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Gallic acid oxidation products alter 
the formation pathway of insulin 
amyloid fibrils
Andrius Sakalauskas, Mantas Ziaunys & Vytautas Smirnovas*

Amyloidogenic protein assembly into insoluble fibrillar aggregates is linked with several 
neurodegenerative disorders, such as Alzheimer’s or Parkinson’s disease, affecting millions of people 
worldwide. The search for a potential anti-amyloid drug has led to the discovery of hundreds of 
compounds, none of which have passed all clinical trials. Gallic acid has been shown to both modulate 
factors leading to the onset of neurodegenerative disorders, as well as directly inhibit amyloid 
formation. However, the conditions under which this effect is seen could lead to oxidation of this 
polyphenol, likely changing its properties. Here we examine the effect of gallic acid and its oxidised 
form on the aggregation of a model amyloidogenic protein–insulin at low pH conditions. We show 
a vastly higher inhibitory potential of the oxidised form, as well as an alteration in the aggregation 
pathway, leading to the formation of a specific fibril conformation.

Protein aggregation into highly-structured, beta-sheet rich fibrils is associated with multiple neurodegenerative 
disorders, such as Alzheimer’s, Parkinson’s or prion diseases1,2. The prevalence of these diseases is of utmost 
concern, as there is currently no available drug or effective treatment3. As of right now, there are various poten-
tial antibodies, peptides, naturally occurring polyphenolic molecules and other compounds with either direct 
or indirect anti-amyloid activity3–5. However, a large portion of them are either in initial trials or do not work 
in vivo and most have not passed the third clinical trial stage6.

Tea extracts are known for their beneficial effects on health and a wide variety of compounds present in them 
have been shown to possess anti-amyloid properties, with one of them being gallic acid (GA)7,8. This simple 
polyphenol is considered to be able to not only mediate the factors leading to neurodegenerative diseases, such 
as oxidative stress or inflammation, but also to directly inhibit the formation of amyloid fibrils9–22.

In these experiments, one of the methods used to track the existence or formation of amyloids is an amyloi-
dophilic dye molecule–thioflavin-T (ThT), which fluorescence emission intensity increases significantly when it 
binds to the beta-sheet grooves on the surface of amyloid fibrils23. In some cases, where GA or other polyphenolic 
compounds displayed a reduction in ThT fluorescence, additional examinations by alternative methods, such 
as transmission electron microscopy, revealed that such a fluorescence inhibition may be related to interfer-
ence between the dye and inhibitor24. This could be the result of either fluorescence quenching due to molecule 
interactions or as an inner filter effect, because of the absorbance of ThT emissions by the inhibitor25. Despite 
this, multiple reports consider the reduction of ThT fluorescence as inhibition of aggregation10–12,14,16,17,19,22,26.

The effect of GA is also usually determined in neutral pH both in vitro and in vivo11,12,16,17,19,20,26. And it is 
known that it is capable of undergoing oxidation at neutral and higher pH26–29. One report demonstrated that 
when this process is carried out at pH 7.4, a o-quinone is produced and changes in the solution’s absorbance 
spectra can be observed26. In another instance, incubation of GA at neutral pH lead to the formation of a gallic 
acid dimer30. Oxidation at highly basic conditions was shown to yield ellagic acid31. The varying reports make 
it highly likely that when GA is incubated under neutral conditions, the product may be a mixture of two or 
more different compounds.

It was shown for other natural polyphenolic compounds, such as EGCG, that oxidation alters their anti-
amyloid effects in a positive way32,33. The appearance of new oxidised GA forms could result in the modulation 
of different aggregation pathways, as well as have higher or lower aggregation inhibition or fibril disassembly 
potential. In addition, it was shown that during auto-oxidation, some of the reactions could lead to the forma-
tion of hydrogen peroxide34. This could, in turn, result in the hydroxylation of ThT and cause the previously 
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mentioned reduction in fluorescence intensity35. All of these factors may lead to a false interpretation of the 
inhibitory potential of GA; therefore, its effect requires further analysis.

A commonly used model protein to examine anti-amyloid compound activity is insulin36. The majority of 
insulin aggregation studies are carried out at low pH conditions14,37–40, with some being conducted at neutral 
pH41,42. Depending on the acidity of the solution, insulin can exist as a monomer, dimer, tetramer or hexamer43. 
This greatly complicates matters when attempting to fit experimental data to an aggregation model, as it needs 
to account for the formation and existence of these non-monomeric assemblies, which can even directly affect 
the aggregation process44. It is known that insulin exists as a monomer in a 20% acetic acid solution43, which 
negates the need for the model to account for any oligomeric forms and it can be broken down into four basic 
steps, which include primary nucleation, fibril elongation, secondary nucleation on the surface of fibrils and 
fragmentation of aggregates45. We have also recently reported that when insulin is aggregated in a 20% acetic acid 
solution, it forms two distinct fibril conformations, based on the initial concentration of the protein46. Fibrils, 
formed at low protein concentration (further referred as low concentration fibrils or LCF) are short, dispersed 
and result in a low fluorescence intensity of fibril-bound-ThT, while fibrils formed at high protein concentration 
(high concentration fibrils or HCF) are longer, clumped together and result in a high fluorescence intensity of 
fibril-bound-ThT. This creates an additional opportunity to examine whether the effect of GA is dependent on 
the conformation of aggregates. Such a low pH solution should also prevent or minimize the oxidation of GA, 
which allows to explore its inhibitory effect without the appearance of any of its oxidised forms.

In this work we examine the effect of GA and how it modulates the mechanism of insulin amyloid aggregation. 
We show that its oxidation products have a significantly higher inhibitory effect on the formation of primary 
nuclei and favour a specific insulin fibril conformation.

Methods
Insulin sample preparation.  Human recombinant insulin powder (Sigma-Aldrich cat. No. 91077C) was 
dissolved in a 20% acetic acid solution (prepared from 100% acetic acid; Carl-Roth, cat. No. 3738.1) containing 
100 mM NaCl (Fisher cat. No. 10316943, purity > 99.5%), which is further referenced as the reaction solution, 
to a final concentration of 2 mM (11.6 mg/ml). Samples for unseeded aggregation kinetic measurements were 
prepared by diluting the 2 mM stock solution to a range of concentrations from 0.2 to 1.0 mM by using the reac-
tion solution, as well as 10 mM ThT (Sigma-Aldrich, cat. No. T3516) and 10 mM gallic acid (TCI Chemicals, cat. 
No. G0011, purity > 98%) stock solutions (final ThT concentration was 100 µM in all cases, gallic acid concen-
tration was in the range from 0 to 200 µM). For seeded aggregation, insulin fibrils, prepared from the 0.2 mM 
sample (which did not contain gallic acid), were sonicated for 10 min using Sonopuls 3,100 (Bandelin) ultrasonic 
homogenizer equipped with a MS73 tip (40% power, 30 s sonication/30 s rest intervals). The homogenized fibrils 
were then mixed with the insulin, gallic acid and ThT stock solutions to yield 0.2 and 1.0 mM unaggregated pro-
tein concentration samples containing 100 µM ThT, and a range of fibril concentrations (from 1 to 10−6% of total 
protein mass) with and without 200 µM gallic acid.

Gallic acid solution preparation.  Non-oxidised gallic acid (GA) stock solution was prepared by dissolv-
ing 10 mM gallic acid in the reaction solution. Oxidised gallic acid (GAO) stock solution was prepared by dis-
solving 10 mM gallic acid in a 100 mM sodium phosphate (Carl-Roth, cat. No. P030.3 and T879.2, purity > 99%) 
buffer (pH 7.4). Oxidation was achieved by incubating the solution at 37 °C for 15 days. Absorbance spectra of 
GA at the start and end of the reaction were scanned in the range from 250 to 800 nm to confirm changes to its 
structure (Fig. S1).

Aggregation kinetics.  Insulin aggregation kinetics were monitored in non-binding 96-well plates (sam-
ple volume was 100 µL) at 60  °C without agitation by measuring ThT fluorescence emission intensity (exci-
tation wavelength—440 nm, emission—480 nm) through the bottom of the plate, using Synergy H4 Hybrid 
Multi-Mode (Biotek) microplate reader (readouts were taken every 10 min). For every condition 3 independ-
ent measurements were performed. In order to rule out any possible effect ThT may have on the aggregation 
measurements, the aggregation was simultaneously tracked by ThT fluorescence and sample optical density at 
600 nm (Fig. S2).The ThT fluorescence intensity was normalized and the aggregation half-time (t50) values were 
calculated by applying a linear fit to the data points ranging from 40 to 60% of normalised intensity values and 
interpolating the time at which 50% of intensity is reached. The increase in t50 was used as a main hallmark of 
inhibition.

Atomic force microscopy (AFM).  After kinetic measurements, the sample AFM images were scanned 
as previously described46. In short, 20 µL of each sample was deposited on freshly cleaved mica and incubated 
for 1 min. Then the samples were rinsed with MilliQ water and dried under airflow. AFM images were scanned 
using a Dimension Icon (Bruker) atomic force microscope. The 1,024 × 1,024 pixel resolution images were ana-
lysed using Gwyddion 2.55. Fibril length, height and width were determined by tracing parallel and perpendicu-
lar to each fibril’s axis.

Fourier‑transform infrared (FTIR) spectroscopy.  Insulin fibrils were separated from solution by cen-
trifugation at 10,000 g for 30 min and subsequently resuspended in 1 mL of D2O, the procedure was repeated 3 
times. After the last centrifugation the fibrils were resuspended in 0.25 mL of D2O and sonicated for 1 min using 
a MS72 tip (with 50% power and constant sonication). FTIR spectra were recorded and analysed as previously 
described46.
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Analysis of aggregation kinetics.  Experimental data fitting was done using rModeler (Ubicalc Software) 
as described previously44 and the model’s mathematical framework is provided as supplementary information. In 
short, a “classic” model comprised of four aggregation steps, including primary nucleation, elongation, second-
ary nucleation and fragmentation, was applied to fit the kinetic data. Three combined rate constants (primary 
nucleation-elongation, elongation-secondary nucleation and elongation-fragmentation)44,47,48 were obtained for 
every condition. Each set of kinetic constants is the average of 3 data set fits (insulin concentration is in micro-
moles; nuclei size is set to 2).

Results
Aggregation kinetics.  The aggregation of insulin was performed under a range of protein concentrations 
from 0.2 to 1.0 mM in a 20% acetic acid solution, containing no GAO or GA (Fig. 1A), with 200 µM GA (Fig. 1B) 
and with a range of GAO concentrations (Fig. 1C–F). GA had nearly no visible influence on the aggregation 
half-times, apart from a small effect on the lowest insulin concentrations (Fig. 1A,B). However, when GA was 
oxidised, the inhibitory effect became much more potent, with larger t50 values seen even at low GAO concentra-
tions (Fig. 1C). Double logarithmic plots of the aggregation half-times versus insulin concentrations are linear 
under all GAO conditions (Fig. 1A–F inserts), suggesting that the overall aggregation mechanism remains the 
same and there are no saturation or competition effects present49.

The ThT fluorescence intensity and fibril concentration ratios (sample fluorescence intensity divided by its 
protein concentration) at the end of the reaction were compared in order to determine if there are any differences 
(Fig. 2A) when insulin is aggregated in the absence or presence of 200 µM GA or GAO (Fig. S3). GAO leads to 
a tenfold higher ratio when insulin is aggregated at 0.2 mM concentration, while GA has no effect. In the case 
of 1.0 mM insulin, the ratio is similar between samples containing no additives or GA and they are only slightly 
lower when compared to the sample with GAO. In all four cases, the FTIR spectra (Fig. 2B) exhibit a maximum 
at 1628 cm−1 with a shoulder at 1641 cm−1 in the amide I/I′ region. Three of the four spectra look nearly identi-
cal, with 0.2 mM without GAO being the odd one out with the more pronounced shoulder. It is reflected in the 
second derivative FTIR spectra (Fig. 2C) in a more pronounced minimum and displays a minor shoulder at 
1641 cm−1. Moreover, the shoulder at 1620 cm−1 is visible in all second order derivative spectra, except the case 
of 0.2 mM insulin fibrils prepared without GAO. All of this suggests differences in the secondary structure of 
fibrils. This is in line with the ThT intensity-fibril concentration ratio distribution, which shows that the 0.2 mM 
sample without GAO is distinct from the rest.

Global fitting of the kinetic curves resulting from a range of protein concentrations at different GAO con-
centrations reveals that there is a sizeable decrease in the combined primary nucleation-elongation rate con-
stant and a considerable decrease in the combined elongation-fragmentation rate constant, while the combined 
elongation-secondary nucleation constant experiences minimal changes (Fig. 3, Table S1). In some cases, the 

Figure 1.   Unseeded aggregation kinetics of insulin without GA (A), with 200 µM GA (B), 25 µM GAO (C), 
50 µM GAO (D), 100 µM GAO (E) and 200 µM GAO (F). For each condition, global-fitting was applied using 
a four-step aggregation model. Inserts show a comparison between t50 values obtained from both experimental 
and global-fit data.
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fit is not ideal at low concentrations due to the stochastic nature of insulin aggregation50. Non-oxidised GA had 
nearly no effect on any of the combined rate constants.

Seeded aggregation.  To determine whether GAO has an effect on fibril elongation, seeded aggregation 
(Fig.  4A,B) was performed using fibrils prepared from a 0.2  mM insulin solution (aggregates that possess a 
relatively low bound-ThT fluorescence). When the amount of seed present in solution is high, GAO has almost 
no effect on the reaction t50 values (Fig. 4C) or the resulting ThT fluorescence intensity (Fig. 4D). This indicates 
that the seed replicates its structure via elongation and GAO has virtually no influence on this process. However, 
when the seed concentration is low (10−3–10−6%) and nucleation events have a substantial contribution to the 
aggregation process, GAO causes a significant increase in both the t50 values, as well as bound-ThT fluorescence 
intensity. This higher intensity is attributed to fibrils formed at 1.0 mM insulin concentration or when GAO is 
present during spontaneous aggregation. This suggests that the presence of GAO affects predominantly nuclea-
tion events and induces the formation of a different fibril conformation.

Fibril morphology.  The morphology of insulin fibrils formed at different protein and GA or GAO concen-
trations was compared using AFM (Fig. 5). In the case of 0.2 mM insulin without GAO (Fig. 5A and Fig. S4) or 
with 200 µM GA (Fig. 5B and Fig. S4), the fibrils are mostly dispersed and short. When there is 200 µM GAO 
present in the sample (Fig. 5C and Fig. S4), the formed aggregates are longer (Fig. 5G), wider (Fig. 5I) and more 
prone to self-association, while their average height (Fig. 5H) remains relatively even. In the case of 1.0 mM 
insulin, all conditions lead to longer fibrils that are prone to self-association (Fig. 5D–F and Fig. S5). There is also 
a slight increase in their average length (Fig. 5G and Fig. S6). While in both cases length and width experience 
a GAO concentration-dependent change, there appears to be almost no effect on fibril height (Fig. S6). These 
GAO-induced changes in morphology further support the hypothesis that GAO alters the pathway of fibril for-
mation, which is especially visible in the case of 0.2 mM insulin.

Figure 2.   Fluorescence emission intensity and fibril concentration ratios calculated by dividing the sample’s 
fluorescence intensity by its protein concentration (A). FTIR (B) and second derivative spectra (C) of insulin 
fibrils formed from 0.2 mM and 1.0 mM insulin with or without 200 µM GAO.

Figure 3.   Insulin aggregation primary nucleation-elongation (A), elongation-secondary nucleation (B) 
and elongation-fragmentation (C) combined rate constants when there is 200 µM GA or different GAO 
concentrations present in solution. Rate constants were obtained by global-fitting the entire concentration range 
(0.2–1.0 mM) of insulin aggregation kinetic data at a specific GA or GAO concentration.
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Discussion
The unseeded aggregation kinetic data shows that at low pH values, GA has virtually no effect on insulin aggre-
gation, while GAO inhibits it quite effectively (Fig. 1). This could be the reason why experiments conducted at 
neutral pH, where GA can undergo oxidation, show an effective inhibition of amyloid formation. Due to this 
factor, the inhibitory effect can be best analysed using pre-oxidised gallic acid at low pH values, where it no 
longer experiences any further oxidation.

Fitting the spontaneous aggregation kinetic data with the “classic” aggregation model reveals that GAO most 
effectively inhibits primary nucleation (Fig. 3A), as 200 µM GAO results in a 100-fold decrease in the rate of 
nuclei formation. There is also a considerable decrease in fragmentation rates (Fig. 3C). Despite the massive 
effect on primary nuclei formation, secondary nucleation appears to be almost unaffected, even at the highest 
GAO concentrations (Fig. 3B).

A previous report demonstrated that distinct fibril conformations can be formed at 0.2 mM and 1 mM insulin 
concentrations, termed LCF (low concentration fibrils) and HCF (high concentration fibrils), respectively46. 
When 0.2 mM insulin aggregates in the presence of GAO, the fibril-bound-ThT fluorescence intensity is much 
higher than typically observed for the LCF conformation, and the intensity-concentration ratio is similar to the 
HCF conformation (Fig. 2A). It is likely that GAO induces formation of HCF, which is further supported by the 
differences in secondary structure, as examined by FTIR (Fig. 2B,C), where fibrils formed with GAO possess 
a similar secondary structure as HCF (Fig. 6A). Interestingly, even the HCF sample ratio experiences a slight 
increase with the addition of GAO, suggesting that without GAO it likely contains some LCF as well.

Seeded aggregation data shows that at high initial LCF concentrations, GAO has virtually no effect on the 
t50 value (Fig. 4A–C), indicating that it does not affect the rate of elongation (Fig. 6B). At high concentrations, 
the LCF seed replicates its conformation and we observe no differences in ThT fluorescence intensity between 
samples with and without GAO (Fig. 4D). However, once the amount of seed reaches a low enough value, there 

Figure 4.   Seeded aggregation kinetic curves of insulin without (A) and with (B) 200 µM GAO and their t50 
values (C). The fluorescence intensity of fibrils formed during seeded aggregation with and without 200 µM 
GAO (D).
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is a drastic change in t50 values and ThT fluorescence intensities between both conditions, indicating that GAO 
causes the formation of HCF.

When GAO is present, the dependence of t50 on initial seed concentration is not linear on a logarithmic scale. 
This suggests that the process is more complex and involves not just inhibition of primary nucleation. Since 
the concentration of seed appears to factor into this effect, it is possible that GAO affects the rate of second-
ary nucleation on the surface of fibrils (Fig. 6B).However, fitting the data of spontaneous aggregation does not 
display any significant differences in the combined elongation-secondary nucleation rate constants (Fig. 3B). 
Considering that the fit model is comprised of four basic aggregation steps, it would be unable to account for 
any additional processes or inhibitor-fibril interactions. One possible explanation for this effect is that GAO 
does inhibit secondary nucleation by hiding the accessible surface of fibrils, but its affinity towards the fibril’s 
surface is so low that only a small amount of fibrils can be effectively covered. When more aggregates are present, 
it is simply incapable of effectively covering the fibril surface area. Seeing as its effect on secondary nucleation 
diminishes at around 0.01% fibril concentration (Fig. 4C), such a tiny amount of aggregates would likely not be 
detected in the spontaneous aggregation experiments, which is why fitting their kinetic data shows virtually no 
effect on secondary nucleation.

If we consider the effect of GAO based on the spontaneous and seeded aggregation kinetic data, it seems 
that it is potent at inhibiting the formation of nuclei and has no influence on the elongation process. Based on 
the differences in bound-ThT fluorescence data, as well as AFM images and FTIR spectra, it appears that GAO 
is also capable of altering the aggregation pathway of these nuclei. Even under conditions which would favour 

Figure 5.   AFM images of insulin fibrils formed without (A, D) and with 200 µM of GA (B, E) or GAO (C, F) at 
0.2 mM and 1.0 mM protein concentration respectively. Fibril length (G), height (H) and width (I) distribution, 
where box plots indicate the interquartile range and errors bars are for 1 standard deviation (n = 50).
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the formation of the LCF conformation, GAO manages to alter the fibrillization process towards HCF. The non-
oxidised form of GA, on the other hand, has no visible effect on the aggregation kinetics, nor does it change the 
resulting fibril type.

Conclusions
Gallic acid does not affect the aggregation of insulin at low pH and it only gains its inhibitory potential after 
undergoing oxidation. The oxidized form is highly effective at inhibiting primary nuclei formation, while hav-
ing no effect on fibril elongation. It also appears to alter the formation pathway of insulin amyloid aggregation, 
resulting in HCF even at low protein concentrations.

Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author 
on reasonable request.
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