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a b s t r a c t 

In this article, the mathematical model with different compartments for the transmission dynamics of 

coronavirus-19 disease (COVID-19) is presented under the fractional-order derivative. Some results re- 

garding the existence of at least one solution through fixed point results are derived. Then for the 

concerned approximate solution, the modified Euler method for fractional-order differential equations 

(FODEs) is utilized. Initially, we simulate the results by using some available data for different fractional- 

order to show the appropriateness of the proposed method. Further, we compare our results with some 

reported real data against confirmed infected and death cases per day for the initial 67 days in Wuhan 

city. 
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. Introduction 

Coronavirus disease 2019 (COVID-19) is one of the infectious

iseases caused by Coronavirus-2 SARS-CoV-2, a serious acute res-

iratory syndrome. The disease was first detected in Wuhan city,

hina, in December 2019 and has since spread globally, leading to

 continuing pandemic outbreak in 2020 [9] . It is declared that the

OVID-19 pandemic is the biggest global threat in 2020 which has

ffected 212 countries and territories around the world. According

o the data reported by Worldometer [9] and WHO (World Health

rganization) [10,11] , as of May 03, 2020, it has been noticed that

ore than 3.5 million people were infected with 0.247 million

eaths. Even in some countries like Italy and Spain, the death rate

s as high as almost 0.0 6 6. This verifies the severity and high in-

ectivity of 2019-nCoV. It is confirmed that most people infected

ith 2019-nCoV will experience mild to moderate respiratory ill-

ess, such as breathing difficulty, fever, sickness, cough, and other

ymptoms. However, other symptoms such as gastroenteritis and

eurological diseases of varying severity have also been reported

y [12,31–33] . The 2019-nCoV transmits mainly through droplets
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rom the nose when an infected person coughs or sneezes. Once

ne person inhales the droplets from infected people in the air, he

ill be exposed to the danger of getting the infection. As a result,

he best way to prevent the virus is to avoid mixing up with the

eople. The severity of this pandemic attracted the researchers and

cientists throughout the world [13,14] . It was observed that more

nd more countries started to ban international traveling, close

chools, shopping malls, and companies. The 2019-nCoV pandemic

as led to serious economic damage in the whole world. A large

umber of doctors and researchers also devoted themselves to the

nti-pandemic war and conducted researches in their areas of ex-

ertise. They looked into 2019-nCoV from various points of view,

uch as virology, infectious diseases, microbiology, public environ-

ental occupational health, veterinary sciences, and sociology, me-

ia studies, political economics, etc. China, USA, and Korea are

he leading countries on the 2019-nCoV research because the early

utbreak of the virus urged them to start relevant research imme-

iately. A group of researchers studied the origin of 2019-nCoV. It

s noted that by adding the class of super-spreaders a number of

ree equilibrium points for any compartmental model were pro-

ided for analysis of the disease [15,16] . Nda ̇orou et al., amalga-

ate the models proposed by Kim et al. [17] and Alasmawi et al.

18] , and suggested a new epidemiological compartment model

hat would take into account the super-spreading phenomenon of

ome individuals [19] . They further take a death-related compart-

ent due to the virus infection. By doing this they adopted the

https://doi.org/10.1016/j.chaos.2020.110256
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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new model as given below: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ S (t) = −β I 
N 

S − lβ H 
N 

S − β
′ P 

N 
S, 

˙ E (t) = β I 
N 

S + lβ H 
N 

S + β
′ P 

N 
S − k 

′ 
E, 

˙ I (t) = k 
′ 
ρ1 E − (γa + γi ) I − δi I, 

˙ P (t) = k 
′ 
ρ2 E − (γa + γi ) P − δp P, 

˙ A (t) = k 
′ 
(1 − ρ1 − ρ2 ) E, 

˙ H (t) = γa (I + P ) − γr H − δh H, 

˙ R (t) = γi (I + P ) + γr H, 

˙ F (t) = δi I + δp P + δh H. 

(1)

In this model they divided the total population N into eight epi-

demiological classes: S susceptible class, E exposed class, I symp-

tomatic and infectious class, P super-spreaders class, A infectious

but asymptomatic class, H hospitalized, R recovery class, and F fa-

tality class. By quantifying the transmission coefficient of human-

to-human, per unit time per person, where, 0 and 1, quantifies

the said transmission coefficient of super-spreaders and hospital-

ized patients respectively. The rate at which an infectious person

becomes symptomatic, super-spreader, or asymptomatic leaves the

exposed class. The exposed individuals become super-spreaders at

a very low rate. Individuals belonging to the symptomatic and

super-spreaders classes are hospitalized at the rate of a; i and r

are the recovery rate of hospitalized, and without being hospital-

ized patient. The death rates induced infected disease are i, p , and

h of super spreaders, and individuals hospitalized, respectively. At

any moment in time, 

˙ F (t) = δi I + δp P + δh H, 

die due to the disease. This model the transmissibility from asymp-

tomatic individuals, as their behavior was not evident. This prob-

lem is still controversial for epidemiologists at present. 

It is very important to study the mathematical models of in-

fectious diseases for a better understanding of their evaluation,

existence, stability, and control [1–3,37,40,41] . As the classical

approaches of mathematical models do not determine the high

degree of accuracy to model these diseases, fractional differen-

tial equations were introduced to handle such problems, which

have many applications in applied fields like production prob-

lems, optimization problem, artificial intelligence, medical diag-

noses, robotics, cosmology and many more. In the last few decades,

the fractional differential has been used in mathematical modeling

of biological phenomena [4–8,38,39] . This is because fractional cal-

culus can explain and process the retention and heritage proper-

ties of various materials more accurately than integer-order mod-

els. We include [20–23] for further applications about fractional

calculus. Hence, the aforementioned area has been investigated

from various angles such as qualitative theory, numerical analy-

sis, etc. (see [24–26] ). Researchers, therefore, expanded the clas-

sical calculus to the fractional-order via fractional-order modeling

in ( [27–30] ) using different mathematical techniques. Since math-

ematical models are powerful tools to investigate infectious dis-

ease. The mentioned area has been explored very well. Recently

some authors have considered mathematical models of COVID-19

under fractional order derivatives and produced very good results

(see some [34–36] ). 

Therefore, motivated from the above mentioned work, here we

study the model (1) under Caputo fractional derivative of order γ

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

D 

γ
t [ S(t)] = −β I 

N 
S − lβ H 

N 
S − β

′ P 
N 

S, 

D 

γ
t [ E(t)] = β I 

N 
S + lβ H 

N 
S + β

′ P 
N 

S − k 
′ 
E, 

D 

γ
t [ I(t)] = k 

′ 
ρ1 E − (γa + γi ) I − δi I, 

D 

γ
t [ P (t)] = k 

′ 
ρ2 E − (γa + γi ) P − δp P, 

D 

γ
t [ A (t)] = k 

′ 
(1 − ρ1 − ρ2 ) E, 

D 

γ
t [ H(t)] = γa (I + P ) − γr H − δh H, 

D 

γ
t [ R (t)] = γi (I + P ) + γr H, 

D 

γ
t [ F (t)] = δi I + δp P + δh H, 

(2)
nder initial conditions, 

S(0) = S 0 ; E(0) = E 0 ; I(0) = I 0 ;
P (0) = P 0 ; A (0) = A 0 ; H(0) = H 0 ;
 (0) = R 0 ; F (0) = F 0 . 

or the proposed model, we first derive existence results by us-

ng fixed point theory. Then, we extend the famous modified Eu-

er method for numerical simulations. The concerned method is

 powerful technique for the computation of numerical results.

ence, we first simulate the results against the available data taken

rom [2] . Then, we compared simulated data at different fractional

rder with real data. 

We organized the article as follows: 

Section 1 presents the introduction to the pandemic dis-

ase COVID-19, mathematical models, importance, and develop-

ent of fractional calculus and fractional differential equations.

n Section 2 basic definitions of fractional calculus are given.

ection 3 deals with the existence and uniqueness of the proposed

odel and provides the proper procedure of finding the general

olution of the considered model by using the modified Euler’s

ethod. Section 4 describes the graphical representation of the

roposed model. In Section 5 , we present the conclusion of the

anuscript. 

. Preliminaries 

efinition 2.1. Podlubny [26] Let Φ be a continuous function on

 

1 ([0 , T ] , R ) , a fractional integral in Riemann-Liouville sense corre-

ponding to t is defined as: 

 

κΦ(t) = 

1 

Γ (κ) 

∫ t 

0 

(t − ζ ) κ−1 Φ(ζ ) dζ , where κ, ζ ∈ (0 , ∞ ) . 

efinition 2.2. Kilbas et al. [20] Let Φ be a continuous function

n [0, T ]. The Caputo fractional derivative may be expressed as: 

 

βΦ(t) = 

1 

Γ (n − β) 

[∫ t 

0 

( t − ζ ) n −β−1 d n 

dζ n 
Φ(t)(ζ ) dζ

]
, 

here n = � β� + 1 and � β� represents the integers part of β . 

. Main work 

In this section, we will discuss the existence and uniqueness of

he proposed model. Also, by using fractional Euler’s method we

ill derive the numerical solution of (2) . 

.1. Equilibrium points and stability analysis 

To determine the equilibrium points of the proposed model

quate the right hand side of (2) to zero. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−β I 
N 

S − lβ H 
N 

S − β
′ P 

N 
S = 0 , 

β I 
N 

S + lβ H 
N 

S + β
′ P 

N 
S − k 

′ 
E = 0 , 

k 
′ 
ρ1 E − (γa + γi ) I − δi I = 0 , 

k 
′ 
ρ2 E − (γa + γi ) P − δp P = 0 , 

k 
′ 
(1 − ρ1 − ρ2 ) E = 0 , 

γa (I + P ) − γr H − δh H = 0 , 

γi (I + P ) + γr H = 0 , 

δi I + δp P + δh H = 0 . 

(3)

he disease-free equilibrium points is given by 

 

0 
(
S 0 , E 0 , I 0 , P 0 , A 

0 , H 

0 , R 

0 , F 0 
)

= ( N, 0 , 0 , 0 , 0 , 0 , 0 , 0 ) . (4)

he endemic equilibrium points is denoted by E ∗(S ∗, E ∗, I ∗, P ∗,
 

∗, H 

∗, R ∗, F ∗) and can be obtained by solving the system of equa-

ions in (3) simultaneously, taking into the consideration the fact

hat E ∗( S ∗, E ∗, I ∗, P ∗, A 

∗, H 

∗, R ∗, F ∗) � = ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) . 
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s  

c⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w  

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
A  

n  

s

‖
‖
T  

c  

h

0

P  

s

‖

w  

d  

2  

t

0

t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 

b  

c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w⎧⎪⎨
⎪⎩
C

‖

I

Since, the dimension of the proposed model is much higher,

herefore, it is very difficult to discuss the stability of the proposed

odel concerning equilibrium points. Thus, we will study the sta-

ility analysis based on the basic reproduction number. The ba-

ic reproduction number is computed by using the next-generation

atrix approach. For more detail see [19] 

 0 = 

βρ1 (γa l + 
 h ) 


 i 
 h 

+ 

(βγa l + β
′ 

 h ) ρ2 


 p 
 h 

, 

here 
 i = γa + γi + δi , 
 p = γa + γi + δp and 
 h = γr + δh . 

heorem 3.1. The diseases free equilibrium of system (2) , i.e. ( N , 0,

, 0, 0, 0, 0) is locally asymptotically stable if R 0 < 1 and unstable if

 0 > 1 . 

roof. The proof of the theorem follows from Ndarou et al.

19] . �

.2. Existence and uniqueness 

Here we will discuss the existence and uniqueness of the con-

idered model. Applying fractional integral to (2) and using initial

onditions we obtained, 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S(t) = S 0 + 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, S) ds, 

E(t) = E 0 + 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, E) ds, 

I(t) = I 0 + 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, I) ds, 

P (t) = P 0 + 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, P ) ds, 

A (t) = A 0 + 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, A ) ds, 

H(t) = H 0 + 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, H) ds, 

R (t) = R 0 + 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, R ) ds, 

F (t) = F 0 + 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, F ) ds, 

(5) 

here the functions under the integral signs in (5) are defined as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K 1 (t, S) = −β I 
N 

S − lβ H 
N 

S − β
′ P 

N 
S, 

K 1 (t, S) = β I 
N 

S + lβ H 
N 

S + β
′ P 

N 
S − k 

′ 
E, 

K 1 (t, S) = k 
′ 
ρ1 E − (γa + γi ) I − δi I, 

K 1 (t, S) = k 
′ 
ρ2 E − (γa + γi ) P − δp P, 

K 1 (t, S) = k 
′ 
(1 − ρ1 − ρ2 ) E, 

K 1 (t, S) = γa (I + P ) − γr H − δh H, 

K 1 (t, S) = γi (I + P ) + γr H, 

K 1 (t, S) = δi I + δp P + δh H. 

(6) 

ssume that S ( t ), E ( t ), I ( t ), P ( t ), A ( t ), H ( t ), R ( t ) and F ( t ) are non-

egative bounded functions. i.e, there exists some positive con-

tants Δ1 , Δ2 , Δ3 , Δ4 , Δ5 , Δ6 , Δ7 , Δ8 , such that 

‖ 

S(t) ‖ 

≤ Δ1 ; ‖ 

E(t) ‖ 

≤ Δ2 ; ‖ 

I(t) ‖ 

≤ Δ3 ;
 

P (t) ‖ 

≤ Δ4 ; ‖ 

A (t) ‖ 

≤ Δ5 ; ‖ 

H(t) ‖ 

≤ Δ6 ;
 

R (t) ‖ 

≤ Δ7 ; ‖ 

F (t) ‖ 

≤ Δ8 . 

heorem 3.2. The functions K i for i = 1 , 2 , · · · , 8 satisfy Lipschitz’s

onditions and are contraction mappings, if the following condition

olds, 

 ≤ M = max { ς 1 , ς 2 , ς 3 , ς 4 , ς 5 , ς 6 , ς 7 , ς 8 } < 1 . 

roof. First we consider the function K 1 . For any S and S 1 con-

ider 

 

K 1 (t, S) − K 1 (t, S 1 ) ‖ = 

∥∥∥β
I 

N 

(S 1 − S) + lβ
H 

N 

(S 1 − S) + β
′ P 

N 

(S 1 − S) 

∥∥∥
≤

∥∥∥β
I 

N 

(S 1 − S) 

∥∥∥ + 

∥∥∥lβ
H 

N 

(S 1 − S) 

∥∥∥ + 

∥∥∥β
′ P 

N 

(S 1 − S) 

∥∥∥
≤

(
β

‖ I(t) ‖ 
N 

+ lβ
‖ H(t) ‖ 

N 

+ β
′ ‖ P(t) ‖ 

N 

)
‖ S 1 − S ‖ 
≤
(

β
Δ3 

N 

+ lβ
Δ6 

N 

+ β
′ Δ4 

N 

)
‖ S − S 1 ‖ 

≤ ς 1 ‖ S − S 1 ‖ , 

here ς 1 = β Δ3 
N + lβ Δ6 

N + β
′ Δ4 

N . Thus, K 1 satisfy Lipschitz con-

ition. Similarly, it can be shown that, we can find ς j , for j =
 , 3 , 4 , 5 , 6 , 7 , 8 so that K j for j = 2 , 3 , · · · , 8 , the Lipschitz’s condi-

ions are satisfied. Moreover, under the condition 

 ≤ M = max { ς 1 , ς 2 , ς 3 , ς 4 , ς 5 , ς 6 , ς 7 , ς 8 } < 1 , 

he functions are contractions. �

Now, we can write (5) recursively as: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S n (t) = 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, S n −1 ) ds, 

E n (t) = 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, E n −1 ) ds, 

I n (t) = 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, I n −1 ) ds, 

P n (t) = 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, P n −1 ) ds, 

A n (t) = 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, A n −1 ) ds, 

H n (t) = 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, H n −1 ) ds, 

R n (t) = 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, R n −1 ) ds, 

F n (t) = 

1 
Γ (γ ) 

∫ t 
0 (t − s ) γ −1 K 1 (s, F n −1 ) ds. 

(7) 

The initial components of the above equations are determined

y the given initial conditions. The difference between two terms

an be represented as : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n (t) = S n (t) − S n −1 (t) = 

1 
Γ (γ ) 

∫ t 
0 [ K 1 (s, S n −1 ) − K 1 (s, S n −2 ) ] ds, 

Ψn (t) = E n (t) − E n −1 (t) = 

1 
Γ (γ ) 

∫ t 
0 [ K 2 (s, E n −1 ) − K 2 (s, E n −2 ) ] ds, 

ξn (t) = I n (t) − I n −1 (t) = 

1 
Γ (γ ) 

∫ t 
0 [ K 3 (s, I n −1 ) − K 3 (s, I n −2 ) ] ds, 

χn (t) = P n (t) − P n −1 (t) = 

1 
Γ (γ ) 

∫ t 
0 [ K 4 (s, P n −1 ) − K 4 (s, P n −2 ) ] ds, 

�n (t) = A n (t) − A n −1 (t) = 

1 
Γ (γ ) 

∫ t 
0 [ K 5 (s, A n −1 ) − K 5 (s, A n −2 ) ] ds, 

�n (t) = H n (t) − H n −1 (t) = 

1 
Γ (γ ) 

∫ t 
0 [ K 6 (s, H n −1 ) − K 6 (s, H n −2 ) ] ds, 

�n (t) = R n (t) − R n −1 (t) = 

1 
Γ (γ ) 

∫ t 
0 [ K 7 (s, R n −1 ) − K 7 (s, R n −2 ) ] ds, 

Λn (t) = F n (t) − F n −1 (t) = 

1 
Γ (γ ) 

∫ t 
0 [ K 8 (s, F n −1 ) − K 8 (s, F n −2 ) ] ds, 

(8) 

here 
 

 

 

 

 

S n (t) = 

∑ n 
i =0 i (t) , E n (t) = 

∑ n 
i =0 Ψi (t) , 

I n (t) = 

∑ n 
i =0 ξi (t) , P n (t) = 

∑ n 
i =0 χi (t) , 

A n (t) = 

∑ n 
i =0 �i (t) , H n (t) = 

∑ n 
i =0 �i (t) , 

R n (t) = 

∑ n 
i =0 �i (t) , F n (t) = 

∑ n 
i =0 Λi (t) . 

(9) 

onsider 

 

n (t) ‖ 

= ‖ 

S n (t) − S n −1 (t) ‖ 

= 

1 

Γ (γ ) 

∫ t 

0 
[ K 1 (s, S n −1 ) − K 1 (s, S n −2 ) ] ds 

= 

ς 1 

Γ (γ ) 

∫ t 

0 
‖ 

S n −1 − S n −2 ‖ 

ds 

= 

ς 1 

Γ (γ ) 

∫ t 

0 
‖ 

n −1 (t) ‖ 

ds. 

n similar fashion, we can obtain 

‖ 

Ψn (t) ‖ 

= 

ς 2 

Γ (γ ) 

∫ t 

0 
‖ 

Ψn −1 (t) ‖ 

ds, 

‖ 

ξn (t) ‖ 

= 

ς 3 

Γ (γ ) 

∫ t 

0 
‖ 

ξn −1 (t) ‖ 

ds, 

‖ 

χn (t) ‖ 

= 

ς 4 

Γ (γ ) 

∫ t 

0 
‖ 

χn −1 (t) ‖ 

ds, 

‖ 

�n (t) ‖ 

= 

ς 5 

Γ (γ ) 

∫ t 

0 
‖ 

�n −1 (t) ‖ 

ds, 
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t

P  

i

‖

R

 

u

‖
I  

s

A

T

3

 

m⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

 

w⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

 

 

o{
 

 

t  

w  
‖ 

�n (t) ‖ 

= 

ς 6 

Γ (γ ) 

∫ t 

0 
‖ 

�n −1 (t) ‖ 

ds, 

‖ 

�n (t) ‖ 

= 

ς 7 

Γ (γ ) 

∫ t 

0 
‖ 

�n −1 (t) ‖ 

ds, 

‖ 

Λn (t) ‖ 

= 

ς 8 

Γ (γ ) 

∫ t 

0 
‖ 

Λn −1 (t) ‖ 

ds. 

Theorem 3.3. 

(i) The functions defined in (9) are exist and smooth. 

ii) If there exist t 0 > 1 such that 
ς i 

�(γ ) 
t 0 < 1 , for i = 1 , 2 , · · · , 8 , then,

at least one solution of the system exist. 

Proof. 

(i) Since, the functions S ( t ), E ( t ), I ( t ), P ( t ), A ( t ), H ( t ), R ( t ) and F ( t ) are

bounded and each kernels K i for i = 1 , 2 , · · · , 8 , fulfill Lipschitz’s

conditions, thus, we obtain the following relations: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

‖ 

n (t) ‖ 

≤ ‖ 

S(0) ‖ 

∥∥ ς 1 
�(γ ) 

t 
∥∥n 

, 

‖ 

Ψn (t) ‖ 

≤ ‖ 

E(0) ‖ 

∥∥ ς 2 
�(γ ) 

t 
∥∥n 

, 

‖ 

ξn (t) ‖ 

≤ ‖ 

I(0) ‖ 

∥∥ ς 3 
�(γ ) 

t 
∥∥n 

, 

‖ 

χn (t) ‖ 

≤ ‖ 

P (0) ‖ 

∥∥ ς 4 
�(γ ) 

t 
∥∥n 

, 

‖ 

�n (t) ‖ 

≤ ‖ 

A (0) ‖ 

∥∥ ς 5 
�(γ ) 

t 
∥∥n 

, 

‖ 

�n (t) ‖ 

≤ ‖ 

H(0) ‖ 

∥∥ ς 6 
�(γ ) 

t 
∥∥n 

, 

‖ 

�n (t) ‖ 

≤ ‖ 

R (0) ‖ 

∥∥ ς 7 
�(γ ) 

t 
∥∥n 

, 

‖ 

Λn (t) ‖ 

≤ ‖ 

F (0) ‖ 

∥∥ ς 8 
�(γ ) 

t 
∥∥n 

. 

(10)

The system (10) shows the existence and smoothness of the

function defined in (9) . 

ii) We will show that S n ( t ), E n ( t ), I n ( t ), P n ( t ), A n ( t ), H n ( t ), R n ( t ) and

F n ( t ) converge to system of solutions of (2) . 

Define, B n ( t ), C n ( t ), D n ( t ), G n ( t ), L n ( t ), M n ( t ), N n ( t ), O n ( t ), as re-

mainder terms after n-iterations, such that ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

S(t) − S(0) = S n (t) − B n (t) , 
E(t) − E(0) = E n (t) − C n (t) , 
I(t) − I(0) = I n (t) − D n (t) , 
P (t) − P (0) = P n (t) − G n (t) , 
A (t) − A (0) = A n (t) − L n (t) , 
H(t) − H(0) = H n (t) − M n (t) , 
R (t) − R (0) = R n (t) − N n (t) , 
F (t) − F (0) = F n (t) − O n (t) . 

(11)

Using triangle inequality along with the Lipschitz condition of

K 1 , we obtain: 

‖ 

B n (t) ‖ 

= 

1 

�(γ ) 

∫ t 

0 
[ K 1 (s, S) − K 1 (s, S n −1 ) ] ds 

≤ ς 1 

�(γ ) 
‖ 

S − S n −1 ‖ 

t. 

Applying the above process recursively, we get 

‖ 

B n (t) ‖ 

≤
∥∥∥∥ ς 1 

�(γ ) 
t 

∥∥∥∥
n +1 

�1 . 

Then, at t 0 one has 

‖ 

B n (t) ‖ 

≤
∥∥∥∥ ς 1 

�(γ ) 
t 0 

∥∥∥∥
n +1 

�1 . 

Taking limit as n tends to infinity 

lim 

n →∞ 

‖ 

B n (t) ‖ 

≤ lim 

n →∞ 

∥∥∥∥ ς 1 

�(γ ) 
t 0 

∥∥∥∥
n +1 

�1 . (12)

Using hypothesis 
ς i 

�(γ ) 
t 0 < 1 , Eq. (12) becomes 

lim 

n →∞ 

‖ 

B n (t) ‖ 

= 0 . 
Similarly, on using limit as n tends to infinity, we obtain 

‖ 

C n (t) ‖ 

→ 0 ; ‖ 

D n (t) ‖ 

→ 0 ; ‖ 

G n (t) ‖ 

→ 0 ;
‖ 

L n (t) ‖ 

→ 0 ; ‖ 

M n (t) ‖ 

→ 0 ; ‖ 

N n (t) ‖ 

→ 0 

‖ 

O n (t) ‖ 

→ 0 . 

Thus, at least one solution of the system exist. 

�

heorem 3.4. If the condition (1 − ς i 
�(γ ) 

t) > 0 , for i = 1 , 2 , · · · , 8 ,

hen the system (2) has a unique solution. 

roof. Assume that { S 1 ( t ), E 1 ( t ), I 1 ( t ), P 1 ( t ), A 1 ( t ), H 1 ( t ), R 1 ( t ), F 1 ( t )}

s another set of solution of system (2) then, 

 

S(t) − S 1 (t) ‖ 

= 

1 

Γ (γ ) 

∫ t 

0 
[ K 1 (s, S) − K 1 (s, S 1 ) ] ds 

≤ ς 1 

�(γ ) 
t ‖ 

S(t) − S 1 (t) ‖ 

. 

earranging the terms, we get 

(1 − ς 1 

�(γ ) 
t) ‖ 

S(t) − S 1 (t) ‖ 

≤ 0 , (13)

sing hypothesis (1 − ς 1 
�(γ ) 

t) > 0 , the last Eq. (13) gets the form 

 

S(t) − S 1 (t) ‖ 

= 0 . 

t means that S(t) = S 1 (t) . Applying the same procedure to each

olution for i = 2 , 3 , · · · , 8 , we obtain 

E(t) = E 1 (t) ; I(t) = I 1 (t) ; P (t) = P 1 (t) ;
 (t) = A 1 (t) ; H(t) = H 1 (t) ; R (t) = R 1 (t) ;

F (t) = F 1 (t) . 

hus, the theorem is proved. �

.3. Procedure for solution 

Here we derive the general procedure of fractional order Euler

ethod for our considered model. Reformulate (2) as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D 

γ
t [ S(t)] = Θ1 ( t , S(t ) ) , 

D 

γ
t [ E(t)] = Θ2 ( t , E(t ) ) , 

D 

γ
t [ I(t)] = Θ3 ( t , I(t ) ) , 

D 

γ
t [ P (t)] = Θ4 ( t , P (t ) ) , 

D 

γ
t [ A (t)] = Θ5 ( t , A (t ) ) , 

D 

γ
t [ H(t)] = Θ6 ( t , H(t ) ) , 

D 

γ
t [ R (t)] = Θ7 ( t , R (t ) ) , 

D 

γ
t [ F (t)] = Θ8 ( t , F (t ) ) , 

(14)

here 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Θ1 ( t , S(t ) ) = −β I 
N 

S − lβ H 
N 

S − β
′ P 

N 
S, 

Θ2 ( t , E(t ) ) = β I 
N 

S + lβ H 
N 

S + β
′ P 

N 
S − k 

′ 
E, 

Θ3 ( t , I(t ) ) = k 
′ 
ρ1 E − (γa + γi ) I − δi I, 

Θ4 ( t , P (t ) ) = k 
′ 
ρ2 E − (γa + γi ) P − δp P, 

Θ5 ( t , A (t ) ) = k 
′ 
(1 − ρ1 − ρ2 ) E, 

Θ6 ( t , H(t ) ) = γa (I + P ) − γr H − δh H, 

Θ7 ( t , R (t ) ) = γi (I + P ) + γr H, 

Θ8 ( t , F (t ) ) = δi I + δp P + δh H. 

(15)

To procure an iterative scheme, we go ahead with first equation

f the model (2) as follows: 

D 

γ
t [ S(t)] = Θ1 ( t , S(t ) ) 

S(0) = S 0 , t > 0 . 
(16)

Let [0, b ] be the set of points which we want to find the solu-

ion of the Eq. (16) . Actually, we cannot evaluate the function S ( t )

hich will be the solution of Eq. (16) . Instead of this, a set points
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⎧⎪⎪⎨
⎪⎪⎩

 

⎧⎪⎪⎨
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⎪⎪⎩

 

⎧⎪⎪⎨
⎪⎪⎩

 

⎧⎪⎪⎨
⎪⎪⎩
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⎧⎪⎪⎨
⎪⎪⎩

 

⎧⎪⎪⎨
⎪⎪⎩
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p  

W  

r  

d  

t  

n  

t  

l  

2  

c  

c  

t  

T  

a  

a  
 ( t r , t r+1 ) } is generated from which the points are used for our iter-

tive procedure. For this, we divide the interval [0, b ] into k subin-

ervals [ t r , t r+1 ] of equal width h = 

b 
k 

using the nodes t r = rh for

 = 0 , 1 , 2 , · · · , k. Assume that S(t) , D 

γ
t [ S(t)] and D 

2 γ
t [ S(t)] are con-

inous on [0, b ]. By generalized Taylor formula expand S ( t ) about

 = t 0 = 0 . For each value t there is a value C 1 so that 

(t) = S(t 0 ) + D 

γ
t [ S(t )] t 0 

t γ

Γ (γ + 1) 
+ D 

2 γ
t [ S(t )] C 1 

t 2 γ

Γ (2 γ + 1) 
, 

(17) 

hen D 

γ
t [ S(t)](t 0 ) = Θ1 ( t 0 , S(t 0 ) , E(t 0 ) ) and h = t 1 are substituted

nto (17) the result is an expression for 

S(t 1 ) = S(t 0 ) + Θ1 ( t 0 , S(t 0 ) ) 
h γ

Γ (γ +1) 
+ D 

2 γ
t [ S(t)] C 1 

h 2 γ

Γ (2 γ +1) 
. If the

tep size h is chosen small enough, then we may neglect the

econd-order term ( h 2 γ ) and get 

(t 1 ) = S(t 0 ) + Θ1 ( t 0 , S(t 0 ) ) 
h 

γ

Γ (γ + 1) 
. (18)

n repeating the same fashion, a sequence of points that approxi-

ates the solution is formed. A general formula about t r+1 = t r + h

s 

(t r+1 ) = S(t r ) + Θ1 ( t r , S(t r ) ) 
h 

γ

Γ (γ + 1) 
. (19) 

q. (19) represents the general formula for fractional Euler’s

ethod. Now, we shall derive the fundamental algorithm for the

umerical solution of the Eq. (16) . Applying fractional integral to

oth sides of (16) , we have 

(t) = S(0) + I γ [ Θ1 ( t , S(t ) ) ] . (20)

o obtain the solution point ( t 1 , S ( t 1 )), we substitute t = t 1 into

20) and we get 

(t 1 ) = S(0) + (I γ [ Θ1 ( t , S(t ) ) ] ) (t 1 ) . (21)

ow if the modified trapezoidal rule is used to approxi-

ate (I γ [ Θ1 ( t, S(t) ) ] ) (t 1 ) with the step size h = t 1 − t 0 , then

q. (21) becomes 

(t 1 ) = S(0) + 

γ h 

γ [ Θ1 ( t 0 , S(t 0 ) ) ] 

Γ (γ + 2) 
+ 

h 

γ [ Θ1 ( t 1 , S(t 1 ) ) ] 

Γ (γ + 2) 
. (22)

otice that the formula on the right hand side of Eq. (22) involves

he term S ( t 1 ). So, we use an estimate for S ( t 1 ). Fractional Euler’s

ethod will suffice for this purpose. Substituting (18) into (22) ,

ields 

(t 1 ) = S(0) + 

γ h 

γ [ Θ1 ( t 0 , S(t 0 ) ) ] 

Γ (γ + 2) 

+ 

h 

γ [ Θ1 ( t 1 , S(t 0 ) ) ] + 

h γ

Γ (γ +1) 
Θ1 ( t 0 , S(t 0 ) ) 

Γ (γ + 2) 
. 

he process is repeated to generate a sequence of points that ap-

roximate the solution S ( t ). The general formula for our algorithm

s 
 

 

 

 

 

 

 

S(t r ) = S(0) + 

h γ

Γ (γ +2) 

(
(r − 1) γ +1 − (r − γ − 1) r γ

)
Θ1 ( t 0 , S(t 0 ) ) 

+ 

h γ

Γ (γ +2) 

∑ r−1 
i =1 

(
(r − i + 1) γ +1 − 2(r − 1) γ +1 

+(r − i − 1) γ +1 
)
Θ1 ( t i , S(t i ) ) 

+ 

h γ

Γ (γ +2) 
Θ1 

(
t r , S(t r−1 ) + 

h γ

Γ (γ +1) 
Θ1 (t r−1 , S(t r−1 )) 

)
. 

(23) 

Using the same procedure, we obtain the numerical scheme for

he other compartments of the model (2) 

 

 

 

 

 

 

 

E(t r ) = E(0) + 

h γ

Γ (γ +2) 

(
(r − 1) γ +1 − (r − γ − 1) r γ

)
Θ2 ( t 0 , E(t 0 ) )

+ 

h γ

Γ (γ +2) 

∑ r−1 
i =1 

(
(r − i + 1) γ +1 − 2(r − 1) γ +1 

+(r − i − 1) γ +1 
)
Θ2 ( t i , E(t i ) ) 

+ 

h γ

Γ (γ +2) 
Θ2 

(
t r , E(t r−1 ) + 

h γ

Γ (γ +1) 
Θ2 (t r−1 , E(t r−1 )) 

)
, 
(24) 

 

 

 

 

 

 

 

I(t r ) = I(0) + 

h γ

Γ (γ +2) 

(
(r − 1) γ +1 − (r − γ − 1) r γ

)
Θ3 ( t 0 , I(t 0 ) ) 

+ 

h γ

Γ (γ +2) 

∑ r−1 
i =1 

(
(r − i + 1) γ +1 − 2(r − 1) γ +1 

+(r − i − 1) γ +1 
)
Θ3 ( t i , I(t i ) ) 

+ 

h γ

Γ (γ +2) 
Θ3 

(
t r , I(t r−1 ) + 

h γ

Γ (γ +1) 
Θ1 (t r−1 , I(t r−1 )) 

)
, 

(25) 

 

 

 

 

 

 

 

P (t r ) = P (0) + 

h γ

Γ (γ +2) 

(
(r − 1) γ +1 − (r − γ − 1) r γ

)
Θ4 ( t 0 , P (t 0 ) )

+ 

h γ

Γ (γ +2) 

∑ r−1 
i =1 

(
(r − i + 1) γ +1 − 2(r − 1) γ +1 

+(r − i − 1) γ +1 
)
Θ4 ( t i , P (t i ) ) 

+ 

h γ

Γ (γ +2) 
Θ4 

(
t r , P (t r−1 ) + 

h γ

Γ (γ +1) 
Θ4 (t r−1 , P (t r−1 )) 

)
, 

(26) 

 

 

 

 

 

 

 

A (t r ) = A (0) + 

h γ

Γ (γ +2) 

(
(r − 1) γ +1 − (r − γ − 1) r γ

)
Θ5 ( t 0 , A (t 0 ) )

+ 

h γ

Γ (γ +2) 

∑ r−1 
i =1 

(
(r − i + 1) γ +1 − 2(r − 1) γ +1 

+(r − i − 1) γ +1 
)
Θ5 ( t i , A (t i ) ) 

+ 

h γ

Γ (γ +2) 
Θ5 

(
t r , A (t r−1 ) + 

h γ

Γ (γ +1) 
Θ5 (t r−1 , A (t r−1 )) 

)
, 

(27) 

 

 

 

 

 

 

 

H(t r ) = H(0) + 

h γ

Γ (γ +2) 

(
(r − 1) γ +1 − (r − γ − 1) r γ

)
Θ6 ( t 0 , H(t 0 )

+ 

h γ

Γ (γ +2) 

∑ r−1 
i =1 

(
(r − i + 1) γ +1 − 2(r − 1) γ +1 

+(r − i − 1) γ +1 
)
Θ6 ( t i , H(t i ) ) 

+ 

h γ

Γ (γ +2) 
Θ6 

(
t r , H(t r−1 ) + 

h γ

Γ (γ +1) 
Θ6 (t r−1 , H(t r−1 )) 

)
, 

(28) 

 

 

 

 

 

 

 

R (t r ) = R (0) + 

h γ

Γ (γ +2) 

(
(r − 1) γ +1 − (r − γ − 1) r γ

)
Θ7 ( t 0 , R (t 0 ) )

+ 

h γ

Γ (γ +2) 

∑ r−1 
i =1 

(
(r − i + 1) γ +1 − 2(r − 1) γ +1 

+(r − i − 1) γ +1 
)
Θ7 ( t i , R (t i ) ) 

+ 

h γ

Γ (γ +2) 
Θ7 

(
t r , R (t r−1 ) + 

h γ

Γ (γ +1) 
Θ7 (t r−1 , R (t r−1 )) 

)
, 

(29) 

 

 

 

 

 

 

 

F (t r ) = F (0) + 

h γ

Γ (γ +2) 

(
(r − 1) γ +1 − (r − γ − 1) r γ

)
Θ8 ( t 0 , F (t 0 ) )

+ 

h γ

Γ (γ +2) 

∑ r−1 
i =1 

(
(r − i + 1) γ +1 − 2(r − 1) γ +1 

+(r − i − 1) γ +1 
)
Θ8 ( t i , F (t i ) ) 

+ 

h γ

Γ (γ +2) 
Θ8 

(
t r , F (t r−1 ) + 

h γ

Γ (γ +1) 
Θ8 (t r−1 , F (t r−1 )) 

)
. 

(30) 

. Graphical presentations and discussion 

In the present section, we consider the model (2) and using the

arameters values shown in Table 1 to obtain the graphical results.

e conduct numerical simulations to equate the proposed model

esults with the real data obtained from various reports from Worl-

ometer and WHO, started from Jan 4, 2020, when the Chines au-

horities confirmed 6 cases in one day. Slowly and gradually the

umber rose to 1460 on 20th January followed by 26 deaths. On

he next day, the number of confirmed cases increased to 1739 fol-

owed by 38 deaths. This number rapidly increased to 3892 with

54 deaths on 4th February 2020 according to Worldometer. To

ontrol the disease, Chines authorities put lockdown in Wuhan

ity. Therefore, the spread of the disease was reduced. As the to-

al population of Wuhan city is 11 million take, N = 110 0 0 0 0 0 / 250 .

his denominator was measured in the first days of the outbreak

nd was later proven to be a reasonable value; it is an accept-

ble value for the restriction of individual movements according to
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Table 1 

Parameter values for the numerical simulations of the proposed model [2] . 

Name Description Value Units 

β “Transmission coefficient from infected individuals” 2.55001 perday 

l “Relative transmissibility of hospitalized patients” 1.56001 dimensionless 

β ′ “Transmission coefficient due to super-spreaders” 7.5001 perday 

k 
′ 

“Rate at which exposed become infectious” 0.25001 perday 

ρ1 “Rate at which exposed people become infected I ” 0.58001 dimensionless 

ρ2 “Rate at which exposed people become super-spreaders” 0.00100 dimensionless 

γ α “Rate of being hospitalized” 0.94001 perday 

γ i “Recovery rate without being hospitalized” 0.27001 perday 

γ r “Recovery rate of hospitalized patients” 0.50001 perday 

δi “Disease induced death rate due to infected class” 3.50001 perday 

δp “Disease induced death rate due to super-spreaders” 1.00001 perday 

δh “Disease induced death rate due to hospitalized class” 0.30001 perday 

Fig. 1. Dynamical behavior of susceptible class at various fractional order of the considered model. 

Fig. 2. Dynamical behavior of exposed class at various fractional order of the considered model. 

 

 

 

 

 

 

 

 

S  

d  

i  

s  

a  

i  

c  

o  

t  

p  
the actual data reported by the WHO. As for the preconditions, fix

theses values: S 0 = N − 6 , E 0 = 0 , I 0 = 1 , P 0 = 5 , A 0 = 0 , H 0 = 0 , R 0 =
0 , and F 0 = 0 . 

The approximate solutions given in (23) - (30) are presented by

graphs corresponding to different fractional order as: 

In Figs. 1 –8 , we have presented the approximate solutions of

different com partments against the given data and corresponding

to different fractional orders. We see that initially the people are

assumed uninfected (susceptible). When the outbreak started the

population of susceptible was going on decreasing as in Fig. 1 .
ince they were exposed to infection, therefore the population

ensity of exposed, symptomatic and infectious, super-spreaders,

nfectious, hospitalized classes were increasing rapidly as pre-

ented in Figs. 2 –6 . This increase resulted in the rise of death rate,

nd many people got rid of the infection which led to an increase

n the population of recovered and fatality classes. The rate of de-

ay and growth is different due to fractional order. The smaller the

rder the faster the concerned process and vice versa. Hence, when

he fractional order γ → 0, the corresponding solutions also ap-

roach to the solution at integer order. As fractional differential
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Fig. 3. Dynamical behavior of symptomatic and infectious class at various fractional order of the considered model. 

Fig. 4. Dynamical behavior of super-spreaders class at various fractional order of the considered model. 

Fig. 5. Dynamical behavior of infectious but asymptomatic class at various fractional order of the considered model. 
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γ  
perator has a greater degree of freedom which provides a com-

lete spectrum of the geometry, we have taken only a few frac-

ional orders to observe the dynamical behaviors of the model un-

er consideration. Further, in Fig. 9 , we compare our simulated re-

ults with the available real data published in [9] from 4th January

020 to 8th March 2020 for 67 days as [6, 12, 19, 25, 31, 38, 44,

0, 80, 131, 131, 259, 467, 688, 776, 1776, 1460, 1739, 1984, 2101,
590, 2827, 3233, 3892, 3697, 3151, 3387, 2653, 2984, 2473, 2022,

820, 1998, 1506, 1278, 2051, 1772, 1891, 399, 894, 397, 650, 415,

18, 412, 439, 441, 435, 579, 206, 130, 120, 143, 146, 102, 46, 45,

0, 31, 26, 11, 18, 27, 29, 39, 39]. 

We see that the graphs of the curves of simulated data and

eal data are very close to each other at the order of 0.97. Hence,

= 0 . 97 is the best suitable fractional-order value. Further, the
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Fig. 6. Dynamical behavior of hospitalized class at various fractional order of the considered model. 

Fig. 7. Dynamical behavior of Recovered class at various fractional order of the considered model. 

Fig. 8. Dynamical behavior of fatality class at various fractional order of the considered model. 
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i

 

s  

b

confirmed reported death in [9] as [0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 8,

15, 15, 25, 26, 26, 38, 43, 46, 45, 57, 64, 66, 73, 73, 86, 89, 97, 108,

97, 254, 121, 121, 142, 106, 106, 98, 115, 118, 109, 97, 150, 71, 52,

29, 44, 37, 35, 42, 31, 38, 31, 30, 28, 27, 23, 17, 22, 11, 7, 14, 10, 14,

13, 13] from 4th January 2020 to 8th March 2020 for 67 days are
ompare with the simulated data against different fractional order

n Fig. 10 . 

Again from Fig. 10 , we see that at fractional-order γ = 0 . 97 , the

imulated data and real are very close to each other; hence, the

est choice of the fractional-order value is γ = 0 . 97 . 
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Fig. 9. Comparison of simulated and real data at different fractional order for the confirmed reported cases per day of the proposed model. 

Fig. 10. Comparison of simulated and real data at different fractional order for the confirmed reported death per day of the proposed model. 
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. Conclusion 

This paper investigates the fractional-order mathematical mod-

ling of COVID-19 transmission. We show the existence and

niqueness of the model by using nonlinear analysis. We obtain

he numerical solution of the proposed model through fractional

uler’s method. In the end, numerical simulation is also provided.

e observe that fractional differential operators provide the global

ynamics of the model we have considered. It is also observed that

he smaller the fractional-order faster the decay or growth process

nd hence stability occurs rapidly on smaller fractional orders. Fur-

her, the results we have simulated in various Figs. 1 –8 for dif-

erent fractional order. As the order is increasing the solution ap-

roaches to the result at integer order 1. Also, we have compared

ur simulated results at different fractional-order against real data

or reported cases of infection and death. We see that numerical

esults are close to real data solutions. The curve very well coin-

ides with real data at γ = 0 . 97 . So this is the best value of frac-

ional order. 

uthors contribution 

All the authors have equal contribution in this work. 

unding 

No source exist of funding this work. 
eclaration of Competing Interest 

None. 

cknowledgment 

We are thankful to the reviewers for their careful reading and

uggestions. In addition, authors also would like to acknowledge

nd express their gratitude to the United Arab Emirates Univer-

ity , Al Ain, UAE for providing the financial support with grant no.

1S363-UPAR (4) 2018 . 

eferences 

[1] Djordjevic J , Silva CJ , Torres DFM . A stochastic SICA epidemic model for HIV

transmission. Appl Math Lett 2018;84:168–75 . 

[2] Ndairou F , Nieto JJ , Area I , Silva CJ , Torres DFM . Mathematical modeling of zika
disease in pregnant women and newborns with microcephaly in brazil. Math

Methods Appl Sci 2018;41:8929–41 . 
[3] Rachah A , Torres DFM . Dynamics and optimal control of ebola transmission.

Math Comput Sci 2016;10:331–42 . 
[4] Arafa AAM , Rida SZ , Khalil M . Solutions of fractional order model of childhood

diseases with constant vaccination strategy. Math Sci Lett 2012;1(1):17–23 . 
[5] Magin R . Fractional calculus in bioengineering. Begell House publishers; 2004 . 

[6] Lia Y , Haq F , Shah K , Shahzad M , Rahman G . Numerical analysis of fractional

order pine wilt disease model with bilinear incident rate. J Math Computer Sci
2017;17:420–8 . 

[7] Kumar D , Singh J , Rathore S . Application of homotopy analysis transform
method to fractional biological population model. Romanian Reports Physics

2012;65(1):63–75 . 

https://doi.org/10.13039/501100006013
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0007


10 S. Ahmad, A. Ullah and Q.M. Al-Mdallal et al. / Chaos, Solitons and Fractals 139 (2020) 110256 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  

 

 

 

 

[

 

 

 

 

 

 

[  

 

[  

 

[  

 

 

 

 

 

[8] Haq F , Shah K , Rahman G , Shahzad M . Numerical analysis of fractional or-
der model of HIV-1 infection of CD4+ t-cells. Comput Method Differ Eq

2017;5(1):1–11 . 
[9] COVID-19. Coronavirus pandemic. 2020. https://www.worldometers.info/

coronavirus/#repro , Accessed March 26. 
[10] Salud D.L., Alerta O.P. Epidemiol ogica nuevo coronavirus (ncov).

2020. https://www.paho.org/hq/index.php?option=com _ docman&view=
download&category _ slug=coronavirus- alertas- epidemiologicas&alias=51351- 

16- de- enero- de- 2020- nuevo- coronavirus- ncov- alerta- epidemiologica- 

1&Itemid=270&lang=es accessed on January 16. 
[11] Salud D.L., Actualizaci O.P.. On epidemiol ogica nuevo coronavirus (2019-

ncov). 2020. https://www.paho.org/hq/index.php?option=com _ docman&view=
download&category _ slug=coronavirus- alertas- epidemiologicas&alias=51355- 

20- de- enero- de- 2020- nuevo- coronavirus- ncov- actualizacion- epidemiologica- 
1&Itemid=270&lang=es , accessed on January 20. 

[12] Chen Y , Guo D . Molecular mechanisms of coronavirus RNA capping and methy-

lation. Virol Sin 2016;273(31):3–11 . 
[13] Chen TM , Rui J , Wang QP , Cui JA , Yin L . A mathematical model for simulat-

ing the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty
2020;9(1):1–24 . 

[14] Maier BF , Brockmann D . Effective containment explains subexponential growth
in recent confirmed COVID-19 cases in china. Science 2020;36 8(64 92):1–7 . 

[15] Trilla A . One world, one health: the novel coronavirus COVID-19 epidemic. Med

Clin (Barc) 2020;154(5):175–7 . 
[16] Wong G , Wenjun L , Liu Y , Zhou B , Bi Y , Gao GF . MERS, SARS, And ebola:the

role of super-spreaders in infectious disease. Cell Host & Microbe Forum
2015;18(4):398–401 . 

[17] Kim Y , Lee S , Chu C , Choe S , Hong S , Shin Y . The characteristics of middle
eastern respiratory syndrome coronavirus transmission dynamics in south ko-

rea. Osong Public Health Res Perspect 2016;7:49–55 . 

[18] Alasmawi H , Aldarmaki N , Tridane A . Modeling of a super-spreading event of
the mers-corona virus during the hajj season using simulation of the existing

data. Int J Statist Med Biolog Res 2017;1:24–30 . 
[19] Ndarou F , Area I , Nieto JJ , Torres DFM . Mathematical modeling of COVID-19

transmission dynamics with a case study of wuhan. Chaos, Solitons & Fractals
2020;27(135):109846 . 

[20] Kilbas AA , Marichev OI , Samko SG . Fractional integrals and derivatives (theory

and applications). Switzerland: Gordon and Breach; 1993 . 
[21] Toledo-Hernandez R , Rico-Ramirez V , Iglesias-Silva GA , Diwekar UM . A frac-

tional calculus approach to the dynamic optimization of biological reactive
systems. part i: fractional models for biological reactions. Chem Eng Sci

2014;117:217–28 . 
[22] Miller KS , Ross B . An introduction to the fractional calculus and fractional dif-

ferential equations. New York: Wiley; 1993 . 

[23] Kilbas AA , Srivastava H , Trujillo J . Theory and application of fractional differ-
ential equations, 204; 2006. Amsterdam p. 1–540 . 
[24] Magin R . Fractional calculus in bioengineering. Begell House publishers; 2004 .
25] Hilfer R . Applications of fractional calculus in physics. World scientific, Singa-

pore 20 0 0 . 
[26] Podlubny I . Fractional differential equations, mathematics in science and engi-

neering. New York: Academic Press; 1999 . 
[27] Baleanu D , Jajarmi A , Sajjadi SS , Asad JH . The fractional features of a

harmonic oscillator with position-dependent mass. Commun Theor Phys
2020;72(5):055002 . 

28] Baleanu D , Jajarmi A , Mohammadi H , Rezapour S . A new study on the math-

ematical modelling of human liver with caputo-fabrizio fractional derivative.
Chaos, Solitons & Fractals 2020;134:109705 . 

29] Jajarmi A , Yusuf A , Baleanu D , Inc M . A new fractional HRSV model and its op-
timal control: a non-singular operator approach. Physica A 2020;547:123860 . 

[30] Yldz TA , Jajarmi A , Yldz B , Baleanu D . New aspects of time fractional optimal
control problems within operators with nonsingular kernel. Discr Cont Dynam

Syst-S 2020;13(3):407–28 . 

[31] Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in
wuhan china: the mystery and the miracle. J Med Virol 2020. doi: 10.1002/jmv.

25678 . 
32] WHO. COVID-19 dashboard. 2020. https://covid19.who.int/ Accessed April 17. 

[33] Australian. Health protection principal committee (AHPPC) coronavirus
(COVID-19) statement on 16 april 2020 | australian government department

of health. 

[34] Abdo MS , Shah K , Wahash HA , Panchal SK . On a comprehensive model of the
novel coronavirus (COVID-19) under mittag-leffler derivative. Chaos, Solitons &

Fractals 2020 . 135(C) 
[35] Khan MA, Atangana A. Modeling the dynamics of novel coronavirus (2019-

NCOV) with fractional derivative. Alexandria Eng J 2020. doi: 10.1016/j.aej.2020.
02.033 . 

36] Shah K , Abdeljawad T , Mahariq I , Jarad F . Qualitative analysis of a mathemati-

cal model in the time of COVID-19. Biomed Res Int 2020;2020:1–11 . 
[37] Baleanu D , Kai D , Enrico S . Fractional calculus: models and numerical methods.

World Sci Singapor 2012 . 
38] Ahmed N , Korkmaz A , Rafiq M , Baleanu D , Alshomrani AS , Rehman MA , et al. A

novel time efficient structure-preserving splitting method for the solution of
two-dimensional reaction-diffusion systems. Adv Differ Equ 2020;1:1–26 . 

39] Baleanu D , Mohammadi H , Rezapour S . A mathematical theoretical study of

a particular system of caputo fabrizio fractional differential equations for the
rubella disease model. Adv Differ Equ 2020;1:1–19 . 

[40] Rihan Fathalla, et al. A fractional-order epidemic model with time-delay and
nonlinear incidence rate. Chaos, Solitons & Fractals 2019;126:97–105. doi: 10.

1016/j.chaos.2019.05.039 . 
[41] Hajji Mohamed , Al-Mdallal Qasem . Numerical simulations of a delay model for

immune system-tumor interaction. Sultan Qaboos University Journal for Sci-

ence [SQUJS] 2018;23(1):19–31 . 

http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0008
https://www.worldometers.info/coronavirus/#repro
https://www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=coronavirus-alertas-epidemiologicas&alias=51351-16-de-enero-de-2020-nuevo-coronavirus-ncov-alerta-epidemiologica-1&Itemid=270&lang=es
https://www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=coronavirus-alertas-epidemiologicas&alias=51355-20-de-enero-de-2020-nuevo-coronavirus-ncov-actualizacion-epidemiologica-1&Itemid=270&lang=es
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0016
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0017
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0018
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0019
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0020
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0021
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0025
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0027
https://doi.org/10.1002/jmv.25678
https://covid19.who.int/
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0030
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0030
https://doi.org/10.1016/j.aej.2020.02.033
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0032
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0034
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0034
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0034
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0034
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0035
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0036
http://refhub.elsevier.com/S0960-0779(20)30652-4/sbref0036
https://doi.org/10.1016/j.chaos.2019.05.039
http://refhub.elsevier.com/S0960-0779(20)30652-4/optAspAIFiejI
http://refhub.elsevier.com/S0960-0779(20)30652-4/optAspAIFiejI
http://refhub.elsevier.com/S0960-0779(20)30652-4/optAspAIFiejI

