Skip to main content
. 2020 Sep 2;40(4):1436–1445. doi: 10.1016/j.bbe.2020.08.005

Table 6.

Comparison of results achieved using various classifiers in combination with the proposed network. Results achieved using proposed classifier is shown in bold.

Classifier Precision Recall F-measure AUC Accuracy
Bayesnet 0.853 0.985 0.914 0.963 91.1579
NaiveBayes 0.83 0.989 0.902 0.947 89.7895
SVM 0.822 0.989 0.898 0.897 89.2632
LogisticRegresion 0.846 0.909 0.877 0.941 87.7895
AdaBoostM1 0.81 0.998 0.894 0.898 88.7368
Random Forest 0.828 0.987 0.9 0.94 89.5789
ADTree 0.828 0.938 0.88 0.922 87.7895
NBTree 0.84 0.96 0.896 0.949 89.3684