another modification strategy to improve TEXs immuno-
genic properties relies on the manipulation of cancer cells to 
increase the expression of tumor-specific antigens that are 
transferred into TEXs. Thus far, this was approached with 
a variety of highly immunogenic tumor antigens. For example, 
high expression of the MUC1 tumor antigen is related to 
cancer progression and poor prognosis in many types of 
cancer;168 In a study by Cho et al., MUC1-containing TEXs 
from MUC1 transduced CT26 and TA3HA cell lines induced 
DC maturation and IFN-γ secretion by Th1, and more effi-
ciently inhibited autologous and allogeneic tumor growth than 
non-MUC1-containing control TEXs.26

TEXs-promoted immune reactions can also be strengthened 
by the superantigen staphylococcal enterotoxin A (SEA), which 
forms a complex with MHC-II on APCs. Xiu and colleagues 
generated TEXs containing SEA or SEA tailed with a highly 
hydrophobic transmembrane domain (SEA-TM) by protein 
transfer. Immunization of mice with SEA-membrane- 
anchored TEXs led to increased IL-2 and IFN-γ secretion, 
strong in vivo CTL responses as well as stimulation of anti- 
tumor effects of both CD4+ T cells and NK cells. Additionally, 
SEA-TEXs inhibited tumor growth and prolonged the survival 
of tumor-bearing mice more strongly than un-manipulated 
TEXs or a mixture of TEXs and SEA. These effects could 
possibly be ascribed to SEA facilitating TEXs binding to DC 
and a concomitant decrease of the immunosuppressive activity 
of Tregs.162 Thus, protein transfer is an appropriate method to 
modify TEXs toward expression of tumor antigens or other 
immune-enhancing proteins on their surface.

Since the recognition of MHC class II-peptide complexes by 
CD4+ helper T cells is required for optimal and efficient induc-
tion of anti-tumor immunity, another candidate molecule for 
increasing the efficacy of TEXs in cancer immunotherapy is 
MHC class II. Master regulatory gene MHC class II transcrip-
tional activator (CIITA) controls expression of MHC class II 
molecules and introduction of CIITA gene in tumor cells can 
stimulate tumor-specific CD4+ and CD8+ T cells.155 To inves-
tigate the effect of CIITA expression on the immune- 
stimulating capability of TEXs, Lee et al., transduced mela-
noma B16F1 cells with the CIITA gene and assessed the impact 
of CIITA-enrichment in TEXs (CIITA-TEXs) on tumor regres-
sion. Compared to parental TEXs, CIITA-TEXs provoked 
enhanced immune responses reflected by the higher surface 
expression of MHC class II and CD86 and higher mRNA levels 
of inflammatory cytokine, TNF-α, and maturation marker 
CCR-7 on pulsed DCs. Notably, induction of IL-2 cytokine 
production by naïve splenocytes in vaccinated mice suggested 
the capability of CIITA-TEXs to induce CD4+ helper T cells 
activity. Moreover, CIITA-TEXs vaccination delayed tumor 
growth and improved the survival rate in both therapeutic 
and prophylactic immunized melanoma-bearing mice.31 

Similar results were reported by Wen Fan et al., applying 
exosomes from the CIITA-transduced murine colon cancer 
CT-26 cell line. CT26-CIITA-derived TEXs increased Th1 

immune responses reflected by significantly increased TNF-α, 
IFN-γ, and IL-12, and decreased IL-10 expression.32 Thus, 
MHC-II expressing TEXs are powerful in strengthening anti- 
tumor immune responses.

Incorporation of some viral fusion proteins in TEXs was 
shown to enhance their uptake by DCs and to improve 
immunogenicity. One of these viral fusion proteins is the 
G protein of vesicular stomatitis virus (VSV-G), which facil-
itates binding of the viral particles to the cell surface. 
Temchura et al. elaborated that co-expression of VSV-G 
and tumor antigens on TEX membranes not only accelerated 
internalization and presentation of TEX antigens by DC but 
also enhanced phenotypic and functional DC maturation. 
Up-regulation of CD86, CD80, CD40 co-stimulatory mole-
cules and increased IL-12 release in DC resulted in effective 
and specific in vivo CTL immune responses.163 Results 
obtained from vaccination of mice with EGFR-expressing 
breast cancer xenografts, where TEXs were manipulated 
with GE11 peptide, which specifically binds to the EGFR, 
confirmed the efficacy of this approach.164

Expression of certain cytokines in tumor cells and subse-
quently in their TEXs might be another promising strategy to 
enhance TEXs immunogenicity. Interleukin 2 (IL-2), an 
important growth factor and vaccine adjuvant, mediates reg-
ulation and activation of immune cells including CTL, NK, 
B cells, and macrophages, and can generate clinically signifi-
cant anti-tumor activity in cancer patients. Yang and collea-
gues represented a new method for improving TEXs 
application as a vaccine, where E.G7-OVA tumor cells were 
genetically engineered to express IL-2 to deliver IL-2-contain-
ing TEXs (TEX/IL-2). Immunization with TEX/IL-2 strongly 
enhanced T cell proliferation and affected NK and CD4+ T cells 
accompanied by elevated secretion of IL-2 and IFN-γ cyto-
kines, and resulting in efficient inhibition of tumor growth.153 

Similar results were obtained with IL-12-containing TEXs 
(TEX/IL-12), where human renal cancer cells were genetically 
modified with the IL-12 gene to produce TEX/IL-12, IL-12 
being an essential co-stimulatory signal for cellular immune 
response activation. TEX/IL-12 was capable of increase in vitro 
CTL activity and strengthened IFN-γ release compared to non- 
manipulated TEXs.154

TEXs transfer diverse types of cargo including microRNAs 
into cancer cells. Hence, modification of TEXs to overexpress 
miRNAs that repress immunosuppressive targets might elevate 
TEX promoted immune responses. Ohno and colleagues intro-
duced let-7a miRNA into HEK293 cells and observed that let- 
7a containing TEXs potently inhibited breast tumor 
development.164 Also, in a recent study by Taghikhani et al., 
TEXs modified with miR-155, miR-142, and let-7i efficiently 
delivered antitumor miRNAs to DCs inducing DC maturation 
and enhancing in vitro CTL activity.169 In another study, effi-
cient in vitro tumor antigen presentation and higher cytokine 
release (TNF-α, IL-6, and IL-12p40) were observed in DCs 
after uptake of TEXs modified with CpG DNA, a well-known 
immune response modifier. Moreover, immunization with 
these TEXs resulted in potent cellular and humoral immunity 
along with upregulation of Th-1 related IgG2a as well as 
protective and therapeutic antitumor immunity in immunized 
mice.165

ONCOIMMUNOLOGY 9



Taken together, all these reports indicate that appropriately 
modified TEXs can be a valuable tool for cancer 
immunotherapy.

Improvement of TEX-based vaccination by DC loading

DCs are the professional antigen-presenting cells (APCs) of the 
immune system with the capability to stimulate key adaptive 
immune cells (naïve CD8� T cells and CD4� helper T-cells, 
B-cells). DCs loaded with different tumor-specific antigens to 
enhance initiation of primary and secondary immune 
responses, have been used as an efficacious vaccine in numer-
ous murine cancer models as well as in clinical trials.10

In vitro activation and loading of DCs, as a potent source for 
initiating immune responses has several advantages compared 
to TEXs as vaccine. This strategy would help to overcome some 
limitations of using TEXs alone like the risk of eliciting immu-
nosuppressive features by free TEXs and also inadequate 
induction of immune responses. It would guarantee the pre-
sentation of exclusively MHC-I or MHC-II grove fitting pep-
tides from digested tumor antigens as well as abundant 
availability of co-stimulatory molecules. Indeed, several studies 
showed that TEXs are efficiently taken up and presented by 
DCs and may even support DC maturation. In vitro studies 
uncovered that besides stimulating peptide-specific clonal 
T cell expansion, TEX-loaded DCs also are able to stimulate 
naïve CD8+ T cells maturation toward antigen-specific CTL 
and induce NF-κB activation in macrophages that are involved 
in tumor cytotoxicity via tumor necrosis factor (TNF) 
release.15,85,157,160 Thus, one important advantage of TEX- 
loaded DC compared to free TEXs relies on tumor antigen 
processing and peptide loading of MHC-I molecules. Ren et al. 
showed that HeLa-TEXs alone were not capable of in vitro 
T cell activation and proliferation, whereas HeLa-TEXs loaded- 
DCs successfully induced T lymphocyte activation.137 In 
a similar study, Wolfer and colleagues observed that when 
TEXs were derived from the Fon melanoma cell line and 
loaded onto DCs, they promoted activation and IFN-γ produc-
tion in CTL clones in vitro; whereas they could not raise CTL 
clones using free TEXs.15 In line with these studies, Yao and 
colleagues examined the ability of leukemia-derived exosomes 
(LEXs) and LEX-pulsed DCs to induce antileukemic immunity 
in both prophylactic and therapeutic leukemia mouse models. 
They demonstrated that TEX-pulsed DCs significantly 
enhanced the survival rate of tumor-challenged mice and 
more effectively induced CTL immune responses in a dose- 
depended manner.33 This dose-dependency was also observed 
in cytolysis induced by effector T cells primed with TEX-pulsed 
DCs in hepatocellular carcinoma (HCC) models.156 Similar 
results were also obtained by Gu et al., who studied the impacts 
of TEX-loaded DC (DC-TEX) as a vaccine in WEHI3 myeloid 
leukemia-bearing mice.14 Beside tumor antigens, the availabil-
ity of TEX markers facilitating uptake by DC contributes to 
pronounced CTL activation. Bu and colleagues purified auto-
logous TEXs from glioma cell culture supernatants from 
patients with glioblastoma multiform and noted that these 
TEXs were enriched in MHC-I, HSP70, ICAM-1, and 
MAGE-1 molecules, which are involved in TEX uptake and 
antigen presentation. The authors describe higher cytotoxic 

capacity of TEX-DC- than tumor lysate-DC-stimulated 
T cells in autologous glioma cell cultures.170 These results 
support the hypothesis that TEXs can be used as a promising 
and robust platform to improve personalized cancer 
immunotherapy.

Taken together, one great advantage of loading DC with 
TEX relies on the processing of the TEX tumor antigens and 
the presentation of tumor antigen peptides in the MHC groove, 
which strongly facilitates the capture of tumor-peptide specific 
CD8+ T cells driving their expansion and activation. The 
enrichment of tumor antigens in TEXs and the equipment of 
TEX with markers that facilitate the uptake by DC add to the 
superiority of TEXs-pulsed DC to CTL activation. 
Furthermore, the preferable processing of TEXs in the MHC- 
II-loading compartment leads to CD4+ Th activation resulting 
in more efficient activation of CTLs.14

Both dendritic-derived exosomes (DEXs) and TEXs have 
been used in tumor vaccination. Only few studies compared 
the efficacy of the two exosome sources as vaccine. 
Nevertheless, the functionality examination of DC-OVA- 
derived EXO (EXODC) and EG7 tumor cell line-derived EXO 
(TEXEG7) indicated that EXODC can more efficiently stimulate 
T cell proliferation and differentiation, and also promote stron-
ger killing activities against tumor cells compared to EXOEG7 
immunized mice. Similar results were observed regarding anti-
tumor immunity and protection against lung tumor metas-
tases. The higher immunogenicity of EXODC could be 
ascribed to expression of co-stimulatory molecules such as 
CD40, CD80 on EXODC. TEXEG7 not expressing these co- 
stimulatory molecules could well explain their weaker efficacy 
compared to EXODC.13 However, reverse results were obtained 
when using of TEXs for DC loading. In an early study, Hao 
et al. evaluated immune response induction of loading mature 
DC with TEX, where ovalbumin (OVA) served as tumor anti-
gen. They observed that TEX uptake by DC is mediated by 
LFA-1, CD54, and CLR. Interestingly, TEX-loaded DCs 
expressed higher level of the co-stimulatory molecules CD40, 
CD80, CD54, and of MHC-II than OVA-loaded DCs. 
Moreover, vaccination with TEX-loaded DCs induced exces-
sive in vitro and in vivo T cell proliferation and exerted higher 
protective immunity against the primary tumor and lung 
metastasis in tumor-bearing mice than OVA-loaded DC, exo-
somes derived thereof or TEX.146

We interpret these findings that the second advantage of 
loading DC with TEX can be ascribed to the pronounced 
uptake of TEX and guidance into the MHC-II processing 
compartment, where TEX tumor antigens are processed for 
loading into newly arranged MHC-II, which are transported to 
the DC membrane and together with the expanded repertoire 
of costimulatory molecules of activated DC suffice for tumor 
antigen-specific Th activation. This will have bearing not only 
on CTL activation but also on B cell activation, antibody 
secretion, and NK cell stimulation. These latter activities still 
await detailed exploration.

Before recognizing the abundant recovery of tumor antigens 
in TEXs, DC frequently was loaded with tumor lysates. 
However, a direct comparison of DC-TEXs versus DC-lysate 
indicated stronger anti-tumor immunity and superior thera-
peutic efficacy, when loading with TEXs than tumor lysate. In 
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a comparative study, Wolfer et al. demonstrated that mela-
noma TEX-loaded human DCs induced in vitro IFN-γ produc-
tion in CTL clones; the efficacy was comparable to that by 
loading with synthetic peptides and far higher than that of 
tumor lysate-loaded DC. Furthermore, TEX elicited more effi-
cient protective antitumor immune responses than tumor 
lysate in syngeneic and allogeneic settings, even when 
a higher amount of lysate was applied. Interestingly, boosting 
with a low dose of TEXs (20 µL) protected vaccinated mice 
from a lethal challenge, whereas the equivalent (lysate of 
2 × 104 tumor cells) was inefficient.15 The authors suggest the 
efficient uptake of TEXs by DCs as underlying mechanism, 
where the presence of CD54, CD9, and CD63 DC-ligands on 
TEXs facilitates uptake. Similar results were obtained by other 
investigators in different tumor models using, e.g. leukemia 
and pancreatic cancer cell-derived exosomes, where TEX-DC 
more efficiently than lysate-DC increased survival and sup-
pressed tumor growth in pancreatic, renal cell carcinoma and 
leukemia tumor-bearing mice.14,152 The superiority of DC- 
TEX was due to highly efficient TEX uptake and long-lasting 
TEX processing in the MHC-II-loading compartment, which 
led to pronounced IL-12 up-regulation in DC and tumor- 
specific CD4+ Th and CTL activation.14 Besides activation of 
a wider range of T cell clones, the presence of classical DC 
costimulatory molecules may also contribute to TIL, MФ, and 
NK cells recruitment.

Notably, due to the immunotolerogenic nature of some 
organs and tumors deriving thereof, tumor cell lysates can be 
hardly immunogenic.166 To overcome this challenge, Rao et al. 
investigated the efficacy of HCC TEXs to stimulate immune 
responses in vitro and in vivo. TEX-pulsed DCs showed super-
iority with respect to the induction of immune response com-
pared to cell lysates-pulsed DC in both prophylactic and 
therapeutic HCC mouse models. Stimulation with HCC 
TEXs efficiently induced the expansion of antigen-specific 
CTLs, provoked elevated IFN-γ levels, and decreased the 
release of immunosuppressive IL-10 and TGF-β, which 
together resulted in stronger tumor growth inhibition in both 
ectopic and orthotopic HCC bearing mice. Remarkably, HCC 
TEXs-promoted cytotoxicity exerted MHC-independent cross- 
protection against different HCC and pancreatic cancer 
cells.156 This may be due to the presence of tumor antigens in 
TEXs, which are shared by multiple tumors. The finding also is 
in line with TEX-derived tumor peptides being presented in 
newly generated MHC molecules of the host DC.

In brief, DC loading with TEXs rather than tumor lysate has 
several advantages. Although autologous TEXs and tumor 
lysates share avoiding allogeneic immune response, compared 
to tumor lysates, tumor antigens are enriched in TEXs. 
Furthermore and importantly, TEXs are particularly equipped 
for binding and uptake, and uptaken TEX are guided in DC 
toward the antigen processing compartment.

Finally, we want to point out that the efficacy of vaccination 
with TEX-pulsed DC can profit from a concomitant treatment 
with drugs that particularly affect immunosuppressive cells or 
factors. Xiao et al. focused on improving the efficacy of DC- 
TEX vaccination in pancreatic cancer through combination 
with cytotoxic drugs that attack MDSC. Akin to previous 
studies, they confirmed that TEX-loaded DC could activate 

T lymphocytes in DC-TEX vaccinated UNKC6141 PaCa- 
bearing mice, prolong survival, and significantly decrease the 
metastatic capacity of UNKC tumor cells. Interestingly, com-
bining DC-TEX vaccination with the application of most fre-
quent adjuvant drugs in PaCa treatment, such as Gemcitabine 
(GEM), ATRA, and Sunitinib (SUN), which interfere with 
MDSC maturation and/or persistence, resulted in higher num-
bers of activated T cells in the tumor tissue and significantly 
improved survival rates compared to only DC-TEX vaccinated 
mice.161 Combining DC-TEX vaccination with sorafenib, 
a chemotherapeutic drug for advanced HCC, as well as PD-1 
antibody, promoted immune responses in orthotopic HCC 
vaccinated mice. The combination of DC-TEX and sorafenib 
significantly reduced Treg cells and increased CD8+ T cells, 
although in this model the combination therapy did not sig-
nificantly improve the survival rate of vaccinated mice.171 

Thus, drug combinations, as a coping strategy for preventing 
activation and recruitment of immunosuppressive cells and 
factors should be kept in mind as a possibly strong support in 
DC-TEX vaccination.

Taken together, DC vaccination keeps the lead role in can-
cer immunotherapy. Unexpectedly, the mostly immunosup-
pressive TEXs turn into the currently most efficient 
“immunogenic” tumor antigen source, provided they are used 
for DCs loading.

Conclusions, challenges and future direction

Throughout the evolution, the immune system has become 
a highly efficient organ that keeps the human body’s integrity 
without external support. With the discovery of the memory of 
the adaptive immune system of higher developed organisms 
and the notion of forcing the immunological memory by 
vaccination, the power of the immune system was expanded 
toward disease prevention. Yet, despite some progress, the 
success rates by forcing the immune system to cope with 
tumor growth and progression remained below expectations. 
One of the so far most promising anti-tumor vaccination 
strategies makes use of the professional arm of the innate 
immune system, DCs. Recent research in this regard center 
on TEXs, which are tumor cell-derived small vesicles that are 
well defined for not only promoting tumor progression but 
also for their immunosuppressive activities. Fortunately, clar-
ifying the underlying mechanisms has not only paved the way 
for tumor growth prevention but also opened new doors 
toward using TEXs as immunotherapeutic drugs. The most 
important features of TEX are their preferential collection of 
tumor antigens (which is not fully explored yet), their distribu-
tion throughout the body, their membrane composition, which 
facilitates TEX binding and uptake for the good or the bad, and 
lastly, the efficient delivery of the function-competent TEX 
content. Furthermore, owing to their membrane organization, 
uptaken TEXs are preferentially guided toward MVB. TEXs 
have additional advantages for a wide range of clinical applica-
tions. They can be collected by non- or minimally invasive 
methods from all biological fluids as well as from tumor cell 
culture supernatants. In addition, long-term storage does not 
strongly impair TEXs functional competence. Thus far, the 
therapeutic application of TEXs has mostly been explored in 
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animal studies, which can be divided into two categories: the 
application of modified TEXs and the use of TEXs as antigen 
providers for DC in vaccination.

Manipulated TEXs have either been derived from geneti-
cally modified tumor cells or have been directly transfected. 
The former strategy is advantageous for membrane inte-
grated proteins that facilitate binding to ligands on selected 

target cells. It has the additional advantage of a persisting 
donor for preparation. Direct loading of TEXs will be the 
method of choice for transferring high quantities of densely 
packed therapeutic agents, which could be non-coding RNA 
(e.g. miRNA), cytokines, and chemokines, as well as 
immune response checkpoint proteins, antibodies, and 
cytotoxic drugs. Obviously, combining the genetic 

Figure 2. Tumor-derived exosome modulations aiming for increased efficacy of future TEX-based vaccines. (a). Autologous TEXs can be collected from the patients’ 
peripheral blood. They can be modified by transfection with immune response promoting agents to strengthen the efficacy as vaccine, which treatment may be 
combined with additional therapeutic agents, either loaded into TEX or independently applied. (b) TEXs can be directly or indirectly modified through overexpression of 
some tumor antigens, miRNAs, immunostimulatory molecules and cytokines that increase their immunogenic potential. Native or modified TEXs can be used for DC 
pulsing, the transfer of which provoking a strong immune response, at present, considered as the most effective cancer vaccines. The efficacy of DC-TEX can be 
supported by cytotoxic drugs, preferentially hampering immunosuppressive cells and agents.
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modification of the TEX owner cells with direct TEX load-
ing will be beneficial, as TEX content delivery can be 
targeted toward specified cells. This option has rarely been 
taken into account and requires a scrutinized analysis of 
TEX ligands on the aimed for target cell. As far as DC-TEX 
vaccination is concerned, TEXs manipulation may be 
required for tumors that display tumor-associated antigens 
at a level too low for promoting sufficient MHC loading of 
DC. In many studies, TEXs were used as a vaccine for 
CD8+ T cell maturation and activation. However, one 
should be aware that this requires profound engineering 
to equip TEX with targeting units, cytokines, and sufficient 
amounts of tumor antigens as well as immunosuppressive 
molecule blockers. Using TEX after a proceeding vaccina-
tion with DC for stimulation of memory CD8+ T cells 
avoids these drawbacks, will be far less demanding, and 
may be considered as a clinically most relevant option 
(Figure 2a).

Many studies have demonstrated the efficacy of TEX-loaded 
DC to induce in vitro and in vivo CTL and T helper cells, to 
stimulate B cells, NK cells, and macrophages. An important 
advantage of loading DCs with autologous TEXs is provided by 
the individual patient’s complete tumor-antigen repertoire 
being presented. An additional benefit relies on a single per-
ipheral blood collection sufficing for DC and concomitant 
TEXs preparation. The loading that being performed in vitro 
at an appropriate stage of DC maturation, does not require 
support for targeting or processing, and only for TEX from 
very low level antigen expressing tumors it might be required 
to additional loading of TEX with an excess of the relevant 
antigens. Nonetheless, the preparation of DCs under the 
required safety conditions is cost and time intensive. It remains 
to be hoped that the pharmacy succeeds in reducing these 
factors, which so far hamper a desirable wide range of clinical 
application (Figure 2b).

The wide range clinical application of TEXs as a therapeutic 
drug or an antigen provider for DC vaccination remains 
a hopefully soon realized desire. Particularly, the broad field 
of potentially therapeutic TEXs requires further experimental 
studies to guarantee efficacy and negligible side effects. 
Nonetheless, TEXs as a major contributor to tumor progres-
sion obviously have a second face, which suggests them as 
a possibly most efficient tumor defense item. Taken together, 
there is some hope that TEXs may become the breakthrough in 
tumor immunotherapy.
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