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An altered glial phenotype 
in the NL3R451C mouse model 
of autism
Samantha M. Matta1,2, Zachery Moore1, Frederick Rohan Walker3,4, Elisa L. Hill‑Yardin2,5,6 & 
Peter J. Crack1,6*

Autism Spectrum Disorder (ASD; autism) is a neurodevelopmental disorder characterised 
by deficits in social communication, and restricted and/or repetitive behaviours. While the 
precise pathophysiologies are unclear, increasing evidence supports a role for dysregulated 
neuroinflammation in the brain with potential effects on synapse function. Here, we studied 
characteristics of microglia and astrocytes in the Neuroligin-3 (NL3R451C) mouse model of autism since 
these cell types are involved in regulating both immune and synapse function. We observed increased 
microglial density in the dentate gyrus (DG) of NL3R451C mice without morphological differences. In 
contrast, WT and NL3R451C mice had similar astrocyte density but astrocyte branch length, the number 
of branch points, as well as cell radius and area were reduced in the DG of NL3R451C mice. Because 
retraction of astrocytic processes has been linked to altered synaptic transmission and dendrite 
formation, we assessed for regional changes in pre- and postsynaptic protein expression in the cortex, 
striatum and cerebellum in NL3R451C mice. NL3R451C mice showed increased striatal postsynaptic 
density 95 (PSD-95) protein levels and decreased cortical expression of synaptosomal-associated 
protein 25 (SNAP-25). These changes could contribute to dysregulated neurotransmission and 
cognition deficits previously reported in these mice.

Autism Spectrum Disorder (ASD; autism) is a neurodevelopmental disorder estimated to affect 1 in 54 
children1. Autism is characterised by deficits in social communication, and restricted and/or repetitive patterns 
of behaviour2. A complex interaction between genetic and environmental factors is thought to contribute to 
autism. The clinical heterogeneity and variability in presentation and severity of autism has made diagnosis, 
treatment and the study of autism-relevant neurobiology challenging3. However, functional and neuroanatomi-
cal abnormalities are consistently reported in autism patients4–6, with increasing evidence supporting a role for 
neuroinflammation in autism pathophysiology7–9.

Neuroinflammation involves the sustained, and often unwarranted, increase in activity of glial cells (i.e. 
microglia and astrocytes), which release many pro-inflammatory cytokines and chemokines in response to injury, 
infection or disease. During this activity, ‘reactive’ microglia and astrocytes show altered morphology. Aberrant 
neuroimmune profiles have been documented in autism including increased densities of reactive microglia 
and astrocytes in several brain regions10–12 accompanied by alterations in cytokine and chemokine secretion 
in brain tissue10,13, cerebrospinal fluid10,14 and blood15–17 of autism patients compared to neurotypical controls. 
In addition to regulating immune function, microglia and astrocytes assist in maintaining synaptic function. 
Abnormal glial function may therefore influence synaptic circuitry and neuronal connectivity within the central 
nervous system (CNS) and contribute to regional-specific under-connectivity6,18–21 and hyper-connectivity21,22 
reported in autism. Given the role of glia in regulating synaptic activity, a sustained presence of reactive glial 
cells could contribute to cognitive and core behavioural traits in autism. It is unclear, however, whether changes 
to the neuronal architecture cause increased neuroinflammation, or if abnormalities in microglia and astrocytes 
contribute to aberrant synaptic pruning or dysfunction.

Many mutations in genes encoding synaptic proteins are implicated in autism23,24 including a missense 
mutation whereby an arginine residue is replaced by cysteine at position 451 of exon 7 of the gene encoding 
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neuroligin-3 (NL3). The R451C mutation in NL3 was identified in two brothers diagnosed with autism25 and is 
a strong candidate gene for autism. When expressed in mice (NL3R451C mice), the mutation confers behaviours 
relevant to the core features of autism including deficits in social interaction26–29, reduced vocalisations30 and 
repetitive behaviours26,31. Several studies have demonstrated persistent phenotypic traits in NL3R451C mice bred 
on a mixed and C57/Bl6 background26,27,29,32. The R451C mutation causes a reduction in NL3 protein expres-
sion at the postsynaptic membrane to approximately 10% of control levels27,29. NL3R451C mice also show altered 
expression of other synaptic scaffolding proteins such as decreased levels of neuroligin 1 (NL1)29 and increased 
expression of postsynaptic density protein 95 (PSD-95) and synapse-associated protein-102 (SAP-102)27. These 
changes occur alongside an imbalance in excitatory and inhibitory synaptic transmission27,29,33–35.

Here, we hypothesised that NL3R451C mice exhibit altered microglial and astrocyte morphology indicative of 
a reactive state as well as changes in synaptic protein levels. We first assessed for changes in neuroinflammation 
by investigating the density and morphology of hippocampal microglia and astrocytes in WT and NL3R451C mice. 
We then explored alterations to synapse structure through analysis of synaptic proteins involved in neuronal 
signalling.

Results
Microglial density was increased in the DG region of NL3R451C mice compared to WT. In the CA1, microglia 
somata were elongated in NL3R451C compared to WT mice but did not exhibit any other morphology changes. 
Astrocyte density was also similar in the hippocampal CA1 and DG regions in NL3R451C and WT mice. Although 
astrocyte morphological parameters were unchanged in the CA1 region, in the DG, astrocytic branch length, the 
number of branches, cell radius and cell area measures were decreased in NL3R451C mice. Interestingly, postsyn-
aptic density 95 (PSD-95) protein levels were elevated in the striatum, whereas cortical levels of the presynaptic 
protein, synaptosomal-associated protein 25 (SNAP-25) were decreased in NL3R451C mice.

Increased hippocampal microglial density in NL3R451C mice.  We observed increased microglial den-
sity in the DG region (Fig. 1) of the hippocampus in NL3R451C mice compared to WT (Table 1). There was also 
a non-significant trend for increased density of microglia in the CA1 hippocampal region (Fig. 2). Microglial 
cell morphology was similar between genotypes with no changes in branching (number of primary branches, 
number of branch points, or total branch length) or cell size (cell radius or cell area). Although soma area was 
similar between genotypes, soma eccentricity was increased in the CA1 region of NL3R451C mice..

Reduced cell size and branch length in Dentate Gyrus astrocytes in NL3R451C mice.  Hippocam-
pal DG (Fig. 3) and CA1 (Fig. 4) astrocytes were present at similar cell densities in WT and NL3R451C mice 
(Table 2). DG astrocytes, however, showed an altered morphology, with decreased number of branch points, 
total branch length, cell radius and cell area in NL3R451C mice compared to WT. The total number of primary 
branches of DG astrocytes was not changed in NL3R451C mice. Astrocyte cellular parameters were similar between 
NL3R451C and WT mice in the CA1 region.

Region‑specific changes in synaptic structural proteins in NL3R451C mice.  We next investigated 
the structure of synapses by analysing expression levels of presynaptic (i.e. dendritic; PSD-95, PSD-93 and Neu-
roligin 2 (NL2); Fig. 5) and postsynaptic (axonal; SNAP-25 and synaptotagmin-1 (SYT-1); Fig. 6) proteins in 
cortical, striatal and cerebellar tissue samples of WT and NL3R451C mice (Table 3). PSD-95 was increased signifi-
cantly in the striatum (Fig. 5C,D) and SNAP-25 was decreased significantly in the cortex (Fig. 6G,H) of NL3R451C 
mice compared to WT. As expected, Neuroligin 3 protein expression was dramatically decreased in all regions 
analysed in NL3R451C mice (Supplementary Fig. S5). Moreover, in agreement with our GFAP immunofluores-
cence findings of similar hippocampal astrocyte density in WT and NL3R451C brain slices, we observed no change 
in GFAP expression levels in WT and NL3R451C cortical, striatal or cerebellar brain lysates (Fig. 7) using Western 
blot. The original, full-length images of the Western blots have been added to our supplementary information, 
as Figures S6–S9.   

Discussion
Microglia and astrocyte profiles are subtly altered in NL3R451C mice. These changes differ from previously reported 
morphological changes thought to indicate a reactive microglial state36,37. Namely, microglia in NL3R451C mice 
did not show process retraction or thickening of ramified processes. In addition, astrocytes did not show hyper-
trophy or branch extension typically associated with a reactive inflammatory state36,37. Interestingly, we observed 
increased microglial cell density in the DG, and a trend for increased density in the CA1 region, of the hip-
pocampus in NL3R451C mice. Although increased microglial density is typically seen in conjunction with increased 
reactivity11,38, increased microglial density has also been reported prior to the reactive state in a mouse model of 
Alzheimer’s disease39. Rodriguez and colleagues reported an increased density of ramified microglia in the CA1 
region of the hippocampus preceding the formation of amyloid β plaques and morphological changes of microglia 
to a reactive phenotype in a triple-transgenic model of Alzheimer’s disease39. Although it is well established that 
reactive microglia show soma elongation, in the CA1 region of NL3R451C mice we report increased microglial 
soma eccentricity but no change in other parameters relevant to the reactive state such as soma area, cell size 
or branching patterns. The microglial soma elongation in NL3R451C mice may indicate a subtle physiological 
functional change in this cell type, however the precise role of this morphological change in the absence of an 
inflammatory insult is unclear.

In the DG, we identified a significant decrease in both the number of branch points and the length of astrocyte 
processes in NL3R451C mutants compared to WT mice. Similarly, significant decreases in measures of cell radius 
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and cell area in DG astrocytes were observed. This may indicate an alteration in the local environment which 
leads to a subsequent change in cell morphology. Surprisingly, these findings contrast with the morphological 
changes characteristic of reactive astrocytes, such as an extension and thickening of processes and somatic 
hypertrophy. Astrocytic processes maintain contact with neuronal synapses and regulate neuronal function as 
part of the tripartite synapse40. Astrocytes also contribute to regulating neurotransmitter concentrations at the 
synapse through the uptake of the excitatory neurotransmitter glutamate via excitatory amino acid transporters 
expressed on the astrocytic cell membrane. Prolonged retraction of astrocytic processes could therefore reduce 
glutamate uptake from the synaptic cleft and alter neurotransmission41. Moreover, astrocytic processes interact-
ing with the synapse can prevent synapse growth during memory consolidation, highlighting the significance 
of astrocyte morphology in synapse function and cognition42. For example, astrocyte contact with dendrites 
regulates the formation, length and survival of dendritic spine protrusions, via pathways involving Ras-related 
C3 botulinum toxin substrate 1 (Rac1) and ephrin-A343. In addition, retraction and disengagement of astrocytic 
processes from postsynaptic dendritic spines can decrease the survival rate and maturation of dendrites44. As 
such, our observations could therefore be associated with the formation of immature dendritic spines and dis-
rupted synaptic communication as well as the enhanced motor26,31 and spatial learning28,29 seen in this model. 
Relevant to our findings, an increase in dendritic branching but decreased spine area has also been reported in 
the CA1 region of the hippocampus in NL3R451C mice27.

Figure 1.   Microglial cell density is increased in the DG hippocampal region in NL3R451C mice. Representative 
confocal immunofluorescence images of DG hippocampal coronal sections from WT (A–D) and NL3R451C 
(E–H) mice co-labelled with IBA-1 (red), NeuN (green) and DAPI (blue). Scale bar = 50 µm. (I–P) Number of 
IBA-1 immunoreactive cells, branching parameters, cell radius, cell area, soma area and soma eccentricity in 
WT and NL3R451C mice (n = 5 mice in each group). Data represented as mean ± SEM.
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Glial cells are involved in the physiological maintenance of synapses, including the removal, or pruning, of 
dendrites and axons following prolonged inactivity. Therefore, we next investigated the expression of synaptic 
structural proteins to determine if synaptic pruning may be altered in this model. Although we found that expres-
sion of the majority of synaptic proteins examined were unaffected, regional-specific alterations in expression of 
cortical SNAP-25 and striatal PSD-95 support previous reports of changes in synapse structure in NL3R451C mice.

Decreased expression of NL1 has previously been reported in NL3R451C mice29, but we observed no differ-
ence in neuroligin 2 (NL2) protein expression. These observations may be due to differences in the synaptic 
localisation and function of NL1 and NL2 and their interactions with NL3. NL1 is localised to glutamatergic 
excitatory postsynapses45 whereas NL2 is found at GABAergic inhibitory postsynaptic boutons46. NL3 forms 
heterodimers with NL1 but not NL247. Since the R451C mutation causes a drastic reduction in NL3 protein 
expression, we propose that decreased NL1 levels may occur in NL3R451C mice due to the reduced levels of NL3 
available to bind with NL1.

The postsynaptic density proteins (PSD) PSD-93 and PSD-95 influence neurotransmission via their roles 
as scaffolding proteins at excitatory synapses as well as by binding NMDA receptors and recruiting AMPA 
receptors48. PSD-95 also binds to neuroligins to facilitate the recruitment of ion channels and receptors to the 
synapse49,50. NL3R451C mice show increased expression of PSD-95 in the hippocampus27. In the current study, 
we confirm these findings via our analysis of PSD-95 protein levels in striatal brain tissue, comprising the hip-
pocampus in addition to the thalamus, amygdala and corpus callosum. Here, we report that elevated PSD-95 
protein expression is exclusive to the striatum, as we observed no significant changes in PSD-95 abundance 
in the cortex or cerebellum despite the expected dramatic decrease in NL3 in all brain regions analysed. Our 
observations of increased microglial density in the hippocampus may contribute to dysregulation of synaptic 
maintenance in NL3R451C mice.

Our data show brain region-specific changes in synaptic protein expression in NL3R451C mutant mice. We 
assayed expression levels of presynaptic proteins, SYT-1 and SNAP-25, which are involved in facilitating neu-
rotransmitter release51 and mutations in these genes have been identified in autism patients52. Individuals with 
missense variants in SYT-1 are reported to exhibit impaired social development, motor stereotypies and devel-
opmental delay53. A number of studies have also reported single nucleotide polymorphisms in SNAP-25 that 
are associated with increased severity of core behaviours and hyperactivity54,55, and are associated with cogni-
tive deficits56 in autism. Although SYT-1 abundance was unchanged, SNAP-25 protein levels were significantly 
decreased in the cortex of NL3R451C mice. SNAP-25 expression has not been previously investigated in this 
model to our knowledge. Beyond its role in the presynaptic initiation of neuronal signalling and association 
with autism-relevant behaviours, SNAP-25 influences dendritic spine formation via binding to the postsynaptic 
protein, p140Cap57. Reduced expression of SNAP-25 results in immature dendritic spine formation, specifically 
involving a decrease in the number of shorter, wider spines, and an increased proportion of longer filopodia57. 
As reported by Tomasoni et al.57, these changes were accompanied by a decrease in PSD-95 density and rescued 
following over-expression of SNAP-25. These findings are relevant given that microglial processes engulf pre- 
and postsynaptic proteins during synapse maturation in mice. Highlighting this interaction, both PSD-95 and 
SNAP-25 have been localised to microglia in the CA1 hippocampal region of mice at postnatal day 1558. In our 
analysis, a reduction in cortical SNAP-25 levels was accompanied by a trend for reduced PSD-95 expression in 
NL3R451C mice, consistent with a potential increase in microglial engulfment of cortical synapses and altered 
dendrite spine morphology27.

Table 1.   Analysis of microglial density and morphology in the hippocampus. NS not significant. *p < 0.05.

Cell parameters WT mean NL3 mean p-value Significance

Hippocampal DG region

Cell density (cells/mm2) 22.6 ± 4 38.7 ± 4 0.018 *

No. of primary branches 3.79 ± 0.2 3.87 ± 0.3 0.83 NS

No. of branch points 4.61 ± 0.8 5.28 ± 1.0 0.62 NS

Total branch length (µm) 153 ± 21.8 152 ± 16.9 0.97 NS

Cell radius (µm) 34.2 ± 2.5 34.8 ± 2.0 0.85 NS

Cell area (µm2) 249 + 33.2 250 ± 17.5 0.99 NS

Soma area (µm2) 48.3 ± 4 49.2 ± 4 0.89 NS

Soma eccentricity 0.79 ± 0.04 0.87 ± 0.004 0.08 NS

Hippocampal CA1 region

Cell density (cells/mm2) 20.28 ± 2.1 30.19 ± 3.5 0.064 NS

No. of primary branches 3.99 ± 0.4 3.94 ± 0.2 0.90 NS

No. of branch points 4.68 ± 1.1 5.32 ± 1.2 0.70 NS

Total branch length (µm) 167 ± 34 160 ± 30 0.87 NS

Cell radius (µm) 24.0 ± 3 22.9 ± 2 0.79 NS

Cell area (µm2) 265.0 ± 39 282.0 ± 53 0.80 NS

Soma area (µm2) 50.5 ± 5 56.7 ± 7 0.46 NS

Soma eccentricity 0.79 ± 0.02 0.86 ± 0.01 0.024 *
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This study is the first to identify an increased density of DG hippocampal microglia and decreased expression 
of cortical SNAP-25 in the NL3R451C mouse model of autism. These initial findings suggest a potential role for 
microglia, PSD-95 and SNAP-25 in the pathophysiology observed in NL3R451C mice. Although the microglial 
and astrocytic profiles observed here differ from those associated with immune responses as reported in other 
rodent models, these subtle changes may predispose NL3R451C mice to an aberrant response in the context of 
immune stimuli. Furthermore, this phenotype could indicate a role for microglia and astrocytes in altered 
synapse function in NL3R451C mice. Due to its multi-faceted roles in regulating presynaptic function and post-
synaptic dendritic structure, SNAP-25 is a potential candidate target for personalized therapeutic strategies in 
the treatment of ASD. Collectively, we identified changes to astrocyte morphology that could be involved in 
mediating previously reported changes in synaptic transmission and dendritic branching in NL3R451C mice34. 
Further characterisation of neuroimmune function in NL3R451C mice is required to advance the understanding 
of biological mechanisms contributing to autism.

Methods
Animals.  Immunohistochemical and western blot analyses were performed on tissue from NL3R451C and WT 
mice. Mice were bred on a Sv129/ImJ/C57Bl6 or a pure C57/Bl6 genetic background. B6; 129-Nlgn3tm1Sud/J mice 
were obtained from Jackson Laboratories (USA) and maintained on a Sv129/ImJ/C57Bl6 background. C57/

Figure 2.   Soma eccentricity is increased in the CA1 hippocampal region in NL3R451C mice. Representative 
confocal immunofluorescence images of CA1 hippocampal coronal sections from WT (A–D) and NL3R451C 
(E–H) mice co-labelled with IBA-1 (red), NeuN (green) and DAPI (blue). Scale bar = 50 µm. (I-P) Number of 
IBA-1 immunoreactive cells, branching parameters, cell radius, cell area, soma area and soma eccentricity in 
WT and NL3R451C mice (n = 5 mice in each group). Data represented as mean ± SEM; *p =  < 0.05.
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Bl6 mice were generated after backcrossing onto a pure C57/Bl6 strain for more than 10 generations. Mutant 
mice express the R451C substitution (arginine to cysteine on residue 451) in exon 7 of the X-linked neuroligin 
3 (NL3) gene. Females heterozygous for the NL3R451C mutation were mated with WT males to generate WT and 
NL3R451C offspring. Only male mice were utilised in these experiments due to the higher prevalence of ASD in 
males. Mice were housed in mixed genotype groups of up to five per cage on a 12:12 h light/dark cycle, with food 
and water provided ad libitum. Tail and ear clips were obtained pre-weaning at 3 weeks for genotyping. Genotyp-
ing was performed in-house via PCR analysis as previously described29. All experiments were approved by the 
University of Melbourne Animal Ethics Committee (Ethics ID: 1613990.1) and were conducted in line with the 
Australian code of practice for the care and use of animals for scientific purposes. C57/Bl6 WT and NL3R451C 
mice used for Western blot analysis were collected at 3 months of age and killed via cervical dislocation (n = 6 
for each genotype). Mixed background WT and NL3R451C mice used for immunohistochemical analysis aged 2 
to 5 months old were anaesthetised and underwent cardiac perfusion with 4% paraformaldehyde (n = 5 for each 
genotype, detailed below).

Immunohistochemistry.  Mice were anesthetised via intraperitoneal injection of ketamine (100 mg/kg) 
and xylazine (10 mg/kg) and perfused transcardially with phosphate buffered saline (PBS; pH 7.4) followed by 
4% paraformaldehyde in PBS. The brain was excised and post-fixed for a further 24 h at 4 °C. Brain tissue was 

Figure 3.   Astrocytic cell density is unchanged, but show lessened number of branch points, retracted processes 
and decreases in cell radius and cell area in the DG of the hippocampus in NL3R451C mice. Representative 
confocal immunofluorescence images of DG hippocampal coronal sections from WT (A–D) and NL3R451C 
(E–H) mice co-labelled with GFAP (green), NeuN (red) and DAPI (blue). Scale bar = 50 µm. (I–P) Number of 
GFAP immunoreactive cells, branching parameters, cell radius and GFAP labelled cell area (n = 5 mice in each 
group). Data represented as mean ± SEM; *p =  < 0.05, **p =  < 0.01.
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subsequently rinsed three times in phosphate buffered saline (PBS) and cryopreserved in 30% sucrose in PBS for 
at least 24 h at 4 °C. Brains were embedded in optimal cutting temperature (OCT) compound in 2 cm3 alumin-
ium foil moulds, submerged partially in isopentane and frozen in liquid nitrogen to prepare for cryosectioning. 
Moulds were stored at − 80 °C until use.

Coronal sections (30 µm thickness) were cut on a cryostat machine (Reichert-Jung, USA) at − 23 °C until the 
hippocampal region was reached at bregma -1.955 mm (Allen Reference Atlas). Tissue sections from WT and 
NL3R451C mice were stained with either the microglial marker, IBA-1 (Ionized calcium-Binding Adapter mol-
ecule-1) or the astrocyte marker, GFAP (Glial Fibrillary Acidic Protein) and co-labelled with neuronal marker, 
NeuN (Neuronal Nuclei) to detect glial cells and neurons in the hippocampus (Table 4). DAPI was used as a 
counterstain to clarify the cellular organisation of each brain region.

Free-floating sections were washed (3 × 5 min) and blocked for 1.5 h (for IBA-1) or 3 h (for GFAP) in 1.5% 
Triton goat block (1 ml goat serum; 9 ml PBS; 150 µl Triton-X (Sigma-Aldrich, Germany)) with constant rock-
ing. Sections were washed (3 × 5 min) and incubated with primary antibodies overnight at 4 °C with constant 
rocking before being washed (3 × 5 min) and incubated with the corresponding secondary antibodies for 1.5 h 
in a dark environment with constant rocking. Sections were mounted onto Menzel-Glaser SuperFrost Plus 
(Thermo Scientific, USA) or regular (Sail Brand, China) microscope slides with Vectashield hard-set mounting 
medium containing 4′, 5-diamidino-2-phenylindole (DAPI) (Abacus ALS, Australia). Multi-channel images of 
the DG and CA1 hippocampal regions were taken at 20 × magnification (tissue area imaged was 424 μm2) on an 

Figure 4.   Astrocytic cell density and morphology are unchanged in the CA1 hippocampal region in NL3R451C 
mice. Representative confocal immunofluorescence images of CA1 hippocampal coronal sections from WT (A–
D) and NL3R451C (E–H) mice co-labelled with GFAP (green), NeuN (red) and DAPI (blue). Scale bar represents 
50 µm. (I–P) Number of GFAP immunoreactive cells, branching parameters, cell radius and GFAP labelled cell 
area (n = 5 mice in each group). Data represented as mean ± SEM.
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LSM880 Airyscan microscope (Zeiss, Germany) at the Biological Optical Microscopy Platform (BOMP), The 
University of Melbourne, Australia.

Cell counts and morphological analysis.  Cell counts and morphological analysis of microglia and astro-
cytes was performed using a proprietary method within MATLAB v12.0 as described previously59,60. Briefly, the 
analysis generates intensity quantiles across an image to locate individual cell somas, traces cell processes out-
wards, then quantifies the resultant image (Supplementary Figs. S1–S4). Minimum object detection (i.e. soma) 
size was set at 100–200 pixels. Quantile levels for both soma and background intensity were manually adjusted 
in order to normalise fluorescence intensity between tissue samples. The resulting optimal intensity level enabled 
clear detection of signal intensities in contrast with low levels of background labelling. The entire field of view 
(424 µm2) of the regions of interest (hippocampal DG and CA1) were counted at × 20 magnification.

Western blot analysis.  Mice were killed via cervical dislocation prior to decapitation and brains excised. 
Brain tissue from the left hemisphere was divided in cortical, striatal and cerebellar tissue samples and for West-
ern blot analysis. Tissue was suspended in 900 µl of homogenisation buffer (9.88 ml Milli-Q H2O , 125 µl 1 M 
Tris HCl pH 7.4, 2.5 ml 10% sodium dodecyl sulfate (SDS), 1 tablet PhosSTOP phosphatase inhibitor (Roche, 
Switzerland), 1 tablet cOmplete protease inhibitor (Roche)) using a homogenising pestle and sonication (15 × 1 s 
pulses). Protein samples were gently rotated in a rotary suspension mixer at 4 °C for 1.5 h. Samples were centri-
fuged (Eppendorf Centrifuge 5424 R, Germany; 15 min at 12,000 rpm) and the colourless supernatant extracted. 
A Bradford Protein Assay (BioRad, USA) was performed to determine the total protein content of the brain 
lysates as per manufacturer’s instructions. Protein samples were diluted in sample buffer (5% β-mercaptoethanol 
(v/v) (Sigma-Aldrich) in 2 × Tris–Glycine SDS loading buffer (Invitrogen, USA)) to achieve a final concentra-
tion of 2 µg/µl. Samples were heated at 95 °C for 15 min to denature the proteins and stored at -20 °C until use.

10 µl of brain lysate samples (for a final protein concentration of 20 µg/µl) and 5 µl of the pre-stained molecu-
lar weight ladder (BioRad) (8% gel: 25—250 kDa; 12% gel: 10—70 kDa) were loaded on an 8% resolving gel (per 
four gels: 10 ml 1.5 M Tris–HCl (BioRad), 400 µl 10% (w/v) SDS (BioRad), 18.98 ml Milli-Q H2O, 10.67 ml 30% 
Acrylamide/Bis solution (BioRad), 600 µl 10% (w/v) Ammonium Persulfate (APS, Sigma-Aldrich) in Milli-Q 
H2O, 60 µl N,N,N′,N′-tetramethylethane-1,2-diamine (TEMED, BioRad)) or 12% resolving gel (per four gels: 
10 ml 1.5 M Tris–HCl, 400 µl 10% (w/v) SDS, 13.16 ml Milli-Q H2O, 16 ml 30% Acrylamide/Bis solution, 600 µl 
10% APS in Milli-Q H2O, 40 µl TEMED). Proteins were separated by SDS-PAGE at 80/120 V in Tris–Glycine 
SDS-PAGE running buffer (Life Technologies, USA). The separated sample proteins in the gel were transferred 
onto a Polyvinylidene fluoride (PVDF) membrane via a semi-dry transfer which was run at 60 mA/gel for 
75 min, facilitated by a transfer buffer (20 ml of 25 × Tris–glycine transfer buffer (Life Technologies), 50 ml 
100% methanol, 430 ml Milli-Q H2O). The PVDF membrane was then blocked in 5% (w/v) skim milk in Tris 
Buffer Solution Tween 20 (TBS-T; 5% Tween-20 (v/v) in TBS) for 1 h at RT with constant rotation. Membranes 
were washed (3 × 10 min) and incubated in the primary antiserum diluted in TBS-T (Table 5) overnight at 4 °C. 
The membrane was washed (3 × 10 min) then incubated in the corresponding horseradish peroxidase (HRP)-
conjugated secondary antiserum diluted in TBS-T for 1.5 h at RT.

Membranes were imaged using a ChemiDoc XRS + system (BioRad) and protein bands were visualised using 
the electrochemiluminescence (ECL) prime detection kit (Amersham, USA). To determine whether the total pro-
tein content was constant across samples, β-actin was used as a loading control. Optical density of the bands was 
analysed via densitometric analysis using ImageJ software (version 2.0.0-rc-68/1.52e; NIH, USA), and arbitrary 
intensity units were compared by calculating the expression of the antiserum of interest relative to the loading 
control (β-actin), and averaged for both the WT and NL3R451C genotypes. Mean protein expression values for 

Table 2.   Analysis of astrocyte density and morphology in the hippocampus. NS not significant. *p < 0.05, 
**p < 0.01.

Cell parameters WT mean NL3 mean p-value Significance

Hippocampal DG region

Cell density (cells/mm2) 66.1 ± 9 94.8 ± 16 0.16 NS

No. of primary branches 4.96 ± 0.3 4.29 ± 0.2 0.12 NS

No. of branch points 5.84 ± 0.7 2.87 ± 0.6 0.01 *

Total branch length (µm) 167 ± 15 96.8 ± 13 0.007 **

Cell radius (µm) 34.8 ± 1.5 22.7 ± 1.5 0.01 *

Cell area (µm2) 254.0 ± 18 169.0 ± 14 0.005 **

Hippocampal CA1 region

Cell density (cells/mm2) 53.3 ± 4.0 56.6 ± 6.0 0.72 NS

No. of primary branches 5.79 ± 0.3 5.62 ± 0.3 0.69 NS

No. of branch points 5.96 ± 1.0 6.40 ± 1.0 0.76 NS

Total branch length (µm) 185.0 ± 22 204.0 ± 27 0.60 NS

Cell radius (µm) 37.1 ± 3 39.1 ± 2 0.55 NS

Cell area (µm2) 279.0 ± 33 308.0 ± 33 0.56 NS
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WT mice were normalized to 100% for each blot and NL3R451C protein expression levels were compared as a 
percentage relative to control (WT).

Statistical analysis.  Statistical analysis was performed using Prism software (Graphpad v6.0c; USA). All 
cell datasets were assessed for normality with the Kolmogorov–Smirnov test for normality with the Dallal-
Wilkinson-Lilliefor correction. For datasets that passed the normality test, potential differences between sam-
ples from the two genotypes were analysed using a two-tailed, unpaired Student’s t-test. Datasets that failed to 

Figure 5.   PSD-95 protein levels are increased in the striatum of NL3R451C mice, whereas PSD-93 and NL2 
expression is unchanged. Levels of postsynaptic proteins, PSD-95, PSD-93 and NL2 in cortical (A,G,M), striatal 
(C,I,O) and cerebellar (E,K,Q) brain lysates from NL3R451C and WT mice were analysed via Western blot. 
Densitometric analysis was performed to demonstrate quantitative expression of PSD-95 (B,D,F), PSD-93 
(H,J,L) and NL2 (N,P,R) relative to β actin expression. Genotype differences were analysed using an unpaired, 
two-tailed Student’s t-test (n = 6 mice in each group); *p < 0.05. Data represented as mean ± SEM.
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meet a normal distribution (CA1 microglial density and CA1 astrocyte density) were assessed using a two-tailed 
Mann–Whitney U test. For Western blot analysis, all expression levels in NL3R451C mutant tissue were compared 
to WT levels (normalised to 100) and analysed with a two-tailed unpaired Student’s t-test. Data was presented 
as mean ± SEM; p-values less than 0.05 were considered to represent statistical differences between genotypes.

Figure 6.   SYT-1 protein levels are unchanged, but SNAP-25 protein expression was decreased in the cortex 
of NL3R451C mice. SYT-1 and SNAP-25 protein expression in cortical (A,G), striatal (C,I) and cerebellar (E,K) 
lysates from NL3R451C and WT mice were analysed via Western blot. Densitometric analysis was performed 
to demonstrate quantitative expression of SYT-1 (B,D,F) and SNAP-25 (H,J,L) relative to β actin expression. 
Genotype differences were analysed using an unpaired, two-tailed Student’s t-test (n = 6 mice in each group); 
**p < 0.01. Data represented as mean ± SEM.

Table 3.   Analysis of synaptic protein expression. The bold, italics font highlights statistically significant 
differences between genotypes: *p < 0.05, **p < 0.01.

Synaptic protein

Expression in NL3R451C mice compared 
to WT

Cortex Striatum Cerebellum

PSD-95 81 ± 3.2%
p = 0.071

129 ± 8.6%
p = 0.01*

101 ± 7.6%
p = 0.95

PSD-93 93 ± 9.5%
p = 0.58

83 ± 9.7%
p = 0.28

106 ± 8.8%
p = 0.66

NL2 90 ± 10%
p = 0.52

102 ± 5.7%
p = 0.80

117 ± 18%
p = 0.45

SYT-1 103 ± 6.8%
p = 0.79

77 ± 6.9%
p = 0.092

160 ± 23%
p = 0.12

SNAP-25 67 ± 4.8%
p = 0.003**

85 ± 6.8%
p = 0.28

105 ± 13%
p = 0.78

GFAP 72 ± 12%
p = 0.27

96 ± 11%
p = 0.84

74 ± 14%
p = 0.32
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