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ABSTRACT

Epigenetic processes are essential for normal
development and the maintenance of tissue-
specific gene expression in mammals. Changes
in gene expression and malignant cellular
transformation can result from disruption of
epigenetic mechanisms, and global disruption
in the epigenetic landscape is a key feature of
cancer. The study of epigenetics in cancer has
revealed that human cancer cells harbor both
genetic alterations and epigenetic abnormalities
that interplay at all stages of cancer develop-
ment. Unlike genetic mutations, epigenetic
aberrations are potentially reversible through
epigenetic therapy, providing a therapeutically
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relevant treatment option. Histone methyl-
transferase inhibitors are emerging as an epige-
netic therapy approach with great promise in
the field of clinical oncology. The recent accel-
erated approval of the enhancer of zeste
homolog 2 (EZH2; also known as histone-lysine
N-methyltransferase EZH2) inhibitor tazeme-
tostat for metastatic or locally advanced
epithelioid sarcoma marks the first approval of
such a compound for the treatment of cancer.
Many other histone methyltransferase inhibi-
tors are currently in development, some of
which are being tested in clinical studies. This
review focuses on histone methyltransferase
inhibitors, highlighting their potential in the
treatment of cancer. We also discuss the role for
such epigenetic drugs in overcoming epigenet-
ically driven drug resistance mechanisms, and
their value in combination with other thera-
peutic approaches such as immunotherapy.
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Key Summary Points

Global disruptions in the epigenetic
landscape are a key feature of cancer.

Unlike genetic mutations, epigenetic
aberrations are potentially reversible
through therapy with epigenetic
modifiers.

In a rapidly evolving field of research,
histone methyltransferases have been
targeted with a range of small-molecule
inhibitors.

Histone methyltransferase inhibitors are
in development for the treatment of both
solid and hematologic malignancies.

The success in this field is highlighted by
the clinical development of molecules and
the recent approval of the
methyltransferase inhibitor tazemetostat
(EZH2 inhibitor).

INTRODUCTION

In eukaryotic cell nuclei, DNA is packaged and
organized in a DNA—-protein complex called chro-
matin. The basic component of chromatin is the
nucleosome, consisting of approximately 147 bp
of DNA and core histones (H2A, H2B, H3, and H4)
[1-4]. Nucleosomes associated with active genes
are more accessible than those with inactive genes,
suggesting that the degree of chromatin packaging
correlates with gene activity [5].

In contrast to inherited genetic variation
that remains constant over the lifetime of an
individual, epigenetics differ as disease changes
over time. This provides the opportunity to
employ epigenetic changes as biomarkers for
disease and targets for disease modification in
many fields of healthcare [6]. Unlike genetic
mutations, epigenetic aberrations are poten-
tially reversible. Thus, targeting relevant epige-
netic factors with small molecules might
provide an efficient approach to “fix”

Fig. 1 Phylogenetic tree of protein methyltransferases and »
molecules in development

dysregulated gene/chromosome-regulatory sys-
tems resulting from aberrant epigenetic profiles.
Epigenetic mechanisms are important for the
regulation of cell proliferation, differentiation,
survival, and other cellular processes [7]. Epi-
genetic dysregulation results in changes to the
transcriptional landscape, affecting multiple
pathways which might contribute to tumor
pathogenesis [8]. Here we provide an overview
of epigenetic modification with relevance to
cancer treatment, focusing on histone methyl-
transferases. This article is based on previously
conducted studies and does not contain any
studies with human participants or animals
performed by any of the authors.

HISTONE METHYLTRANSFERASE
INHIBITORS

According to the histone code hypothesis [9],
transcription is in part regulated by methylation
of histone proteins resulting in recruitment of
other proteins through the specific recognition of
modified histone proteins [9]. Lysine as well as
arginine residues of the N-terminal tail can be
methylated [9]. Lysine methylation has three
methyl additions (mono-, di-, and trimethyla-
tion). Arginine methylation has two methyl
additions (mono- and di-), with dimethylation
occurring on either single (asymmetric) or two
(symmetric) nitrogen atoms [10]. Key lysine and
arginine methyltransferases under investigation
for cancer treatment include enhancer of zeste
homolog 2 (EZH2), G9a, disruptor of telomeric
silencing 1-like protein (DOTI1L), and protein
arginine methyltransferases (PRMT) 1 and 5. Fig-
ure 1 illustrates a phylogenetic tree of protein
methyltransferases and the publicly available
chemical structures for some of the associated
inhibitors.

Genome-wide studies have revealed that
different levels of histone methylation of H3K4,
which can be mediated by distinct histone
methyltransferases [11, 12], have been linked to
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specific gene activities: H3K4 monomethyla-
tion, together with H3K27 acetylation, marks
enhancer activity, whereas H3K4 trimethylation
and dimethylation are associated with the
transcription start site of active genes
[11, 13, 14]. It is also known that specialized
proteins such as Jumonji domain-containing 2A
(JMJD2A), pS3-binding protein1l (S3BP1),
SAGA-associated factor 29 (SGF29), and others
interact with a broad spectrum of histone
methylation marks to facilitate DNA damage
repair or regulate transcription [15].

Histone methylation was initially considered
relatively stable compared with histone acety-
lation, but it can also be removed by histone
demethylases, e.g., lysine-specific demethy-
lase 1A (LSD1 or KDM1A), the lysine demethy-
lase for H3K4 and H3K9 [16, 17]. The Jumonji C
[JmjC] domain-containing protein UTX [ubig-
uitously transcribed tetratricopeptide repeat, X

chromosome], as well as the related JMJD3 [Ju-
monji domain containing 3], specifically
remove methyl marks on H3K27 [18]. Interplay
of these epigenetic mechanisms regulates tissue-
specific gene expression patterns and preserves
cellular identity. For example, histone methyl-
transferases (G9a, Suv39h1, and PRMTYS) recruit
DNA methyltransferases (DNMTs) to specific
genomic loci to promote DNA methylation
[19-21]. On the other hand, DNMTSs can recruit
histone deacetylases (HDACs) and other effector
methyl-binding proteins to promote gene
silencing, highlighting the linkage between
DNA methylation and histone modification
machinery critical for maintaining the cellular
epigenetic landscape.

In an area that has evolved at a rapid pace in
recent years, histone methyltransferases have
been targeted with a range of small-molecule
inhibitors. The success in this field is
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«Fig. 2 Graphical representation of the mechanisms of
selected methyltransferases targeted by protein methyltrans-
ferase inhibitors. a In acute myeloid leukemia, chromosomal
translocations result in formation of oncogenic fusion
proteins that combine the chromatin targeting domains of
MLL to the protein recruitment domains of fusion partners
including AF9 and ENL. These fusion partners initiate the
recruitment of DOTIL H3K79 histone methyltransferase
function to genes that govern cell proliferation and cell
differentiation. At these genes, DOTI1L enzyme function
increases transcriptional output of these genes, resulting in
oncogenic programs. b EZH2 or the related protein EZH1
comprise the polycomb repressive complex 2 with partner
proteins EED and SUZ12. In normal development and tissue
regulation, PRC2 regulates gene expression programs govern-
ing cell proliferation, cellular differentiation, stem cell
renewal, and immune regulation. In cancer, activation of
PRC2 through gain-of-function mutations in EZH2 or
overexpression of EZH?2 alter the normal regulation of PRC2
function leading to uncontrolled cell growth, survival, and
immune evasion. Cancers harboring mutations in epigenetic
regulators including SWI/SNF, EED, and BAPI1 that
antagonize EZH2 and PRC2 function also create opportu-
nities for targeting EZH?2 as a synthetic lethal vulnerability in
cancer. ¢ PRMTS and MEPS0 form a heterooctomer
complex catalyzing the symmetric dimethylation of proteins
involved in RNA transcription, processing, metabolism, and
splicing. PRMT5 works both in the regulation of gene
expression through histone methylation as well as alternative
splicing of pre-mRNA through methylation of splicing
proteins. Both types of regulation impact gene expression
and pre-mRNA processing and thus can be considered
‘epigenetic’. The first part of ¢ demonstrates the role of
PRMTS in the methylation of HNRNP proteins. These
proteins are involved in the regulation of mRNA stability,
splicing, and nuclear export. PRMTS adds symmetric
dimethylation to arginine residues on hnRNP proteins,
hnRNPA1 and hnRNAH]1. The middle of ¢ shows PRMTS
methylation of histone proteins. This type of methylation can
activate or repress gene expression depending on the arginine
residue that is modified. Symmetric dimethylation of histone
arginine residues by PRMTS on H2AR3, H3R2, H3R8, and
H4R3 has been demonstrated to impact both transcriptional
activation and repression in a context—speciﬁc manner. The
third part of ¢ involves the methylation of Sm proteins by
PRMTS. PRMTS directly methylates Sm proteins including
SmB, SmB’, and SmD. This methylation is critical for
forming key components of the spliceosome through the
recruitment of SMN proteins and RNAs for assembly and
biogenesis of snRNP core particles required for pre-mRNA
splicing that form snRNP complexes

highlighted by the clinical and translational
development of molecules discussed in the fol-
lowing paragraphs. Figure 2 is a graphical rep-
resentation of the major complexes covered in
this review (polycomb repressive complex 2
[PRC2], EZH2, DOT1L, and PRMTS).

EZH2

EZH2 is a histone lysine methyltransferase that
forms the catalytic subunit of the PRC2 com-
plex, also including EED, SUZ12, and RbAp46. It
primarily catalyzes H3K27 methylation which
results in gene silencing [22]. It is important in
the control of genes involved in the regulation
of cell fate decisions, such as self-renewal and
differentiation. EZH2 has also been associated
with repression of tumor suppressor and
epithelial-mesenchymal transition (EMT)-re-
lated genes such as p16™%** and E-cadherin
[23]. Apart from its transcriptional repressor
activity on chromatin, EZH2 has also been
reported to catalyze certain non-histone sub-
strates, including signal transducer and activa-
tion of transcription3 (STAT3), GATA4,
androgen receptor (AR), and retinoic acid-re-
lated orphan nuclear receptor o [24-27].

Alterations in EZH2 are associated with can-
cer development and progression. Gain-of-
function point mutations at Y641 and A677 in
EZH2, which lead to activation of methyltrans-
ferase activity and increased H3K27 trimethy-
lation, have been observed in follicular
lymphoma (FL) and diffuse large B cell lym-
phoma (DLBCL), and associated with disease
progression [28-30]. Increased EZH2 activity in
such tumors has been associated with suppres-
sion of differentiation. EZH2 is overexpressed in
solid tumors, including breast, bladder,
endometrial, liver, ovarian, prostate, small cell
lung cancer (SCLC), melanoma, glioblastoma,
and pediatric glioma, as well as lymphomas,
correlating with disease progression and poorer
prognosis [31-37].

Upregulated EZH2 activity in SCLC, associ-
ated with frequent inactivation of the
retinoblastoma (RB1) tumor suppression gene,
promotes tumor growth and resistance to stan-
dard-of-care chemotherapy, resulting in poor
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overall survival [38]. EZH2 activity has been
associated with tumor progression in prostate
cancer, and EZH2 inhibition resulted in antitu-
mor effects both in in vitro and in in vivo
prostate cancer preclinical models. Moreover,
EZH2 inhibitors synergize with the androgen
receptor antagonist enzalutamide in inhibiting
growth of adenocarcinoma castration-resistant
prostate cancer (CRPC) cells [39-41]. EZH2
activity has also been associated with induction
of cellular reprogramming and trans-differenti-
ation of prostate tumors into enzalutamide-re-
sistant neuroendocrine prostate cancer and
EZH2 inhibition re-sensitized such NEPC
tumors to enzalutamide [42, 43].

In certain cancers, epigenetic factors that
interact with EZH2 to regulate cellular tran-
scriptional programs have been shown to har-
bor mutations. Mutation or loss of INI1
(SMARCB1) and SMARCA4 subunits of the SWI/
SNF complex are associated with malignant
rhabdoid tumor and ovarian small cell carci-
noma of the hypercalcemic type [44-47].
Mutations of BRCA-associated protein 1 (BAP1),
a deubiquitinating enzyme and a subunit of the
polycomb repressive complex containing H2A
deubiquitinase activity (PR-DUB) [48], is asso-
ciated with mesothelioma, uveal melanoma,
cutaneous melanoma, renal cell carcinoma, and
other cancers [48]. Loss of function mutations
in UTX, an H3K27 histone demethylase that
antagonizes EZH2 activity, has been reported in
multiple myeloma, bladder, medulloblastoma,
esophageal, and pancreatic cancers [49, 50].
Preclinical studies imply that such cancer cells
are driven by EZH2 activity, with EZH2 inhibi-
tion resulting in reduced tumor growth [51-54],
prompting their study in the clinical setting.

A number of selective SAM-competitive
EZH2 inhibitors have been developed that
inhibit both the mutant form of EZH2 as well as
the wild-type form [55]. These small molecules
mainly inhibit H3K27 di- and trimethylation,
leading to reactivation of EZH2 target genes. Six
SAM-competitive molecules, CPI-0209, CPI-
1205, tazemetostat (EPZ-6438), GSK2816126,
PF-06821497, and DS-3201, a dual inhibitor of
EZH1 and EZH2, have entered into clinical tri-
als. The clinical trial of GSK2816126 has since
been terminated because of modest anticancer

activity at tolerable doses and dosing limita-
tions of the drug [56]. Selective SAM-competi-
tive EZH2 inhibitors presently in clinical trials
are shown in Table 1.

Tazemetostat, an orally bioavailable potent
and selective SAM-competitive EZH2 inhibitor,
was recently approved by the US Food and Drug
Administration for epithelioid sarcoma [57],
and is currently the most investigated agent in
the clinical setting, with antitumor properties
demonstrated in preclinical models [58, 59]. A
phase 2 study of tazemetostat in patients with
relapsed/refractory (r/r) malignant mesothe-
lioma with BAPI1 inactivation (NCT02860286)
has also reported favorable safety and tolera-
bility, and promising antitumor activity [60].
Tazemetostat is being tested in an ongoing
phase 1/2 clinical trial in patients with r/r B cell
non-Hodgkin’s lymphoma (NHL) or advanced
solid tumors (NCT01897571). The study repor-
ted objective responses of 38% (n=8/21) in
patients with B cell NHL and 5% (n = 2/43) in
patients with solid tumors, with favorable safety
profiles [61]. Notably, durable objective
response or prolonged stable disease was
observed in 38% (n = 5/13) of patients with INI-
negative or SMARCA4-negative solid tumors,
whereas responses were not observed in patients
with wild-type INI1 or wild-type SMARCA4
proteins [61].

A phase 2 trial of tazemetostat in patients
with 1/t FL or r/r DLBCL reported clinical
activity and durable response with favorable
safety profiles in interim analyses. Efficacy for
tazemetostat was observed in lymphoma with
EZH2 mutations as well as wild-type EZH2. In
39 evaluable patients with r/r FL with an acti-
vating EZH2 mutation, the objective response
rate (ORR) was 74% with a complete response
(CR) rate of 10%. In 53 evaluable EZH2 wild-
type patients, the ORR was 34%, with a CR rate
of 6% [62]. In patients with r/r DLBCL, the ORR
was 17% in both mutant and wild-type sub-
groups, and a substantially longer duration of
response was seen in the mutant arm [63]. A
recent update reported an ORR of 77% for 43
patients with EZH2 mutations [64]. The accel-
erated approval of tazemetostat in epithelioid
sarcoma was based on efficacy data from a sin-
gle-arm cohort (Cohort 5) of a multicenter trial
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Table 1 SAM-competitive EZH2 inhibitors in clinical trials

Molecule Cancer indications in clinical studies Clinical phase Clinical Trials.gov identifier
CPI-1205 B cell lymphoma 1 NCT02395601
Solid tumor 1/2 NCT03525795*
mCRPC 1/2 NCT03480646
CPI-0209 Solid tumor 1/2 NCT04104776
DS-3201 AML or ALL 1 NCTO03110354
SCLC 1/2 NCT03879798
t/r adult T cell lymphoma 2 NCT04102150
Tazemetostat r/r B cell NHL 2 NCT03456726
Malignant mesothelioma 2 NCT02860286
t/r INII-negative tumors or synovial sarcoma 1 NCT02601937
r/r FL and DLBCL 1 NCT02220842°
r/r B cell NHL 1 NCT03009344
B cell NHL, FL, DLBCL, and solid tumor 1/2 NCTO01897571
PF-06821497 SCLC, r/r CRPC, and r/r FL 1 NCT03460977

ALL acute lymphoblastic leukemia, AML acute myeloid lymphoma, CRPC castration-resistant prostate cancer, DLBCL
diffuse large B cell lymphoma, FL follicular lymphoma, 72CRPC metastatic castration-resistant prostate cancer, NHL non-
Hodgkin’s lymphoma, NPC nasopharyngeal carcinoma, PD-1 programmed cell death-1, »/» relapsed/refractory, SAM

S-adenosyl-methionine, SCLC small cell lung cancer
* In combination with anti-CTLA-4
® In combination with anti-PD1 and anti-CD20

(NCT02601950). In this phase 2 trial, tazeme-
tostat was tested across various cohorts of
patients with INI1 deficiency with wvariable
responses. Not all patients with tumors with
INI1 loss responded to therapy, but the epithe-
lioid sarcoma cohort provided evidence for the
efficacy of the drug in this setting [65].
Although tazemetostat was tested in other
tumors, so far no predictors of response have
been identified, even in tumors with INI1 loss.
Although a predictive biomarker for response to
EZH2 inhibition is lacking, some data support
lower SMARCA2 expression as a biomarker in
SWI/SNF mutant cancers [66].

PF-06821497, a potent and selective EZH2
inhibitor with a K; of less than 0.1 nM against
both wild-type and mutant Y641N-EZH2,
induced robust tumor growth inhibition in a

dose-dependent manner in DLBCL xenograft
models in vivo [67]. This molecule is currently
under evaluation in a multicenter, phase1
study (NCT03460977) in patients with CRPC (in
combination with enzalutamide), SCLC (in
combination with cisplatin or carboplatin plus
etoposide), and FL.

GSK2816126 is a highly selective, SAM-
competitive inhibitor of EZH2 methyltrans-
ferase activity [68], and was the first commercial
EZH2 inhibitor, opening the door for other
compounds developed in this space.
GSK2816126 efficiently inhibits the growth of
EZH2-activating mutant DLBCL cells both
in vitro and in vivo [68]; however, a phase 1
study of patients with hematologic malignan-
cies (DLBCL, FL, NKL, and malignant mesothe-
lioma) and solid tumors [69] was terminated
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because of the lack of clinical activity, poten-
tially due to poor pharmacokinetic properties.
An ongoing phase 1l study of CPI-1205, a
potent, selective SAM-competitive inhibitor
[70], in patients with B cell lymphoma reported
favorable toxicity, with evidence of antitumor
activity and target engagement [71]. In patients
with metastatic CRPC, an ongoing randomized
phase 1b/2 study (ProSTAR) of CPI-1205 in
combination with either abiraterone or enzalu-
tamide reported that CPI-1205 was well toler-
ated, with a promising pharmacokinetic/
pharmacodynamic profile and clinical activity
in both arms in second-line treatment [72, 73].
CPI-02009 is a follow-up compound to CPI-1205
with better potency and pharmacokinetics.
Although targeting EZH2 appears to be a
promising strategy to treat many types of can-
cers, when KARPAS422 lymphoma cells were
treated with the EZH2 inhibitor Ell1 for a pro-
longed duration, resistant cells carrying the
secondary EZH2 mutations Y111L and Y661D
emerged [74]. Those mutant cells were not only
resistant to El1 but also to EPZ-6438, which
shares the pyridine scaffold with EI1 [74].
Although emergence of such resistant muta-
tions has not yet been observed in the clinic,
considering that most potent EZH2 inhibitors
contain a common 2-pyridine ring [19, 5§], it
would be desirable to inhibit EZH2 activity
through mechanisms other than a SAM-com-
petitive inhibition. In this context, growing
interest in targeting the embryonic ectoderm
development (EED) component of the PRC2
complex has evolved as an alternative strategy
to inhibit EZH2 [75-79]. For example, Novartis
has reported a number of EED binders in
development that inhibit basal PRC2 activity,
including MAK683, which is an allosteric inhi-
bitor that binds EED and currently in a clinical
trial for DLBCL and advanced solid tumors [77].
Some cancers depend on both EZH1 and
EZH2 for progression; for example, preclinical
studies have shown that the sole inhibition of
EZH2 did not suppress MLL-AF9-mediated acute
myeloid leukemia (AML), but simultaneous
inhibition of EZH2 and EZH1 produced com-
plete suppression [80, 81], and other preclinical
studies have shown greater antitumor efficacy
for EZH1/2 dual inhibitors compared with EZH2

selective inhibition [82]. The superior antitu-
mor activity of dual inhibition was observed
in vitro and in vivo against DLBCL cells har-
boring gain-of-function mutations in EZH2
[82]. One of these previously reported EZH1/2
dual inhibitors, DS-3201, has since shown clin-
ical activity in patients with NHL, although
further clinical data are required to assess if dual
inhibition provides a better therapeutic index
[83]. Overall, EZH2 inhibitors are emerging as a
novel therapeutic option based on their
promising clinical data in patients with NHL,
especially FL, while their clinical activity in
solid tumors is still under investigation. Since
oncogenic activity of EZH2 is context-depen-
dent, identification of biomarkers for response
along with rational combination approaches
might be critical for their successful application
in solid tumors. Inactivating EZH2 mutations
are also observed in certain tumors, e.g.,
myelodysplastic  syndrome, myelofibrosis,
myeloproliferative neoplasm, chronic
myelomonocytic leukemia, and T cell acute
lymphoblastic leukemia (ALL), so it might play
a tumor suppressor role in certain contexts
[84-86]. Thus it is important to understand the
diverse role of EZH2 in cancer to determine the
optimal use of EZH2 inhibitors in the clinic.

DOTI1L

The H3K79 methyltransferase DOTIL is
involved in gene activation [87, 88]. DOTI1L
interaction with fusion partners of mixed lin-
eage leukemia (MLL) results in inappropriate
DOTI1L recruitment and aberrant expression of
target genes, leading to MLL-rearranged leuke-
mogenesis [89, 90]. MLL fusion partners AF9,
ENL, and AF4 account for over two-thirds of
MLL rearrangements [91]. Three compounds
(EPZ004777, EPZ-5676 [pinometostat], and
SGC0496) have been examined as specific
DOTI1L inhibitors [92]. Although EPZ004777
demonstrated robust activity in a mouse model
of MLL as well as in cultured cells, its pharma-
cokinetic properties were unsuited to clinical
application [92]. EPZ-5676, a DOT1L inhibitor
related to EPZ004777, demonstrated better
potency and selectivity compared with
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EPZ00477 in a rat xenograft model of MLL-re-
arranged leukemia, with durable complete
tumor regression [93].

A phase 1 study of EPZ-5676 (pinometostat)
in patients with r/r leukemia involving MLL
translocation (NCT01684150) showed that EPZ-
5676 was well tolerated with 2 of 51 patients
experiencing complete remission [94]. A
phase 1 study in children with r/r MLL-rear-
ranged acute leukemia (NCT02141828)
demonstrated an acceptable safety profile,
though no objective response occurred [95].

The modest clinical response to DOTIL
inhibition might be explained by the possibility
that residual DOT1L methyltransferase activity
is sufficient for cell viability. Further clinical
studies, including the ongoing phase 1/2 trial
examining EPZ-5676 in combination with
chemotherapy agents (NCT03724084) or EPZ-
5676 in combination with the DNMT inhibitor
azacitidine (NCT03701295), will help evaluate
the applicability of DOT1L inhibitors for MLL-
rearranged leukemia.

PROTEIN ARGININE
METHYLTRANSFERASES

Arginine methylation, mediated by the nine
members of the PRMT family, is an important
epigenetic mechanism for regulating transcrip-
tion. The PRMTs are classified as type I, type ],
or type Il on the basis of the type of methyla-
tion made to the target substrates. All three
types of PRMT enzymes are capable of catalyz-
ing arginine monomethylation, whereas type I
PRMTs catalyze asymmetric dimethylation
(me2a) and type Il enzymes catalyze symmetric
dimethylation (me2s) [96, 97]. PRMTs methy-
late a variety of substrates, including histones
and many non-histone proteins important in
cancer signaling pathways.
Coactivator-associated  arginine methyl-
transferase 1 (CARM1 [PRMT4)]) is overexpressed
in AML and breast, prostate, and liver cancers
and is an important regulator of cell differenti-
ation [98-101]. CARMI1 asymmetrically
dimethylates H3 residues R17 and R26, and also
modifies many non-histone proteins. These
include members of MLL, SWI/SNF, and

mediator complexes [102], RNA-binding pro-
teins, and some splicing factors [103]. CARM1
has been implicated in both pluripotency
[104, 105] and cellular differentiation in multi-
ple lineages [106-108]. It blocks myeloid dif-
ferentiation of human hematopoietic stem/
progenitor cells and is downregulated during
myeloid differentiation. CARM1 inhibitors have
been reported in preclinical studies from Epi-
zyme and Takeda, but these have yet to enter
the clinic [109, 110]. For example, depletion of
CARM1 reduced the leukemic cell burden in an
AML mouse model [98] and pharmacologic
inhibition with the CARM1 inhibitor EZM2302
increased survival of AML-transplanted mice
[111]. EZM2302 also demonstrated antiprolif-
erative activity of lymphoma cells in vitro and
inhibited growth of multiple myeloma tumors
in a mouse xenograft model [109].

PRMTS is overexpressed or upregulated in
leukemia, lymphoma, and solid tumors,
including glioblastoma and lung cancers
[96, 112]. It is the major type Il enzyme cat-
alyzing symmetric arginine dimethylation of
proteins involved in pathways known to be
dysregulated in cancer, including transcription,
cell signaling, mRNA translation, DNA damage,
receptor trafficking, protein stability, and pre-
mRNA splicing [113]. In a colony-forming assay,
PRMTS inactivation inhibited the abilities of
cyclin D1, ¢-MYC, NOTCH1, and MLL-AF9 to
induce neoplastic growth [114]. Loss of PRMTS
in primary glioblastoma cells and cell lines
resulted in cell-cycle arrest, pS53-independent
apoptosis, and reduced migration capacity
[115]. Genetic knockdown in non-small cell
lung carcinoma (NSCLC) cells demonstrated
antiproliferative activity that was not rescued
by catalytically inactive protein, and it reduced
tumor growth in an orthotopic lung cancer
mouse model [116]. Taken together, these
results suggest that PRMTS is a potential thera-
peutic target for many types of cancers.

Preclinical studies have shown the potential
for pharmacologic inhibition of PRMTS in the
treatment of cancer. EPZ015666 (GSK3235025),
a potent orally bioavailable PRMTS inhibitor,
demonstrated antiproliferation and antitumor
activity in vitro and in vivo in mantle cell
lymphoma [117] and glioblastoma [118]. The
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orally bioavailable PRMTS inhibitor JNJ-
64619178 demonstrated tumor regression in a
SCLC xenograft model [119] and has since
entered clinical development (NCT03573310).
PF-06939999 is a potent and selective orally
bioavailable PRMTS inhibitor with antitumor
activity in leukemia and pancreatic cancer
xenografts [120]. LLY-283 is a potent and
selective PRMTS inhibitor with demonstrated
antitumor effects in a mouse AML xenograft
tumor model [121]. CTx-034, developed by a
partnership between Merck and Cancer
Research Technology (CRT), is an orally
bioavailable and potent PRMTS inhibitor. In
mice, administration of CTx-034 was associated
with a dose-dependent reduction of the
H4R3me2s mark, without a significant reduc-
tion in body weight or hematologic changes
[122]. Thus far, three PRMTS5 inhibitors,
GSK3326595 (EPZ015938), JNJ-6461978, and
PF-06939999, have entered into clinical studies
in patients with hematologic malignancies and
solid tumors. A presentation at the European
Society for Medical Oncology congress reported
data from the METEOR-1 study (NCT02783300)
for GSK3326595 in advanced solid tumors
[123]. Patients (n =54) received doses of
12.5 mg to 600 mg once daily, and from 50 mg
to 200 mg twice daily, with a median time on
treatment of 1.8 months (range 1day to
18.7 months). Grade 3 and 4 adverse events
were reported for 35% of patients, and
stable disease was reported for 19 patients. Par-
tial responses were observed in patients with
human papillomavirus—positive cervical cancer
(1 response/1 subject) and adenoid cystic carci-
noma (ACC) (3 responses/14 subjects); the
responses in ACC were observed at the 200-mg
dose. A summary of PRMT inhibitors currently
in clinical trials is shown in Table 2.

Research in this field has uncovered poten-
tial genetic biomarkers of PRMTS response.
Homozygous deletion of the methylth-
ioadenosine phosphorylase (MTAP) gene occurs
in many cancer cells because of its location in
proximity to CDKNZ2A, a tumor-suppressor gene
often deleted in cancers. Viability of MTAP-null
lines was hampered by shRNA-based inhibition
of PRMTS and its cofactor WDR77 compared
with MTAP-positive cells [124], though

treatment with the inhibitor EPZ015666 did not
demonstrate a significant difference in sensi-
tivity between MTAP-null or wild-type cell lines
[125, 126]. Similarly, the TMPRSS2:ERG fusion
gene is commonly found in AR-positive prostate
cancer, and PRMTS shRNA robustly inhibited
the growth of AR-positive prostate cancer cells
carrying the ERG fusion gene, whereas no or
only minor effect of growth inhibition was
observed in ERG fusion-negative cells [127].
GSK3235025-sensitive glioblastoma cell lines
demonstrated an altered expression ratio of two
PRMTS5 cofactors, CLNS1A and RIOK1
[118, 128]. Additionally, AML cell lines with
mutations in splicing factors (SF3B1, SRSF2, and
U2AF1) demonstrated enhanced sensitivity to
GSK391, the first chemical probe of PRMTS co-
developed by Epizyme and GlaxoSmithKline
[117, 129]. These results suggest potential
biomarkers for preselecting patients who may
respond to a PRMTS inhibitor in clinical studies,
though more research is warranted to further
refine the responder hypothesis.

PRMT1 is responsible for up to 85% of pro-
tein arginine methylation reactions [130] and
modifies H4R3, which recruits coactivator
p300/CBP-associated factor complex, leading to
additional histone acetylation [97, 130]. PRMT1
also methylates many non-histone proteins,
including BRACA1, EGFR [112], and Ash2L, a
component of H3K4 methyltransferase com-
plexes [131]. Overexpression or upregulation of
PRMT1 and its isoforms has been shown in
breast cancer, ALL, NSCLC, lung cancer, and
glioma [112]. PRMT1 plays an important role in
hematologic malignancies [103] and solid
tumors [132, 133], although just one PRMT1
inhibitor (GSK3368715) is currently in devel-
opment. A recent publication reported strong
antiproliferative activity for this molecule
across a range of solid tumor and hematological
models, and synergy with PRMTS inhibition
[134]. Deletion of the MTAP gene, which results
in accumulation of the metabolite 2-methylth-
ioadenosine, increased sensitivity to
GSK3368715 in cell lines [134]. This finding
suggests that MTAP status may be a useful bio-
marker for selecting patients that may respond
best to GSK3368715. Recently, GSK3368715
entered phase 1 clinical trials for hematologic
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Table 2 PRMT inhibitors in clinical trials
Molecules Cancer indications in clinical studies Clinical phase Identifier
PRMTT1 inhibitor
GSK3368715 r/r DLBCL, 1/r solid tumors 1 NCT03666988
PRMTS inhibitor
GSK3326595 MDS, AML 1/2 NCTO03614728"
r/r solid tumors, NHL 1 NCT02783300
JNJ-64619178 r/r B cell NHL, advanced solid tumors 1 NCT03573310
PF-06939999 Advanced or metastatic solid tumors 1 NCT03854227

AML acute myeloid lymphoma, DLBCL diffuse large B cell lymphoma, MDS myelodysplastic syndrome, NHL non-
Hodgkin’s lymphoma, PRMT protein arginine methyltransferases, »/» relapsed/refractory

* In combination with azacitidine and best available care

malignancies or solid tumors with increased
incidence of MTAP deletion (NCT03666988).
Table 3 summarizes various methyltransferase
inhibitors under clinical investigation.

EMERGING TARGETS

G9a

G9a (EHMT2) belongs to the Suv39h family,
and was initially identified as a histone

methyltransferase that mediates H3K9 and
H3K27 methylation in vitro [135]. Subsequent
in vivo studies suggest that G9a is a major
enzyme for mono- and dimethylation of H3 in
euchromatic regions [136-138] and involved in
trimethylation of H3K9 [139]. A structurally
related methyltransferase, G9a-like protein
(GLP/EHMT1), shares the same histone sub-
strate specificities [140-142]. Like many other
methyltransferases, G9a (EHMT2) modifies a
number of non-histones, including p53 [143].
G9a and GLP (EHMT1) are involved in MYC-

Table 3 Overview of methyltransferase inhibitors under clinical investigation

Target class Clinical compounds Manufacturers
Protein lysine methyltransferase inhibitors
DOTIL Pinometostat (EPZ-5676) Epizyme
inhibitor
EZH2 Tazemetostat, CPI-0209, CPI-1205, PF-06821497, Epizyme, Constellation Pharma, Pfizer,
inhibitors DS-3201, MAK683 Daiichi Sankyo, Novartis

G9a inhibitor EZM8266

Protein arginine methyltransferase inhibitors

PRMTS GSK3326595, INJ-64619178, PF-06939999
inhibitors

PRMT1 GSK3368715
inhibitor

Epizyme

GlaxoSmithKline, Johnson & Johnson, Pfizer

GlaxoSmithKline
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dependent repression, and G9a inhibition sup-
presses MYC-dependent tumor growth [144].

G9a is dysregulated in a variety of cancers,
including leukemia and ovarian, lung, breast,
and other cancers [145]. Pharmacologic inhibi-
tion of G9a with BIX-01294, the first-identified
G9a inhibitor [146], repressed tumor growth in
mouse xenograft models of hepatocellular car-
cinoma, oral squamous cell carcinoma, and
breast cancer [147-149], although cellular toxi-
city [146] prevented clinical application. Sub-
sequently, several derivatives of BIX-01294 were
developed. UNCO0638, a potent, selective inhi-
bitor of G9a and glucagon-like peptide-1 (GLP-
1), demonstrated a lower toxicity compared
with BIX-01294 [150], with an antitumor effect
in mouse xenograft models of pancreatic cancer
and NSCLC [151, 152]. A-366, a G9a inhibitor
structurally unrelated to BIX-01294, demon-
strated a 10-fold higher potency for G9a com-
pared with GLP-1 [153], and a lower
cytotoxicity compared with other G9a inhibi-
tors, with equivalent cellular activity on H3K9
dimethylation. A recently published report
identified G9a as a possible new target for the
treatment of bladder cancer [154]. Sustained
responses in a mouse model of metastatic
bladder cancer were observed with G9a/DNMT
inhibition in combination with programmed
death ligand 1 (PD-L1) blockade. The study also
reported increased G9a levels in bladder cancer
patients resistant to PD-L1 inhibition, suggest-
ing potential clinical relevance of this combi-
nation approach [154].

Mixed Lineage Leukemia Protein Family

MLL1 is commonly associated with chromoso-
mal translocations in childhood leukemias
[155, 156]. In recent years, tumor exome
sequencing studies have shown that MLL3 and
MLL2 are mutated in a significant proportion of
malignancies, particularly solid tumors. The
MLL family (MLL1-4) encodes histone methyl-
transferases for H3K4 that play crucial roles in
the regulation of development-related genes,
including Hox loci. One of the functions of the
MLL family of proteins is as a catalytic subunit
of the MLL/COMPASS complex, responsible for

mono-, di-, and trimethylation of H3K4 [157].
Although small-molecule inhibitors of the MLL
complex catalytic function have not been
developed, small-molecule protein-protein
interaction inhibitors have been identified for
proteins that comprise the MLL/COMPASS
complex. Among COMPASS components,
menin and WDRS are of particular interest.
Menin is a tumor-suppressor protein that is part
of the MLL1/COMPASS or MLL2/COMPASS
complex [157] that plays a critical role in H3K4
methylation of Hox loci [158]. WDRS is a com-
mon component among all of MLL/COMPASS
complexes, and interacts with a number of
transcription factors, cofactors, and non-coding
RNAs [159]. Like menin, WDRS is essential for
MLL’s methyltransferase activities.

The MLL family and their interaction part-
ners are frequently dysregulated in numerous
types of cancers. Menin plays important roles in
MLL fusion-dependent proliferation, differenti-
ation block, and leukemic transformation
[160-162]. WDRS is overexpressed in solid
tumors and leukemia [163-165] and, in patients
with leukemia, high WDRS expression levels are
associated with those with high-risk disease
[166]. Both menin and WDRS function as
recruiters of MLL fusions to chromatin, and
play central roles in leukemic transformation
[167, 168], and are thus potential therapeutic
targets, with preclinical research underway
mostly in MLL-rearranged leukemia.

SMYD2 and SMYD3

A recent report found abundant expression of
SMYD2 to be an independent biomarker for
poor prognosis of patients with hepatocellular
carcinoma, which might imply that SMYD2
overexpression is associated with a more
aggressive phenotype [169]. Potent and selec-
tive SMYD?2 inhibitors have been developed to
interrogate this potentially important anti-
cancer approach [170-172].

Expressed at high levels in a number of
cancers, SMYD3 is a lysine methyltransferase
associated with a poor prognosis [173-181]. A
causative association between cancer develop-
ment and SMYD3 function has been shown in
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Ras-driven lung and pancreatic adenocarcino-
mas [182]. Although SMYD3 may be involved in
heart development [183] and early develop-
ment [184], whole-body or organ-specific
SMYD3 deletion in mice did not result in aber-
rant pathology [185]. On the basis of these
observations, if developed for the treatment of
cancer, one can speculate that SMYD3 inhibi-
tion may have few side effects [186-188].

Although there has been extensive preclini-
cal development of small-molecule SMYD3
inhibitors, no clinical trials with these agents
are in progress at the time of this writing.

SETD7

Increasing evidence suggests that SET domain-
containing (lysine methyltransferase) 7 (SETD7)
plays a critical role in a number of physiological
and pathological processes, such as metabolism,
immunity, and cancer [189]. Histone and non-
histone substrates for SETD7 are involved in
various distinct cellular operations, including
regulation of the cell cycle, response to DNA
damage, RNA polymerase II-dependent gene
transcription, cell differentiation, and chro-
matin modulation [12, 190, 191]. Like most
lysine methyltransferases, SETD7 contains a SET
domain that is responsible for the transfer of a
methyl group to a lysine residue [190, 192, 193].
Recently, SETD7 was identified as a potential
therapeutic target to inhibit intestinal tumori-
genesis, as it is required for Wnt-driven intesti-
nal tumorigenesis and regeneration [194].

SETDS8

Current evidence suggests that SETDS8 is the
only methyltransferase known to catalyze the
monomethylation of histone H4 at lysine 20
[195]. Overexpression of SETD8 is observed in
some cancers, including pancreatic and bladder
cancers, NSCLC, SCLC, chronic myelogenous
leukemia, and hepatocellular carcinoma [196].
Various inhibitors of SETD8 have been devel-
oped but none have entered into clinical trials
at the time of this writing [197, 198].

DRUG RESISTANCE, EPIGENETIC
PLASTICITY, AND ANTICANCER
IMMUNITY

In 1976, Nowell proposed a well-known tumor
evolution model, where the acquired genetic
instability combined with clonal selection of
tumor cells results in resistance to therapeutic
intervention [199]. Inherent variability of can-
cer cells provides them with the plasticity to
survive, even when under the treatment of
efficient drugs [200]. Considering a much
higher rate of epigenetic “errors” compared with
genetic mutations, epigenetic regulators may
play an important role in generating new cancer
stem/progenitor-like cells as well as in devel-
oping cancer heterogeneity, both of which are
fundamental mechanisms of developing drug
resistance [8, 201].

A certain type of drug resistance caused by
epigenetic dysregulation can be reversed by low
doses of epigenetic modifiers [201]. Silencing
through hypermethylation of the Schlafen 11
(SLFN11) gene is linked to resistance to plat-
inum drugs [38, 202] and treatment of classI
(romidepsin, entinostat), but not class II (ricol-
inostat) HDAC inhibitors increased SLFNI11
expression [203]. A recent study found that
combining an EZH2 inhibitor with standard
cytotoxic therapies prevented emergence of
acquired resistance and improved chemothera-
peutic efficacy in chemoresistant and
chemosensitive models of SCLC via upregula-
tion of SLFN11 [38]. These findings suggest the
possibility of applying epigenetic modifiers to
evade drug resistance, and the study of various
drug combinations is warranted in this context.

In addition to tumor intrinsic resistance
mechanisms, epigenetic changes in cancer cells
have also been associated with a variety of
mechanisms mediating escape from immune
surveillance [204-208]. These mechanisms
include downregulation of cellular antigen
presentation machinery, reduced expression of
tumor-associated antigens, inhibition of proin-
flammatory cytokines, and altered expression of
checkpoint proteins [209-213]. Epigenetic
mechanisms have also been associated with
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altered function of immune cells and hence
reduced antitumor immunity [205, 206].

Epigenetic reprogramming conferred by
EZH2 dysregulation has been identified as a
major mechanism of transcriptional repression
of genes that confer immunogenicity to tumor
cells. This is best exemplified by the role of
EZH2 in transcriptional repression of genes
involved in antigen-presenting pathways in
cancer, and a pivotal role for EZH2-mediated
H3K27me3 repressive marks in the mainte-
nance of MHC-I silencing in MHC-I-deficient
cancers was recently reported [209]. Interest-
ingly, in neuroendocrine tumors including
SCLC and neuroblastoma, EZH2 function
appears to highjack a conserved developmental
program in neural progenitor cells to poten-
tially confer immune privilege via MHC-I
downregulation. Genetic inhibition of EZH2 in
a genetically engineered mouse model of SCLC
led to MHC-I upregulation and immune-medi-
ated tumor regression [209].

Wang et al. highlighted the critical role of
EZH2 activity in mediating T, cell function in
anticancer immunity [214]. Selective upregula-
tion of EZH2 was observed in tumor-infiltrating
Treg cells but not in effector T cells and T,eg cells
in peripheral blood. Genetic deletion or phar-
macological inhibition of EZH2 in vitro or
in vivo destabilized FOXp3 expression in Teg
cells thus promoting immune-mediated rejec-
tion of tumors in mouse syngeneic models
[214]. These results were further confirmed in a
study demonstrating that genetic depletion of
EZH2 in T cells or EZH2 catalytic inhibition
using CPI-1205 elicited phenotypic and func-
tional alterations to T.g cells, along with
enhanced activation of effector T cells leading
to robust antitumor immunity [215]. However,
EZH2 inhibition has also been associated with
reduced long-term survival of effector T cells
[216, 217], along with induction of immuno-
suppressive myeloid-derived suppressor cells
[218], highlighting the need for further evalua-
tion of its diverse role in mediating immune cell
function. Collectively, EZH2-mediated epige-
netic programs are essential for the lineage
commitment as well as the functional immune
suppressive activity of T, cells, along with
tumor escape from immune surveillance via

downregulation of the antigen presentation
pathway, providing a rationale for exploring
combination therapies of EZH2 inhibitors with
immune checkpoint inhibitors.

FUTURE PERSPECTIVE
AND CHALLENGES

Although a number of epigenetic modifiers
have demonstrated promising results in pre-
clinical studies, progressing them for solid
tumors has been challenging, and careful con-
sideration of drug combinations may affect
their future clinical utility in this respect. A lack
of predictive biomarkers has also made progress
difficult. However, some traction is being made.
For example, recent data suggest that SMARCA2
expression could be predictive for EZH2-tar-
geted approaches in the context of SWI/SNF
mutant cancers [66]. It was shown that EZH2
inhibition is effective in SMARCA4 mutant
cancers that concurrently transcriptionally
silence the paralog helicase SMARCAZ2. Cellular
sensitivity to EZH2 inhibition in SMARCA4
mutant cancer models was associated with
lower expression of SMARCA2, independent of
tissue derivation.

The combination of epigenetic modifiers
with immunotherapy is evolving as another
area of great interest, with numerous clinical
trials underway in both solid and liquid tumors
across a range of epigenetic targets. Other
approaches under clinical investigation include
combination with treatments such as standard
chemotherapy, radiotherapy, angiogenesis
inhibition, epidermal growth factor receptor
inhibition, and hormone therapy. Methyl-
transferase inhibitors in combination with
checkpoint blockade can play an important role
in inhibiting the suppressive function of T,
cells [215], for example, and counter resistance
mechanisms that limit the effectiveness of
checkpoint inhibitors. As mentioned above, a
number of EZH2 inhibitors have now entered
into clinical trials, including both CPI-205 and
tazemetostat in combination with checkpoint
blockade.
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CONCLUSIONS

The modulation of epigenetic targets in the
treatment of cancer is proving to be a rich area
for research, with a plethora of novel epigenetic
modifiers in development, some of which are
showing early signs of activity in clinical trials.
Histone methyltransferase inhibitors are a
promising new approach for targeting epige-
netic dysregulation in cancer and the recent
approval of tazemetostat leads the way for
future advances in this field. However, the most
optimal approach to using such drugs, includ-
ing patient selection, the identification of
biomarkers, as well as the correct drug combi-
nations, is an area of active research with still
many unanswered questions. The outcomes of
various ongoing clinical trials will no doubt
provide the answers to some of these questions
and pave the way to providing novel treatments
for patients with an unmet need.
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