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Abstract

Increasing numerous diabetes annually is a great concern in public health globally. Gut microbiota recently has been
suggested to be an emerging organ acting as a critical regulator in diabetes. Notably, gut microbiota is closely affected
through an individual’s nutrient intake and dietary pattern. Moreover, the metabolites of diets through gut microbiota are
closely associated with the development of diabetes. Increasing evidence has established the association of different dietary
pattern with alterations of the gut microbiota profile, in particular, the Asian diet and Western diet are typically as essential
components linked to the interactions between gut microbiota and induction of obesity which is a significant risk factor for
diabetes. In addition, some bacteria-related therapeutic methods including probiotics, dietary short-chain fatty acids
immunotherapy, and gut microbiome transfer would be applied in the clinical prevention and control diabetes. Taken
together, based on current published observations, the gut microbiota may serve as regulator or targets by the Asian diet and
Western diet, contributing to the prevention or induction of diabetes eventually. In general, in the upcoming future, one of
the emerging strategies for the prevention and control of diabetes may modulate gut microbiota through precise dietary
strategies.

Main finding of the work:Dietary strategies that modulate the gut microbiota or their metabolic activities are emerging as
efficacious tools for reducing diabetes risk and indicate that indeed, the way to a healthy gut microbiota may be through a
dietary pattern.
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Introduction

The rising amount of diabetes gradually is a major concern
in public health worldwide. People with diabetes would have
decreased life quality, increased risk of subsequent complica-
tions including foot ulcers [1], cancer [2], and leading to sig-
nificant morbidity and premature mortality [3]. According to
the report, in 2017, almost nearly 500 million population were
affected by diabetes, which occupies about 7% of the world’s
population [4]. It is estimated about 6059 diabetes per 100,000

population and approximately >1 million deaths annual are
caused by the reason for diabetes [4]. Notably, the burden of
this disease is increasing dramatically, especially at an extremely
increase rate in most of developed countries. Moreover, the inci-
dence is projected to rise to 7079 individuals per 100,000 by 2030
across the world [4]. However, increasing studies have found the
prevalence of diabetes varies widely among racial/ethnic groups
[5]. In the USA in 2013, the incidence of diabetes was an average
of 856.4/100,000 [6]. Notably, a national survey showed that the
incidence of diabetes was 22.1% for Hispanic White, and 19.1% for

https://academic.oup.com/


570 Conteh and Huang

non-Hispanic Asian adults [7]. In China, which is the largest num-
ber of population of 1.38 billion, the prevalence of diabetes in 2013
was reported to be 10.9% [8], which was lower than the prevalence
of total diabetes incidence of 12–14% among the US population
in 2011 and 2012, respectively [8]. Japan is another Asian country
with an incidence of 7.9% of the total population in 2010 [9]. Some
reports suggested that global estimates of diabetes incidence are
discrepancies in different regions may partly be attributed to the
diversity of methods and data used to produce them [10, 11].
For instance, the International Expert Committee recommended
the use of glycated hemoglobin (HbA1c) with a threshold of
≥6.5% (48 mmol/mol) to diagnose diabetes [12], whereas The
American Diabetes Association, World Health Organization, and
Japan Diabetes Society used other different criteria, respectively
[13, 14]. However, although the diversity of identification meth-
ods and different data used for analysis, it has been confirmed
that dietary behavior is typically associated with diabetes. In a
recent review written by Nathanael et al. [15], it was pointed
out that a high-fat diet (HFD) is linked to triggering diabetes.
Animal experiments have indicated that the withdrawal of high-
carbohydrate and HFD contributed to ameliorate the symptoms
in rats with diabetes [16]. Indeed, there exists an extremely differ-
ent dietary pattern between people in Western countries such as
American and Asian countries such as China. And the different
incidence of diabetes may be attributed to the different dietary
patterns. Hence, in this review, we would compare the Western
food pattern and Asian food patterns serving as regulators in
diabetes.

Recently, the central role of the gut microbiota in the devel-
opment and, equally, prevention or control diabetes is becom-
ing abundantly apparent [17]. It is known that our human gut
is densely populated by commensal and symbiotic microbes,
named gut microbiota [18]. As illustrated in previous studies,
gut microbiota can perform multiple functions including diverse
and active metabolic activities and exchange metabolites with
the host and interacts with host signaling pathways or regulates
host gene expression, etc [19–25]. Moreover, gut microbiota can be
affected by host diet intake, and in turn, the diet types can also
influence the composition and metabolites of gut microbiota
[26, 27], leading to the association with disease prevention and
control measures selection [28]. Currently, most experts suppose
that diet is a major determinant of the gut microbial structure
and function [29, 30]. Hence, in this review, we focus on the fol-
lowing content: (i) brief description of Asia food and Western food
pattern, (ii) gut microbiota composition may be influenced by
Asian food and Western food pattern, (iii) nutrients metabolism
is influenced by gut microbiota, (iv) main therapeutic methods
on improving diabetes through modification of gut microbiota,
(v) challenges and perspectives.

Brief description of Asia food and Western food pattern

Asian food is generally a blend of several tastes such as Chinese,
Japan, Korean, Thai, Vietnamese and Malaysia together. Rice and
vegetables are the main compositions of Asian food [31]. The
main characteristics of Asian food are sweet, sour, salty, spicy,
and bitter [32], meanwhile Asian food is high in fiber, vitamins,
minerals, and antioxidants the food is also high in carbohydrate
and low in concentrated and total fat [33]. Some experts believe
Asian protects us against many chronic diseases such as diabetes
and other cardiovascular diseases, but some argue that as of high
concentration of carbohydrate, Asian food may be a risk factor for
the development of diabetes [34].

Western food or Western cooking is the cooking of Central
European, Eastern European, Northern European, Southern Euro-
pean, and Western European Cuisine. Western food is a food with
inadequate fruits, vegetables, whole grains, legumes, fish, and
low-fat dairy products and excessive amounts of refined and pro-
cessed foods, alcohol, salt, red meats, sugary beverages, snacks,
eggs, and butter [35]. The Western food is also a dietary habit as
part of the Western lifestyle chosen by many people in developed
countries, and increasingly in developing countries, associated
with economic growth [36]. The Western Diet (WD) is enriched
in total fat, animal proteins, and refined sugars described by
Martinez Medina et al. [37]. The Western food, which is low in
potassium, high in sodium, fats, and simple carbohydrates, has
been implicated in many diseases, including type II diabetes,
hypertension, and obesity [38–40]. In Western cooking, meat is
generally the centerpiece of any meal, while sweets are reserved
for the end of the meal. This is distinct from Asian cooking,
in which rice or noodles are considered necessary to the meal
and sugary, sweet sauces are common. Alcohol is often used
in Western cooking as well, particularly grape wines; this may
be due to the difficulty of spices penetrating those larger cuts
of meat [41]. According to the reports, different diet patterns
may contribute to the different disease outcomes. As of diabetes,
Western lifestyle with a high consumption of high-fat and high-
sugar and a low consumption of vegetables has been associated
with diabetes [42]. Parackal et al. [43] searched the published
literature from 1990 to provide evidence that dietary patterns
pave the way to develop diabetes among these South Asians who
frequently eating fast foods, Western desserts and snacks, and
consumption of large amounts of potatoes, dairy, oil, and meat.
In a study by Lovegrove et al. [44], the excessive consumption of
high glycaemic index foods is associated with increased risks of a
range of chronic diseases including diabetes. In a few prospective
studies performed mainly in Western populations, the higher
consumption of meat is associated with a higher risk of diabetes
[45]. However, although the Asian diet is considered for decreas-
ing the risk of diabetes, it should be noticed that as some kind
of Asian food such rice is full of a high level of carbohydrate,
then how it influences the risk of diabetes? A study conducted
by Kim et al. [46] in adults showed that glycaemic index may
be positively associated with the incidence of type II diabetes in
women, especially in obese women.

Gut microbiota composition may be influenced
by Asian food and Western food pattern

In terms of gut microbiota, its composition is confirmed tightly
associated with human health. Diabetes may be associated with
the gut imbalance [47]. The dietary factor is the major factor play-
ing a role in the pathophysiology of diabetes. From the perspec-
tive of Moschen [42], although the short-term changes in dietary
patterns may not have a major influence in gut microbiota, but
long-term diets can substantially influence the gut microbiota.
Based on the above description of Asian food and Western food
pattern, in this section, we focus on the different effects of Asian
food such and Western food on the gut microbiota composition.
Although the composition of the gut microbiota depends on
intrinsic factors such as sex and extrinsic factors that include
diet, hygiene, antibiotic usage, diet is one of the major players in
shaping gut microbial communities.

In some animal experiments, the Asian diet was used to
investigate whether the gut microbiota would be affected under
the Asian diet treatment. Han et al. [48] indicated that rice straw
biochar increased the abundance of Firmicutes and Bacteroidetes
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ratio and decreased abundances of Prevotella and Bacteroides.
The findings from Higuchi et al. [49] indicated that mice treated
with rice endosperm protein during the juvenile period changed
gut microbiota diversity, suppressing the activity of Escherichia
coli, which is a major producer of lipopolysaccharide. Similarly,
a study by Xiao et al. [50] also found that rat treated with rice
bran phenolic extract ameliorates gut microbiota dysbiosis, sug-
gesting intake of this diet may be an effective way to mitigate
alcoholic liver injury. The vegetable is another major component
of Asian food, the effects of vegetable on the gut microbiota
composition have also been intensively investigated recently.
Mice treated with high-fiber diet modified the gut microbiota
composition, increasing the ratio of Firmicutes to Bacteroidetes,
therefore, played a protective role in the development of cardio-
vascular disease [51]. Bloodgood et al. [52] used a mixed seafood-
vegetable diet to fed green turtles and found the increased Firmi-
cutes and decreased Bacteroidetes abundance in gut microbiota.
However, when the animal treated with Western food patterns,
the gut microbiota composition may be changed in another type.
Poutahidis et al. used mouse models consuming Western fast
food like potato chips to detect the gut microbiota alterations.
The results found that restructures the gut microbiota and accel-
erates obesity in mice [53]. Another study compared the rats
treated with a Western diet characterized with 42.5% kcal being
derived from fat and high in simple carbohydrates and low fiber,
cafeteria diet comprising of a few human snacks such as cheese,
cake, cookies, etc., to evaluate which type was more closely to
obesity. The results showed that different diet selection leads to
different phenotypes. The Western diet was most more likely
to induce obesity and obesity-related disease, meanwhile, the
Western diet caused gut microbiota dysbiosis and cafeteria diet
caused decreased gut microbiota diversity, indicating Western
diet may disrupt the gut microbiota composition [54]. Soy pro-
tein is another common diet in Asian food and found have
beneficial for improving Western-style diet-related phenotypes.
Butteiger et al. [55] supplemented soy protein concentrates in a
Western-style diet for 3 weeks and observed significant increases
in Bifidobacteriaceae, Clostridiales, and Deferribacteraceae and
decreases in Bacteroidetes in a Golden Syrian hamster model.

Also, there are existing many studies on Asian food and
Western food on the gut microbiota composition in human
studies. Shin et al. [56] compared the differential effects of
typical Korean versus Western food patterns on gut microbiota
composition in a randomized crossover trial. The difference
between the Korean diet and Western diet is mainly that the
Korean diet is 60% carbohydrates and 20–25% fat whereas
the Western diet is 50% carbohydrates and higher fat of
35%. The results of this 4-week length trial showed that
the Korean diet promoted diversity whereas the Western
diet did not to the gut microbiota, furthermore, Korean diet
consumption significantly increased Firmicutes and decreased
Bacteroidetes abundance [56]. Similarly, as a traditional nut
consumption in the Asia area, palm intake was showed to
increased Firmicutes and decreased Bacteroidetes abundance
as well [57]. Seural et al. investigated the effects of Japanse
diet on the gut microbiota composition by the cross-sectional
study. The outcome showed that a higher consumption of rice
was associated with a significantly lower relative abundance
of Prevotella [58]. In another study, it supposed that rice
consumption for infants for ∼8–12 months changed the gut
microbiota beta diversity as well as increased Bifidobacterium
and Lachnospiriaceae abundance [59]. Indeed, vegetable-based
diets have been extensively obtaining acceptance and public

because of its health benefits [60]. In a single group-design trial
by Hiel et al. [61], they found that participants consumed with
inulin-rich vegetables increased the proportion of the Bifi-
dobacterium genus and decreased level of Clostridiales and
Oxalobacteraceae after 3 weeks intervention. Choi et al. [62]
demonstrated that daily fruits and vegetable juice intake for
3 weeks increased the α diversity of gut microbiota, accompanied
by an increased abundance of Faecalibacterium. Another
study using broccoli indicated that human gut microbiota
was impacted, Broccoli consumption decreased the relative
abundance of Firmicutes [63]. Soybean food is very popular across
the world. Recent human studies have identified gut microbiota
serving as a critical sensor interacting with soybean, therefore
affecting the human development, physiology, and immunity
across the entire life. In general, the consumption of soy foods
increases the levels of bifidobacteria and lactobacilli and alter the
ratio of Firmicutes and Bacteroidetes in human gut microbiota
[64].

One of typical characteristic of Western food is high-fat com-
ponent. Recent lines of evidence have indicated that the con-
sumption of a HFD increases gut inflammation by stimulating
the production of sulfate-reducing bacteria [36]. A study on the
European children’s intervened with Western food increased
Proteobacteria and decreased Prevotella and Xylanibacter abun-
dance [65]. Another study showed that compared with the gut
microbiota composition of the Venezuela population, the United
States American gut microbiota had less microbial diversity [66].
Another study indicated that the Western diet would be a means
to counteract the risk of losing the bacterial memory that has
accompanied our ancestors throughout human evolutionary his-
tory [67]. Okazaki et al. investigated the pattern of HFDs including
lard, soybean oil, corn oil, or olive oil in rats. The outcomes
demonstrated this high-fat food increased the number of Lac-
tobacillus spp. [68]. A randomized crossover intervention trial
showed that the red meat diet increased Collinsella aerofaciens
and Clostridium sp. abundance [69]. Shankar et al. study found
that in the US children. The gut microbiota communities were
of the Bacteroidesenterotype, moreover, the gut environment of
US children was rich in amino acids and lipid metabolism-
associated compounds as well as the abundances of members
of Faecalibacterium and Akkermansia [70].

Together these data suggest that consumption of Asian food
or Western food may affect gut microbiota composition. In detail,
Asian food is helpful to increase beneficial bacterial abundance
such as Firmicutes and inhibit non-beneficial bacterial abun-
dance, such as Bacteroidetes. In contrast, general studies showed
that Western food leads to increased non-beneficial bacterial
abundance and inhibit beneficial bacterial abundance. Never-
theless, many factors including interior factors, such as gender,
gene polymorphisms, and external factors such as environmen-
tal pollution, would change the gut microbiota composition,
and the microbes themselves also would evolve and intend to
adapt to the interior or external changes much more rapidly
than humans can, thus, when taking measures to prevent or
control diabetes, it should comprehensively consider diet and
other factors. However, diet modifications, especially, the diet
intake under extremely different food cultures are more likely
to be among one of the most efficient methods [71]. The gut
microbiota dysbiosis is linked with the increased generation
of toxic metabolic products in the intestine and elevates the
burden of the endocrine system, as well as leads to the aberrant
metabolism of dietary component such as choline, leading to
impair the lipid metabolism [72].
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Fiber, fat, and protein are metabolized by gut microbiota

As the main difference of nutrients in Asia food and Western food
is the carbohydrates, fats, and proteins, in this section, we mainly
focused on these three nutrients metabolized by gut microbiota.
In fact, before absorbing into the blood system, these three
nutrients, carbohydrates, fats, and proteins, are metabolized by
gut microbes in the large intestine. Many kinds of bacteria can
metabolize dietary carbohydrates, fats, and proteins, such as
Roseburia, E. rectale, and R. bromii [73].

Short-chain fatty acid (SCFA) metabolites, notably butyrate,
propionate, and acetate are the by-products of bacterial fer-
mentation of indigestible carbohydrates, mostly fiber [74]. SCFAs
which are metabolites derived from the fermentation of dietary
fiber by gut microbiota are important for host metabolic health
through the regulation of lipid and glucose metabolism. SCFAs
are end-products resulting from the fermentation of dietary
fiber by gut microbiota. Bifidobacterium animals subsp. lactic
GCL2505 (GCL2505) treatment suppressed body fat accumulation,
improved glucose tolerance, and enhanced systemic fatty acid
oxidation in a HFD-fed wild-type (WT) mice [75]. Some bac-
teria such as Bifidobacterium and Subdoligranulum can produce
SCFAs through metabolizing dietary fiber [76]. Species such as
Akkermansia municipally have been identified as key propionate
producing mucin degrading organisms [77]. Ruminococcus bromii
was proved responsible for the production of butyrate [78]. Also,
a surprisingly small number of organisms, dominated by Fae-
calibacterium prausnitzii, Eubacterium rectale, Eubacterium hallii, and
R. bromii, appear to be responsible for the major fraction of
butyrate production [79]. In a recent diet-switch study, where
African Americans were fed a diet and rural Africans a high-
fat, low-fiber Western-style diet, a shift toward the butyrate-
producing organisms Roseburia intestinal Eubacterium rectale and
Clostridium symposium along with increased butyrogenesis was
observed on low-fat, high fiber feeding [80]. SCFA also has poten-
tial in metabolism glucose homeostasis. Acetate, propionate, and
butyrate appear to regulate hepatic lipid and glucose homeosta-
sis in an adenosine monophosphate-activated protein kinase-
dependent manner involving peroxisome proliferator-activated
receptor-γ regulated effects on gluconeogenesis and lipogene-
sis [81]. These studies highlight the gut microbiota metabolize
the diet and the changes in SCFAs and the association with
profound effects on lipid and host metabolism [82]. Increasing
numerous studies regarding such as SCFAs following dietary
change, but the significance of the microbiota changes to human
health, with the possible exception of the stimulation of buty-
rogenic taxa by fiber-rich foods, is generally implied and not
measured. Further studies are needed to determine how these
changes in microbiota composition and metabolism can improve
our health and be used to prevent and treat diabetes. A study
assessed the impact of dietary fat sources of palm oil and the
gut microbiota metabolization of dietary fat. The results showed
that dietary cholesterol as a candidate ingredient affecting the
crosstalk between gut microbiota and host metabolism [83].

Triglycerides represent 95% of total dietary fat, whereas phos-
pholipids, mostly in the form of phosphotidylcholine [84], con-
stitute a minor portion, but are also derived endogenously from
bile acids. Microorganisms in the gut are known to possess
lipases, which can degrade triglycerides and phospholipids into
their polar head groups and free lipids [85]. After comparing
the metabolic profile between mice fed a low- and high-fat
diet, tryptamine, and indole-3-acetate (I3A) are metabolites that
depend on the microbiota, helping to reduce fatty-acid- LPS-
stimulated production of pro-inflammatory cytokines [72]. Bo

et al. [86] indicated that B. pseudolongum treatment significantly
plasma triglycerides markedly recovered the gut microbiota dys-
biosis in obese mice. Obese mice administrated with Akker-
mansia muciniphilalowered serum triglyceride through the gut
microbiota regulation [87]. Protein metabolism in the gut is gen-
erally catalyzed into amines, phenols, and sulfurous compounds
[88, 89]. A microbe can metabolize amino acid via either deam-
ination or decarboxylation reactions and generates SCFAS or
amines, respectively [88]. Furthermore, the amino acid continues
to metabolize into tricarboxylic acid cycle intermediates, pyru-
vate, or coenzyme A-linked SCFA precursors via gut microbiota
[90]. Additionally, some gut microbial species, mainly from the
class Bacilli, also possess a specialized branched-chain keto acid
dehydrogenase complex to yield energy from the oxidized forms
of the branched-chain amino acids directly, which also leads
to BCFA production [91]. Mafra et al. [91] showed that red meat
intake increased metabolites of trimethylamine n-oxide (TMAO),
indoxyl sulfate, and p-cresyl sulfate via gut microbiota, which
are linked with increased risk of cardiovascular mortality. TMAO
is a low-molecular-weight amine oxide derived by the micro-
bial metabolism of choline-containing compounds [92]. Western
foods such as red meat, eggs, saltwater fish serving as potential
precursors of TMAO comprise of a rich concentration of choline.
Studies in humans and animals suggested that several families
of bacteria are engaged in TMAO production, such as Deferribac-
teraceae, Enterobacteriaceae, Anaeroplasmataceae, and Prevotel-
laceae [93]. Another study identified the following nine strains of
bacteria that have the ability to produce TMAO in the gut, Anae-
rococcus hydrogenates, Clostridiumasparagiforme, Clostridium
Hatheway, Clostridium sporogenes, Escherichia Ferguson, Pro-
teus penner, Providenciarettgeri, and Edwardsiella tarda [94, 95].
As studies have identified that the digestion of animal protein or
other constituents of animal products causes the gut microbiota
forms TMAO leading to the development of diabetes-related
symptoms, such as insulin resistance [95]. Currently, TAMO has
been suggested to serve a novel potential therapeutic target for
controlling insulin resistance [96, 97].

Main therapeutic methods on improving diabetes
through modification of gut microbiota

For prevention or therapy of diabetes through reshaping the gut
microbiota, currently, there are a few main strategies including
probiotics supplementary, dietary SCFAs immunotherapy, and
gut microbiome transfer.

A meta-analysis conducted by Tao et al. [98] revealed that
probiotics treatment may reduce insulin resistance levels in type
II patients. Probiotics were originally defined as “microorganisms
causing the growth of other microorganisms,” and later on as
“live microorganisms which have a beneficial effect at adequate
levels on human health” [99]. Numerous studies have found
supplementary probiotics have an anti-diabetes effect through
the modification of gut microbiota. Wang et al. indicated that
probiotics significantly improved blood glucose and blood lipid
parameters the gut barrier function in DB/DB mice through
increasing the levels of SCFA-producing bacteria [100]. Another
animal study also showed that the combination of probiotics
and salvia miltiorrhiza polysaccharide reduced he liver total
cholesterol and total triglyceride levels and the serum levels of
free fatty acid, alanine transaminase, aspartate transaminase,
low-density lipoprotein cholesterol through modification of gut
microbiota [101]. Similarly, the administration of L. Plantarum and
inulin could improve gut dysbiosis and oxidative stress status in
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diabetes rats through balanced gut microbiota [102]. After the
ingestion of probiotics, an improvement in diabetes symptoms
is usually observed, such as improved intestinal integrity,
decreased systematic liposaccharide concentrations, decreased
endoplasmic reticulum stress, and improved peripheral insulin
sensitivity [103]. Bifidobacterium, Lactobacillus, Streptococ-
cus, Pediococcus, and Lactococcus species are the common
commercial probiotics product components. These data includ-
ing meta-analysis based on randomized controlled trials
suggested that probiotics may be used as a potential of dietary
supplement in reducing the glucose-associated metabolic factors
related to diabetes through modification of the gut microbiota
[100].

Being aware of the inflammatory condition-related diabetes
is related to diet and diet-microbiota, many studies performed
on the relevant pr-clinical and clinical studies about the dietary
SCFAs technology that naturally targets the gut microbiota as
a novel therapy method to prevent and treat diabetes and its
complications [104]. Many studies have shown that SCFAs intake
can lower blood pressure, provide positive effects on appetite reg-
ulation and balance of energy intake via the brain-gut axis. Also,
it has the effects on inducing lipid oxidation in adipose tissues
and intestine [104]. Furthermore, SCFAs stimulate the release
of the gut hormones to improve intestine barrier function and
reduce uptake of inflammatory compounds which may trigger
the insulin resistance liked with diabetes [105]. In a recent review
written by Chambers et al. [106], they summarized that in the
gut epithelium and adipose tissue, there are available many G-
protein-coupled receptors, free fatty acid receptor (FFAR) 2 and
FFAR3 which can be stimulated by the SCFAs supplement and
cause the cascade of numerous hormonal signals in diabetes
molecular signaling pathways.

During the last few years, fecal microbiota transplantation
(FMT), known as donor feces transplantation or fecal bacte-
riotherapy, has attracted increased attention. The majority
of clinical experience with FMT has been gathered from the
treatment of Clostridium difficile infection [107]. To investigate
whether FMT could alleviate the symptoms associated with
type 2 diabetes, Wang et al. [108] conducted an animal study
and revealed that after FMT, insulin resistance and pancreatic
islet β-cells were improved. Another study by Zhang et al. [107]
also found that DB/DB mice treated with FMT, Desulfovibrio,
and Clostridium coccoides levels in the gut were significantly
decreased, but the fecal levels of Akkermansia muciniphila and
colon histone deacetylase-3 (HDAC3) protein expression were
increased. Barcena et al. [109] found FMT from WT mice enhanced
healthspan and lifespan in both progeroid mouse models,
and transplantation with the verrucomicrobia Akkermansia
muciniphila was sufficient to exert beneficial effects. A clinical
study conducted using oral capsules with fecal microbiota
showed that obese patients administrated with FMT capsules
led to changes in the intestinal microbiome and bile acid profiles
[110]. In a recent review written by Aron-Wisnewsky et al.
[111], they suppose that FMT is an interesting option to modify
gut microbiota and help improve obesity or diabetes clinical
outcomes. However, as only limited clinical trials are available
using FMT in diabetes background, further studies, in particular,
randomized controlled trials aiming at evaluating the FMT
intervention outcomes on diabetes should be considered. The
association of major dietary component and possible outcomes
is listed in the Supplementary Table S1.

Challenges and perspectives

As diabetes prevalence is gradually increasing across the world
over the past 2 decades and is projected to continue to rise in the
next few decades, prevention and control diabetes are an urgent
need indeed. Accumulating evidence has supposed that Asian
food and Western food play a different role in the contribution
to the development of diabetes. Also, gut microbiota plays a
critical role in the pathogenesis of diabetes [112]. Moreover, the
gut microbiota composition could be modified significantly by
different diet styles, such as Asian food and Western food. Thus,
understanding the role of gut microbiota in the contribution
of differential roles in the pathogenesis of diabetes would be
helpful for further molecular mechanisms study and discover
more effective targets serving as possible preventive and therapy
for diabetes. However, as an old saying said before: the hope
is ahead, but it is a long way to archive, there are still lots of
challenges in this field as follows:

First, although many studies have indicated that in the dia-
betes patients’ gut, the microbiota has changed and present dys-
biosis [112], these data still exist controversial. This may be due
to the different study context and the relative molecular mech-
anisms remain incompletely clear. Thus, in the future, future
studies should be focused on discovering the gut microbiota-
related mechanism of diabetes, specifically, the bacterial species
role in the diabetes pathogenesis.

Second, despite this review, we list some diet components
of Asian foods and Western foods the dietary culture is very
complex. Many factors may influence the human dietary habit or
culture, such as migration. When Asian people move to Western
countries for residents, their dietary habits may be changed,
which may influence the risk of diabetes. Other factors, such as
ads or poverty also may influence the selection of food. When
there are extreme ads on certain food, people always intend to
buy and intake them. People in the status of poverty prone to
select cheap food such as potatoes with a high concentration
of carbohydrates. In terms of this issue, in the future, more
socioeconomic studies should be performed to investigate the
effects of culture, economical factors on dietary style selection.

Third, concerning studying diabetes-related nutrient science,
we indeed face a lot of roadblock, such as to measure discrimina-
tion, unclear causal relationships of diabetes, non-strong effect,
analysis sensitivity, etc. Thus, in the future, cohort studies and
prospective study to survey the food intake in a long-term and
space time series study would help to solve this challenge.

Fourth, although some therapeutic methods have been iden-
tified effective in therapy diabetes through targeting gut micro-
biota, it is still lacking data in detail and difficult to transfer into
clinical usage. The next step is to develop the ability of diagnosis
and therapy based on the interaction of gut microbiota and host.
Typically, we need to transfer our study purpose from description
to the microbiome therapy. We need to confirm the targeted
bacterial species. We have to figure out whether the certain stain
abundance or the gut microbiota abundance lead to diabetes.
We need to know the metabolism pathway of certain bacterial
and the association of bacterial metabolism pathways with the
development of diabetes.
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