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Abstract

Understanding the effect of the environment on human health has benefited from progress made in 

measuring the exposome. High resolution mass spectrometry (HRMS) has made it possible to 

measure small molecules across a large dynamic range, allowing researchers to study the role of 

low abundance environmental toxicants in causing human disease. HRMS data have a high 

dimensional structure (number of predictors >> number of observations), generating information 

on the abundance of many chemical features (predictors) which may be highly correlated. 

Unsupervised dimension reduction techniques can allow dimensionality reduction of the various 

features into components that capture the essence of the variability in the exposome dataset. We 

illustrate and discuss the relevance of three different unsupervised dimension reduction 

techniques: principal component analysis, factor analysis, and non-negative matrix factorization. 

We focus on the utility of each method in understanding the relationship between the exposome 

and a disease outcome and describe their strengths and limitations. While the utility of these 

methods is context specific, it remains important to focus on the interpretability of results from 

each method.

Environmental determinants of health are receiving increased attention since genome and 

inheritance studies have revealed that genetic variation only explains about 20% of human 

disease risk [1,2]. There are various environmental factors that affect human health, 

including environmental chemicals, dietary factors, lifestyle, the built environment, exposure 

to microbes, as well as structural policies that influence healthcare and healthy behaviors. To 

this effect, many studies have evaluated the effect of single or a small number of exposures 
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in isolation on various health outcomes. However, environmental exposures rarely happen in 

isolation and are accompanied with other exposures and context-specific factors. Along with 

the complexity of co-exposures, humans are constantly interacting with their environment 

over their life course, and exposures are spatiotemporally dynamic. The exposome concept 

emerged from this realization. In 2005, Christopher Wild formally coined the term and 

defined it as the “life-course environmental exposures (including lifestyle factors), from the 

prenatal period onwards” [3]. This definition has been modified over the last 15 years, but 

most revisions agree that the exposome comprises the entire set of lifelong environmental 

exposures and their associated biological response [1,2,4–6].

Measuring the exposome has benefited from technological advances in mass spectrometers. 

The arrival of high-resolution mass spectrometers (HRMS) has made it possible to measure 

small molecules (85–1250 Da) in a biological matrix with a large dynamic range, facilitating 

measurement of small molecules arising from endogenous metabolism—which are usually 

highly abundant (milli to picomoles)—and small molecules from exogenous sources that 

have a lower abundance in biological matrices (nano to picomoles) [7]. In this paper, we 

define the exposome as the sum of environmental exposures and the biological response 

induced by these environmental exposures. This definition assumes that meaningful 

environmental exposures that affect human health will produce a biological response which 

will be reflected in alterations to endogenous metabolic processes. Thus, measurements of 

small molecules in a biological matrix will allow us to measure this exposomic profile and 

assess biochemical changes that accompany exposure on a systems level. Using techniques 

from metabolomics, we can understand the biological effect associated with the exposome. 

For example, Walker et al. measured the exposomic profile of trichloroethylene (TCE) 

exposure among factory workers and found chlorinated metabolites in the plasma of factory 

workers that were correlated with markers of immune and kidney function along different 

parts of the pathway of TCE toxicity [8]. HRMS can also be leveraged to measure the sum 

of environmental chemicals in a matrix. By coupling gas chromatography to an HRMS, 

researchers have measured numerous chemicals of interest in a single sample 

simultaneously, e.g., the US Environmental Protection Agency’s ring trial, wrist band 

studies, etc. [9,10].

Exposomic data from HRMS are high-dimensional and complex. When untargeted methods 

are used to characterize the exposome, the number of chemical signals can be greater than 

100,000 [11]. These data tables represent the primary input for bioinformatic and 

biostatistical analysis to evaluate biological meaning and to determine exogenously derived 

chemicals that may be of relevance to an outcome of interest. Since detected analytes are not 

annotated a priori, the results from HRMS contain information on each detected ion (a 

feature). Each feature is characterized by its mass-to-charge ratio, the retention time at 

which the compound eluted from the chromatographic column, and its abundance in the 

sample. Some features may arise from the same parent compound but during ionization may 

lead to formation of multiple ions with different masses with the same retention times. 

Therefore, the feature table may contain degenerate features which will be highly correlated 

since they arise from the same parent compound. Thus, correlation is present not only due to 

exposure sources and biological processes, but also arises from the analysis itself [12]. This 

forces researchers to deal with the “curse of dimensionality” and to capture the essence of 
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the data generated [13]. Given the high correlations across chemical exposures, single 

chemical association studies are not appropriate, with implications for health that are missed 

using a “candidate” approach. Furthermore, high correlation compounds correction for 

multiple testing, decreasing study power and inflating the potential for false negatives.

Data dimensionality reduction approaches produce a manageable number of variables, allow 

for better visualization, remove redundant and uninformative variables, and reduce 

computational burden [14]. Several techniques have been described that reduce the size of 

the data table while minimizing loss of information, describing the essence of the data 

generated. These include unsupervised and supervised methods. In supervised methods, the 

outcome of interest informs the dimensionality reduction solution. These methods are used 

for feature selection and include—but are not limited to—different forms of penalized 

regression: least absolute shrinkage and selection operator (LASSO) [15], ridge regression 

[16], and elastic net regression [17], and different modifications of partial least squares 

regression [18,19]. Unsupervised methods do not take the outcome of interest under 

consideration during feature extraction. The goal in unsupervised dimensionality reduction 

is to discover the underlying structure in the data. These methods are tuned for pattern 

recognition that can aid in data visualization, data exploration, and uncovering latent 

variables. A popular method for unsupervised linear transformation of data is principal 

components analysis. Different unsupervised methods also exist for non-linear data 

transformations [20] like the kernel PCA [21], isomap [22] and autoencoders [23]. In this 

paper, we focus on unsupervised methods aiming to reduce the number of variables under 

study and obtain a smaller set of principal variables through feature extraction. We focus on 

the use of three methods for exposome research: factor analysis (FA), principal components 

analysis (PCA), and non-negative matrix factorization (NMF) (Figure 1). While NMF and 

FA have not yet been widely used with high-resolution mass spectrometry data, we think 

they offer useful applications.

1. Principal components analysis (PCA)

Principal components analysis is one of the most commonly used approaches for 

dimensionality reduction. The method uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of linearly uncorrelated variables 

called principal components. The first component explains the most variance in the data and 

each succeeding component has the highest variance possible under the constraint that it is 

orthogonal, i.e., independent, to the preceding components [24]. The method does not 

reduce the number of variables, m variables produce m components. The analyst chooses the 

number of components to include in analyses based on some a priori defined criterion/a, e.g., 

looking at the scree plot, selecting components with eigenvalues above one, or selecting the 

number of components that explain a pre-specified proportion of the variance in the data, 

e.g., at least 75%. Since PCA forces orthogonality between components, it imposes a rigid 

structure [25]. The alternating least squares variant of PCA, independent component 

analysis, is more successful in dealing with this rigidity but has less compression in the first 

components [26].
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In a study of 1301 European mother-child pairs, Tamayo-Uria et al. measured 87 

environmental exposures during pregnancy and 122 exposures in early childhood. These 

included atmospheric, GIS, meteorological, built environment, SES, lifestyle, and biomarker 

data. The authors used PCA in two different ways. First, in the 19 pre-defined exposure 

groups, the first PC from each group was used as a composite index variable. Second, they 

used all exposure variables in the PCA and found that 65 and 90 PCs were needed to explain 

95% of the variance in the pregnancy and early childhood exposome respectively [27]. In 

another study of 397 pregnant women in the Child Health and Development Studies in 

California, Li and colleagues investigated the relationship between 39 environmental 

chemicals and the serum metabolome. To reduce the dimensions and study the variance of 

the metabolome, they conducted a PCA on the high-resolution metabolomics data. The first 

PC explained 58.5% of the variance. They assessed the influence of the environmental 

chemicals by regressing the levels of contaminants measured on the first 10 PCs. They found 

the chlorinated pesticide metabolite DDE to be associated with the first four PCs and the 

parent pesticide DDT to be associated with PC 9 [28].

2. Factor analysis (FA)

Factor analysis aims to explain the covariance among variables and assumes that the 

underlying correlation patterns between variables arise from a few common latent variables 

called factors. The observed variables are defined as linear combinations of the factors, 

revealing the underlying constructs that give rise to the observed phenomenon. Then, factor 

loadings can be used to discern a pattern in the original variables, like exposomic features. 

Thus, FA finds a new set of variables, fewer in number than the original variables while 

expressing that which is common among the original variables. The analysis can be 

exploratory, where no assumptions are made about relationships among factors. It can also 

be confirmatory to test the hypothesis that the variables are associated with specific factors 

[29,30]. Most studies of the exposome take an exploratory approach, thus scientific concept 

or hypothesis underlying the factors is secondary to the analysis. Different models and 

methods of calculation can be used for the analyses, contributing to diversity in the 

methodology and results from factor analysis [31]. The analyst is required to choose the 

optimal number of factors that explain the data using model diagnostics, like the Bayesian 

information criterion (BIC). Confirmatory factor analysis relies on sophisticated math to 

confirm or test for generalizations [32]. Labelling interpretable factors identified as part of 

the underlying structure is a difficulty in factor analysis. It is a struggle to “see what there is 

and not what we want to see” [31].

Juarez and colleagues (2017) investigated the association between 2162 environmental 

exposures and lung cancer mortality rates in more than 2000 US counties using graph 

theoretical algorithms and factor analysis. They first computed correlation coefficients 

between each exposure-outcome pair, then used a clique doubling technique [33] to 

determine a threshold for significant correlation (r > |0.14|). They extracted paracliques 

[34,35] from graphs created using the significant threshold. To eliminate redundant 

information contained in the paracliques, the authors used factor analysis with varimax 

(orthogonal) rotation to obtain 172 factors that were subsequently used in stepwise 

regression on each of their outcomes of interest [36].
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3. Non-negative matrix factorization (NMF)

In FA and PCA, latent variables and their errors are assumed normally distributed, and are 

thus not really suitable for non-negative data, such as exposome data. Non-negative matrix 

factorization was proposed by Lee and Seung as a solution [37,38]. This method works well 

with non-negative data that have excess zeros and measurement error, like measurement of 

chemicals and metabolites through HRMS [39]. NMF works to factorize a data matrix into 

two matrices, a basis matrix and a coefficient matrix—both are constrained to have non-

negative values. The dimensions of the new matrices after factorization, i.e. number of 

underlying factors, has to be set by the analyst. No orthogonality constraints are placed on 

the basis components, allowing them to overlap. This overlap can be used to determine 

molecules that belong to multiple pathways or processes. The factorization produces sparse 

results with only a few non-zero entries [40]. The method has gained traction in systems 

biology and has been applied to transcriptomics data. According to Stein-O’Brien and 

colleagues, NMF learns two matrices—one that describes the structure between the 

molecules, genes or metabolites, and the other describes the structure between the different 

samples, i.e., each observation. They describe the first matrix as the amplitude matrix and 

the latter as the pattern matrix. The value in each column of the amplitude matrix can be 

thought to represent the relative contribution of a molecule in each inferred factor, which 

may be used to distinguish different complex biological processes or function pathways [41].

Béchaux and colleagues used NMF to extract patterns in the mixture of pesticides that derive 

from the major food consumption systems found in the French diet. They subsequently used 

the data to show clusters of individuals with similar consumption habits and exposure to 

pesticides. In order to determine the number of underlying latent structures (k), they ran 

NMF using different values of k and used residual sum of squares and the Bayesian 

information criterion (BIC) to choose the appropriate number, k=10 [39].

PCA, FA or NMF? The choice depends on the research question

When to use one of these methods depends mainly on the research question of interest. If the 

goal is to capture the total variance or a proportion of the variance in the data, PCA is the 

appropriate technique to employ. If the goal is to uncover a latent structure, an analyst can 

employ either NMF or factor analysis. NMF allows for better interpretation of the reduced 

dimensions because of the non-negative constraint; however, one can run into identifiability 

problems. To the best of our knowledge, NMF has not yet been applied in an exposomic 

context. In PCA, the analyst would have to decide on the appropriate number of components 

to extract from the solution based on a priori decided criteria. In factor analysis and NMF 

the number of factors is an analyst-defined input and different runs for different numbers of 

factors should be conducted before deciding on the optimal one, either in terms of data fit 

or/and interpretability of the solution. Nguyen and Holmes offer useful tips for 

dimensionality reduction [42]
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A PCA Application: An HRMS Example

To illustrate an example of exposomic data dimensionality reduction, we analyzed 

respiratory exposures present in air using passive silicone badge samples and an untargeted 

GC-orbitrap assay developed for measuring the human exposome. Silicone badge samplers 

were placed in groups of four throughout different locations in two houses and a laboratory 

environment to evaluate the room and residence specific exposome near Atlanta, GA. The 

wristbands passively sampled chemicals present in the air of these locations for 7 days. 

These low-cost passive samplers allow access to micro- and personal-exposure from a large 

population and have potential as a key, exposome sampler for population research. 

Following deployment, samplers were weighed, placed in amber vials and extracted with 

1mL ethyl acetate at room temperature with gentle shaking for 24 hours. The extracts were 

transferred to a GC autosampler vial, and analyzed in duplicate using full scan mode over 

m/z range 85-850 and a 15m Agilent DB-5MSUI capillary column with the following 

temperature gradient: 100°C for 1 min, increased to 180°C at 25°C/min; followed by a 

temperature ramp to 215°C at 5°C/min, and finally increased to 300°C at 25°C/min and held 

for 10 min, resulting in a total run time of 26.6 min. Detected ion signals were extracted 

using XCMS [43] at two different parameter settings and merged using xMSanalyzer [44].

A total of 49,585 features were detected in the 78 samplers from three different locations. In 

this example, we present results from one location, a house where samplers were placed in 6 

different areas throughout the residence, a total of 23 samplers. Using a blank badge sampler 

as background, we retained a feature in the feature table if it was present at twice the blank 

intensity in at least 80% of the badge samplers. This reduced the number of detected features 

to 1347. The dimensions, thus, of the feature table for PCA was 23×1347. Missing data were 

imputed with half the lowest abundance of that feature. Data were log10-transformed and 

used as input to the prcomp() function in R (version 3.6.0). The data were centered and 

scaled. The first five PCs explained 81.2% of the total variance. The biplot (Figure 2) shows 

grouping of exposomic features derived from wristbands placed in the same location.

Discussion and conclusion

We discussed the application of three different unsupervised dimension reduction techniques 

that can be used in exposome research. While unsupervised, FA and NMF require analyst 

input to decide the optimal number of underlying factors that describe the observed 

phenomenon, but they reduce the number of independent variables. While PCA does not 

require analyst input during orthogonal transformation, input is required when selecting the 

number of PCs to extract and include in further analyses, since the total number of PCs 

equal the number of observations in original dataset. All three methods are sensitive to scale 

and data should be standardized before dimension reduction.

While dimensionality reduction removes redundant information, such as multiple ions 

present from one chemicals or highly correlated metabolites from the same biological 

pathway, these redundant signals are informative when evaluating chemical identifications 

and evaluating systemic biological response to exposure [45]. Further, simply creating new 

variables that are linear combinations of other variables can hinder interpretability of results. 

Kalia et al. Page 6

Curr Opin Environ Sci Health. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chemical risk assessment is difficult to accomplish with linear combinations of multiple 

chemicals and researchers must attempt to report interpretable results from high-dimensional 

data. Lastly, generalizing latent structures from observed data should be performed 

cautiously. As noted by Alexandre Dumas (Junior), “all generalizations are dangerous, even 

this one” [32]. Here, we highlighted a few unsupervised methods for dimensionality 

reduction; however, to identify exposomic patterns specific to outcomes of interest, 

supervised extensions will likely need to be incorporated into the informatic workflow, e.g., 

the supervised PCA [46]. This paper illustrates that exposome research requires approaches 

to analyze the data that are as sophisticated as the approaches used to generate the data. In 

the future, a detailed simulation study would provide an opportunity to assess the 

performance of different supervised and unsupervised dimensionality reduction methods in 

exposomic research, given potential different research questions, to best inform the choice of 

method for data analysis.
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Highlights

• High-resolution mass spectrometry (HRMS) has enabled measurement of 

exposomic features in biomatrices

• HRMS poses data complexities that require dimensionality reduction

• Principal components analysis, factor analysis, and non-negative matrix 

factorization have been successfully applied in exposomic data analysis

• Interpretability of results after dimensionality reduction is essential for 

environmental policy and risk assessment
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Figure 1. 
Visual representation of dimension reduction using PCA, FA, and NMF.
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Figure 2. 
Biplot: Principal Component 1 (PC1; explained 54.5% of the total variance in the data) 

plotted against PC2 (explained 9.2% of the variance) showing clustering of samplers placed 

in the same location of house 2.
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Table 1.

Glossary of terms.

Term Definition

Variance
∑i = 1

n (xi − x)2

n − 1 ; sample variance is usually interpreted as the average squared deviation from the mean

Covariance cov(x, y) = ∑i = 1
N (xi − x)(yi − y)

N ; a measure used to quantify the relationship between two random variables

Correlation
cor(x, y) = cov(x, y)

σxσy
; where σ denotes standard deviation; unlike covariance, correlation is a unitless measure of the 

relationship between two random variables

Orthogonal 
transformation

A linear transformation is called orthogonal if it preserves the length of the vectors; ∥ T(x ) ∥ = ∥ x ∥. In PCA, 
the solution forces each component to be orthogonal to the previous, i.e., independent.

Matrix factorization Decomposition of a matrix into the product of two or more lower-dimension rectangular matrices

Latent variable An unobserved (“hidden”) variable that is inferred through observed variables

Bayesian 
Information 
Criterion (BIC)

Determines model fit by considering the likelihood function of a model, number of data points, and number of free 
parameters to be estimated. It is a criterion used for model selection; the model with lowest BIC is preferred.

Clique In graph theory, a complete subgraph is called a clique. A graph is complete when every pair of distinct vertices—a 
corner or a point where lines meet—is connected by a unique edge, i.e., every vertex has an edge to every other vertex.

Paraclique It consists of a clique and all vertices with at least some proportion of edges to the clique. It is considered a relaxation 
of clique.
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