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Biomass‑degrading glycoside hydrolases 
of archaeal origin
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Abstract 

During the last decades, the impact of hyperthermophiles and their enzymes has been intensively investigated for 
implementation in various high-temperature biotechnological processes. Biocatalysts of hyperthermophiles have 
proven to show extremely high thermo-activities and thermo-stabilities and are identified as suitable candidates for 
numerous industrial processes with harsh conditions, including the process of an efficient plant biomass pretreat-
ment and conversion. Already-characterized archaea-originated glycoside hydrolases (GHs) have shown highly 
impressive features and numerous enzyme characterizations indicated that these biocatalysts show maximum activi-
ties at a higher temperature range compared to bacterial ones. However, compared to bacterial biomass-degrading 
enzymes, the number of characterized archaeal ones remains low. To discover new promising archaeal GH candidates, 
it is necessary to study in detail the microbiology and enzymology of extremely high-temperature habitats, ranging 
from terrestrial to marine hydrothermal systems. State-of-the art technologies such as sequencing of genomes and 
metagenomes and automated binning of genomes out of metagenomes, combined with classical microbiological 
culture-dependent approaches, have been successfully performed to detect novel promising biomass-degrading 
hyperthermozymes. In this review, we will focus on the detection, characterization and similarities of archaeal GHs 
and their unique characteristics. The potential of hyperthermozymes and their impact on high-temperature industrial 
applications have not yet been exhausted.
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Background
Fossil resources are still the main source of energy as 
well as for the production of many chemicals. To develop 
a sustainable economy without the use of these limited 
resources, governments worldwide initiated research 
and development strategies for the transition from an 
oil-based to a circular bio-based economy [1]. A central 
element of this bioeconomy is the development of sus-
tainable biorefineries, which use renewable resources 
as feedstock, such as plant biomass, instead of oil [2] 
(Fig. 1).

The first generation of biofuels uses plant biomass from 
sugarcane, sugar beet, wheat and crops. Hence, first-gen-
eration biofuels, including bioethanol and biodiesel, are 
mainly produced from starch and vegetable oils [3, 4]. 
Nevertheless, since biomass for first-generation biofuels 
consists of potentially edible plant material and, further, 
requires large areas of agriculture fields, other sources 
of biomass had to be considered. This led to the devel-
opment of the second generation of biofuels, which is 
based on lignocellulosic biomass. Lignocellulose consists 
of valuable polysaccharides, is abundant in agricultural 
residues and wood materials, and can be obtained from 
non-food feedstocks [5]. Despite these advantages, a 
major challenge is formed by the recalcitrant character of 
lignocellulose, which necessitates a pretreatment of this 
substrate for fractionation, for example, by combining 
physical and chemical pretreatment methods [6–8].
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Efficient pretreatment results in the cleavage of ligno-
cellulose enabling the enzymatic accessibility of its com-
ponents: cellulose, hemicellulose and lignin. The first two 
components can be enzymatically hydrolyzed to yield 
hexose and pentose monomers, which can subsequently 
be fermented to ethanol or other alcohols and chemi-
cals by anaerobic bacteria and fungi [9–14]. To save 
energy and avoid expensive cooling steps, combinatorial 
approaches for physicochemical biomass pretreatment 
with simultaneous enzymatic hydrolysis were developed 
[15, 16]. For this purpose, extremely heat-active and 

heat-stable GHs are needed. Since archaea have been sig-
nificantly less studied than bacteria and eukaryotes, they 
present a so-far underexploited source of novel hyper-
thermozymes particularly useful for biorefineries [17].

Biorefinery concepts depend on the applied renew-
able resources including plant polymers such as cellulose, 
starch, xylan and mannan. Since these differ in the glyco-
sidic linkages of their backbones, many different kinds of 
GHs are needed to hydrolyze these polysaccharides [17]. 
Therefore, integrated biorefinery processes need a vari-
ety of GHs, including cellulases, amylases, mannosidases 

Fig. 1  Application of plant-degrading hyperthermozymes in second-generation biorefinery
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and pullulanases, which are stable towards the respec-
tive process conditions. Many biotechnological processes 
are performed at elevated temperatures to improve the 
solubility and bioavailability of organic compounds and 
biomass [18]. Further benefits of high process tempera-
tures include increased diffusion rates and a significantly 
reduced contamination risk [19, 20]. As a consequence, 
enzymes derived from hyperthermophilic microorgan-
isms have become highly popular for such high-tem-
perature industrial processes since hyperthermozymes 
exhibit maximum activity at temperatures around 100 °C 
and are extremely thermostable [21]. Furthermore, when 
simultaneously applying hyperthermozymes with differ-
ent substrate specificities, but similar temperature and 
pH preferences, synergistic effects can be especially ben-
eficial for the efficient utilization of plant biomass [22] 
(Fig.  1).  In this review, we are highlighting the impres-
sive characteristics of already characterized hyperther-
mozymes obtained from archaea, and summarize some 
interesting strategies to discover novel ones.

Discovery of the potential of archaea and their 
glycoside hydrolases
The full potential of the extreme lifestyle at elevated 
temperatures was recognized in 1981, when Karl Stetter 
and Wolfram Zillig discovered life above a temperature 
of 80 °C with the isolation of the first hyperthermophilic 
species Methanothermus fervidus, which was unimagi-
nable before [23, 24]. Later it was impressively shown 
that some hyperthermophiles are even growing at tem-
peratures around (or above) 100  °C, like heterotrophic 
members of the genera Pyrococcus [25, 26] and Thermo-
coccus [27], or the chemolithoautotroph Pyrolobus fuma-
rii [28]. Beside the impact of these impressive findings 
for ecology [29] and evolution [30–33] and specially for 
our understanding of microbial physiology and metabo-
lisms at extreme habitats [34–36], the discovery of hyper-
thermophiles also paved the path for the finding and 
characterization of extremely heat-stable biocatalysts, 
which are naturally produced by these microorganisms. 
While some hyperthermophiles, such as Methanopyrus 
kandleri are strictly chemolithoautotrophic [37], also 
heterotrophic hyperthermophilic representatives were 
isolated and characterized. Since a heterotrophic metab-
olism requires enzyme machineries which are able to 
degrade and utilize organic biomass, the use of such 
heterotrophic archaea or their recombinantly produced 
extremely heat-stable GHs was investigated for high-
temperature industrial processes such as production of 
food, beverage, detergent and chemical products, as well 
as biomass pretreatment for biofuel generation [17, 38, 
39]. Therefore, genes encoding GHs, such as amylases 
and xylanases, were cloned from isolated and known 

hyperthermophiles, produced (mostly in E. coli) and 
characterized. Interestingly, since some polysaccharide-
degrading enzymes are secreted by their native organ-
isms, biochemical characterizations of these extracellular 
enzymes revealed that their optimal activity can be found 
close to the temperature of the optimal growth rate of 
the respective microorganism (Table  1). Furthermore, 
besides the impressive heat activity, features of some 
archaeal plant-biomass-degrading enzymes revealed a 
concomitant high activity under acidic conditions and 
high pressure [40–42].

Within the last 30 years, numerous GHs of already iso-
lated hyperthermophiles were produced using sequence- 
or function-based screening methods (Table  1). Among 
the first-characterized GHs were amylases from the 
hyperthermophile Pyrococcus furiosus, which were 
obtained by performing cultivations on carbohydrates 
with subsequent GH detection and activity tests of the 
crude cell extract as well as the supernatant of the cul-
ture. The detected and characterized amylases exhibited 
maximum activity at temperatures higher than 99  °C 
[43, 44] (Table 1). Within the last decades, more GHs of 
Pyrococcus furiosus were discovered and characterized, 
including endoglucanases, amylases and glucosidases, 
which are all working optimally at temperatures around 
100  °C (Table  1). Additionally, numerous characterized 
archaeal GHs, including endoglucanases, amylases, man-
nosidases and glucosidases, were characterized from 
pure strains of Saccharolobus solfataricus (previously 
Sulfolobus solfataricus [45]) Saccharolobus shibatae (pre-
viously Sulfolobus shibatae [45]), Pyrococcus horikoshii, 
Pyrococcus woesei, Sulfolobus acidocaldarius, Staphy-
lothermus marinus and Thermofilum pendens (Table  1, 
Fig. 2). However, due to the fact that cultivation of new 
hyperthermophiles in pure cultures is most often a chal-
lenging task, many thermozymes and some hyperther-
mozymes were detected using culture-independent 
metagenomic approaches.

Classification of GHs demonstrates a small number 
of characterized archaeal enzymes
GHs are classified based on primary sequences (Carbo-
hydrate-Active enZyme database CAZy, www.cazy.org) 
or function (Enzyme Commission EC, established in 
1992) [85]. The amino acid structure-based classification 
of CAZy is an adequate way to predict and identify mech-
anisms and specificities of glycoside hydrolases (GHs) 
[86, 87]. So far, CAZy divides GHs into 167 GH fami-
lies, and the GH 5, 13, 16, 30 and 43 families are again 
divided into several subfamilies [88–92] (www.cazy.org). 
GH family 5 represents one of the largest GH families 
and consists of 16,520 enzymes as noted in June 2020. 
The deposited primary protein sequences of GH family 

http://www.cazy.org
http://www.cazy.org
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5 demonstrate the lack of knowledge about archaeal GH 
since 99 archaeal protein sequences are vastly outnum-
bered by 13,137 bacterial ones. From these deposited 
sequences, 5 archaeal GHs are listed as characterized 
(two cellulases and three endoglucanases), compared to 
559 bacterial ones. Regarding the activity and function of 
the structurally related proteins of GH5, cellulolytic and 
hemicellulolytic enzymes are present, including endo-β-
1,4-glucanases (EC 3.2.1.4), β-glucosidases (EC 3.2.1.21), 
licheninases (EC 3.2.1.73), and endo-β-1,4-mannosidases 
(EC 3.2.1.78), and are, therefore, of industrial interest. 
GH5 subfamily 1 contains the extremely stable endo-
glucanase of Pyrococcus horikoshii [52], whose structure 
was analyzed via X-ray crystallography in 2008 [93, 94] 
confirming the typical GH5 (β/α)8 fold. In a recent study 
of Strazzulli and colleagues, a novel archaeal mannanase 
was discovered, belonging to the subfamily GH5_19 [95].

One explanation for the imbalance of 
archaeal:bacterial GHs is probably the cultivation chal-
lenge that comes along with many archaeal species, 
which are mainly found in extreme habitats in terms 
of pH, salinity and temperature and pressure. How-
ever, within the last years, the distribution of archaeal 
species was focused in the research field of microbial 
ecology [96], and numerous studies detected, with 
cultivation-independent methods, a distribution of 

archaea in non-extreme environments, such as sulfur-
rich lakes [97], marine sediments and water columns 
[98, 99], estuarine ecosystems [100] or the grass-
root zone [101]. Biotechnology will benefit from this 
increasing knowledge of archaeal ecology since more 
and more binned genomes of uncultivated archaea and 
novel Candidatus species will be published that can 
be used for enzyme screening. To date, 367 genomes 
(CAZomes) of archaea are published in CAZy, com-
pared to 17,054 bacterial ones. The listed genomes of 
CAZy of heterotrophic archaea are exhibiting diverse 
GH families with interest of various biotechnological 
disciplines. For example, the archaeon Staphylothermus 
marinus (Taxonomy ID 399550) contains a total num-
ber of 11 GHs of family 1, 4, 13, 38, 57, 84, and 122 and, 
therefore, offers potentially heat-stable glucosidases, 
galactosidases, amylases, mannosidases and glucosa-
minidases. One additional challenge of understanding 
and making use of archaeal GH machineries lies in the 
whole metabolism of archaea, which is considered to be 
a complex “mixture” of bacterial- and eukaryotic-like 
pathways resulting in modified pathways [102–104]. 
Studies focusing on transcriptomics of cultured archaea 
or reassembling of uncultured archaeal genomes will 
provide highly useful insights into new archaeal metab-
olisms, and novel catabolism reactions could be investi-
gated for degradation of complex substrates [105].

Fig. 2  Biochemical characteristics of known biomass-degrading GHs of archaeal origin. The following GHs were included in the figure: 
endoglucanases of Pyrococcus furiosus [46, 47], Pyrococcus horikoshii [52], Saccharolobus shibatae [65], Saccharolobus solfataricus [41], and 
three unknown archaea [42, 81, 83]; amylases of Pyrococcus furiosus [43, 44, 48, 49], Sulfolobus acidocaldarius [67], Pyrococcus woesei [54], and 
Staphylothermus marinus [59]; sylanase of Saccharolobus solfataricus [69]; glucosidases of Pyrococcus furiosus [50, 51], Pyrobaculum aerophilum 
[78] and two unknown archaea [22, 40]; galactosidases of Saccharolobus solfataricus [70, 71] and Caldivirga maquilingensis [76]; xylosidase of 
Saccharolobus solfataricus [73]; mannosidase of Saccharolobus solfataricus [74]
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Culture‑dependent approaches coupled 
with metagenomics for the identification 
of promising extremozymes
The revolution of enzyme discovery and microbial 
diversity analysis came along with the next-generation 
sequencing (NGS) technology, which is based on the 
fragmentation of (meta)genomic DNA, followed by 
sequencing of the resulting fragments, thus allowing 
millions of (high-throughput) sequencing reactions in 
parallel [106]. With sinking costs for NGS, this technol-
ogy became the gold standard in all areas of life sciences, 
reaching from the analysis of human microbiome consor-
tia [107] to microbial communities in extreme hydrother-
mal ecosystems [108]. Furthermore, this method allowed 
a deeper insight, not just into genera abundance of the 
composition of microbial communities, but also into 
the metabolic pathways of these consortia [109]. Bioin-
formatic tools including MG-RAST [110] and MEGAN 
[111, 112] were developed as valuable means for calcu-
lating the taxonomy of metagenomes based on known 
sequences of a database (reference-based classification). 
Since metagenomic sequences cannot only be used for 
diversity analysis, but also for identification of putative 
carbohydrate-encoding genes, the metagenomic era sup-
ported the detection of a huge number of novel enzyme 
candidates [113].

In addition, it was shown that interdisciplinary 
approaches, consisting of microbial diversity analy-
ses and screening for novel GH-encoding genes, are a 
promising combination which leads to successful identi-
fication of novel enzymes, in particular when analyzing 
extreme habitats such as hydrothermal systems [83, 95, 
114]. Environmental samples of extremely hot ecosys-
tems contain a huge variety of microorganisms with dif-
ferent metabolisms, ranging from chemolithoautotrophy 
to heterotrophy, and the pool of coding sequences in 
such a sample is huge in relation to the extreme condi-
tions of such an environment. Thus, to focus on selected 
target enzymes, enrichment cultures with conditions that 
support only the microbes with metabolisms of interest 
can be applied, and, therefore, select a defined microbial 
pool [115]. In the following, we will focus on three spe-
cific archaeal plant-biomass degrading enzymes that were 
detected by performing culture-dependent approaches:

The research team of Frank Robb aimed to gain novel 
insights into archaeal degradation of crystalline cel-
lulose, which still is a very unexploited field of research 
[83]. The team performed strictly anaerobic enrichment 
cultures at a temperature of 90  °C using sediment sam-
ples from a terrestrial geothermal source of Nevada. 
Enrichment cultures were transferred several times into 
fresh medium and microcrystalline cellulose and What-
man filter paper were used as carbon and energy source. 

Using this approach, a three-species consortium was 
enriched, whose 16S rRNA genes showed highest simi-
larities to the archaeal genera Ignisphaera, Pyrobacu-
lum and Thermofilum. Using a metagenomic approach, 
cellulase-encoding genes of GH family 5 were screened 
and one predicted GH, labeled as EBI-244, represented a 
potential multidomain cellulase. This cellulase seemed to 
consist of four structural domains, and while one of these 
domains showed similarities to GH5, the three remaining 
domains did not show any similarity to known GH fami-
lies. Characterization of the heterologously produced 
protein in E. coli revealed highly impressive character-
istics: a temperature optimum of 109  °C, a temperature 
melting point of 113 °C, a half-life time of 5 h at 100 °C, 
as well as resistance against ionic liquids, detergents and 
salts, and finally, a high activity towards crystalline cel-
lulose (Avicel). The unique composition of the different 
domains of this enzyme proved to be interesting, and fur-
thermore, the catalytic domain and the whole sequence 
showed high similarities to non-thermophilic eukaryotic 
mannanases.

Another combinatorial approach linking cultivation 
and genomics for the identification of novel archaeal 
plant-degrading enzymes was used by the team of Bet-
tina Siebers [84]. An in  situ enrichment culture was 
performed in a hot vent of the Kuril archipelago using 
birchwood xylan as substrate. This sophisticated experi-
mental setup resulted in the successful isolation of 
Thermococcus sp. strain 2319X1, which is able to grow 
on xylan as sole carbon and energy source. By perform-
ing genome sequencing and genome reassembly of this 
specific strain, a multi-domain glycosidase (MDG) was 
detected. The protein contains three GH domains, one 
of GH family 5 and two of GH family 12, which could 
explain the impressive multifunctionality towards a 
broad substrate spectrum, including Avicel, carboxyme-
thyl cellulose, β-1,4 linked and β-1,3 linked glucose poly-
saccharides, as well as xylose-based and mannose-based 
carbohydrates. The enzyme showed, in contrast to most 
endoglucanases of archaeal origin, optimal activity in 
alkaline milieu (optimum pH 8.5).

A third example for a combinatorial and multidisci-
plinary approach in regard to cultivation and omics 
technologies for archaeal enzyme discovery was per-
formed using samples of the extremely shallow marine 
vents of Vulcano Island, which were taken at a tem-
perature of 100 °C [22, 42, 82]. Enrichment cultures of 
samples were performed under anoxic conditions at a 
temperature of 90 °C, using carboxymethyl cellulose as 
carbon source, and the diversity of the enrichment cul-
ture was analyzed using a metagenomic approach. The 
diversity analysis performed with MEGAN6 revealed 
that the community consisted of more than 96% of 
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archaeal microorganisms with the hyperthermophilic 
genera Thermococcus and Palaeococcus showing the 
highest abundance in these cultures [82]. Afterwards, 
the metagenome was used for a sequence-based screen-
ing for GH5 endoglucanases, and the putative endoglu-
canase Vul_Cel5A was detected, which showed highest 
similarity to a putative endoglucanase of Thermococcus 
sp. and 56% identity to the characterized endoglucanase 
of Pyrococcus furiosus [42]. Production and charac-
terization of the recombinantly produced enzyme Vul_
Cel5A revealed impressive characteristics in regard to 
thermo-activity (Topt of 115  °C), thermo-stability (T1/2 
of 43  min at 100  °C) and resistance towards a broad 
range of detergents, as well as an extremely high rela-
tive activity and stability under acidic conditions. In 
addition, the metagenome was binned using Maxbin 
[116], which resulted in a reassembly of four genomes. 
Further genes encoding putative biomass-degrading 
enzymes were identified in the partially reassembled 
genome in which Vul_Cel5A was located. Cloning of 
the genes and production of the respective enzymes 
resulted in the identification and characterization of 
the archaeal β-glucosidase Vul_Bgl1A, which exhib-
ited highest activity at 105  °C towards 4-nitrophenyl 
β-d-glucopyranoside and cellobiose [22]. Interestingly, 
by simultaneously applying Vul_Cel5A and Vul_Bgl1A, 
a significant increase of glucose formation was moni-
tored indicating synergistic effects of the two enzymes.

All three combinatorial approaches highlight the 
importance of combining cultivation with state-of-
the-art (meta-)genomic analyses to identify novel 
archaeal enzyme candidates. The detected and pro-
duced enzymes are highly promising candidates for 
industrial processes since all three enzymes exhibited, 
besides their high thermo-activity, a very broad bio-
mass substrate spectrum and a relatively high activity 
in acidic or alkaline milieu. Regarding the sequence 
composition of the mentioned archaeal GH5 enzymes, 
xylanase MDG [84] showed a sequence identity of 46% 
with endoglucanase Vul_Cel5A [42], while the similar-
ity of EBI-244 [83] to these enzymes was very low (23% 
to MDG and 19% to Vul_Cel5A). Improved combina-
torial approaches, such as metatranscriptomic- and 
proteomic-based screening coupled with prior high-
temperature cultivation on plant biomass, will prob-
ably have a high impact on prospective identification 
of novel hyperthermozymes for application in various 
biotechnological processes including biorefineries. The 
successful application of such a combinatorial approach 
was recently described by Zayulina and colleagues, who 
coupled cultivation of a novel archaeon Thermofilum 
adornatum with proteomic analyses to identify four 
novel cellulolytic enzymes [117].

Protein engineering to tailor plant‑degrading 
enzymes for industrial processes
While the implementation of plant-degrading hyper-
thermozymes in integrated biorefineries is a straight-
forward application of these robust biocatalysts, even 
these naturally already thermo-active and thermo-sta-
ble enzymes need further improvement before being 
subjected to the biorefinery process (Fig.  1) [1, 118]. In 
general, wild-type enzymes are not directly suitable for 
industrial application but have to be modified prior to 
usage in biotechnological processes due to oxidation sen-
sitivity and generally low activities of the native enzymes. 
The replacement of oxidation-sensitive methionine resi-
dues is performed by site-directed mutagenesis, whereas 
improvements of substrate specificity and activity are 
gained by various rounds of protein-engineering cou-
pled with screening for desired activities and/or stabili-
ties [119, 120]. Applied protein engineering approaches 
need different levels of previous knowledge of the tar-
get enzyme, ranging from directed evolution apply-
ing random mutagenesis, which requires only the DNA 
sequence, to rational protein design, such as site-directed 
mutagenesis, which relies on the X-ray structure of the 
target enzyme. Nowadays, combinations of directed evo-
lution and rational protein design are frequently applied 
with the aim to gain maximum benefit from each of the 
protein engineering techniques [121, 122].

In particular, rational protein-engineering methods 
have been successfully applied for improving plant-
degrading enzymes since X-ray structures of hyperther-
mozymes are often being resolved and analyzed with 
the aim to understand the mechanisms that lead to their 
superior stability properties [123, 124]. One example of 
a promising plant-degrading hyperthermozyme with 
potential for further optimization is a β-glycosidase from 
the extreme thermoacidophilic archaeon Saccharolo-
bus solfataricus. This hyperthermozyme was reported 
to exhibit maximal activity above 95  °C and remarkable 
stability towards detergents [125]. However, alkaline pH 
values seemed to have a strong destabilizing effect on this 
archaeal GH, which belongs to GH family 1 [126]. It was, 
therefore, concluded that the enzyme’s stability resulted 
from ionic interactions on the surface, which would be 
perturbated at alkaline pH [125].

However, the β-glycosidase from Saccharolobus sol-
fataricus proved to be an excellent example for the 
successful heterologous production of an archaeal plant-
degrading enzyme applying a yeast expression system 
[127]. The application of mesophilic Saccharomyces cer-
evisiae as host for industrial-scale fermentation enabled 
a fast and efficient purification strategy of the target 
enzyme by taking advantage of its exceptional heat stabil-
ity when applying a heat precipitation of the host proteins 
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[127]. The reasons for the enzyme’s heat stability were 
analyzed by creating mutants of the hyperthermozyme, 
which, for example, hampered the formation of an ion 
pair network at the tetrameric interface of the enzyme 
and led to heat-sensitive mutants [128]. These results 
further supported the current hypothesis that ionic 
interactions are of major importance for protein stabil-
ity of hyperthermophiles. Furthermore, when comparing 
the enzyme to β-glycosidases from Thermosphaera and 
Pyrococcus furiosus, it was deduced that oligomerization 
could be another general factor for protecting hyperther-
mozymes from degradation [128–130]. General mecha-
nisms of protein unfolding were analyzed by creating 
mutants of the N and C terminii of the β-glycosidase 
from Saccharolobus solfataricus [128, 131]. The respec-
tive studies showed that the quaternary structure was 
crucial for stability of this hyperthermozyme [128] and 
that fraying of the polypeptide chain termini played an 
important role in protein unfolding [131].

In addition to rational approaches, also random 
mutagenesis studies involving suitable in  vivo selection 
mechanisms were conducted with hyperthermozymes. 
One study focusing on the β-glycosidase from Saccha-
rolobus solfataricus showed that mutations far from the 
active site may have crucial impact on the enzyme’s activ-
ity and stability profiles [132]. While a mutant with three 
random mutations showed a twofold enhanced specific 
activity towards galactosides at 85  °C, the higher flex-
ibility of the enzyme variant that enabled this increase in 
substrate turnover also led to an almost 300-fold reduced 
thermal stability. Directed evolution was also applied in 
a study focusing on broadening the temperature profile 
of a β-glucosidase from the hyperthermophilic archaeon 
Pyrococcus furiosus. Here, the low-temperature activity 
of the hyperthermozyme was significantly increased with 
twofold enhanced activity towards cellobiose at 20  °C 
[133].

Successful engineering of another hyperthermozyme 
was previously demonstrated by Kang et  al. when fur-
ther improving the thermo-active and thermo-stable 
cellulase from Pyrococcus horikoshii [52, 134]. In this 
study, rational protein design was performed by elimi-
nating cysteine residues and adding a carbohydrate-
binding domain to increase the cellulase’s activity. The 
successful approach led to the remarkable observation 
that the thermo-stability of the enzyme was not signifi-
cantly impaired by removing disulfide bonds. Further-
more, increased affinity towards crystalline cellulose 
was obtained by the addition of a chitin-binding domain 
from another hyperthermozyme, leading to the conclu-
sion that the generation of sophisticated fusion proteins 
might be a suitable means to tailor hyperthermozymes 
for industrial application [134].

Despite the fact that hyperthermozymes offer a huge 
potential for industrial application, there are only few 
examples of actual utilization of these enzymes. This is 
mainly due to the fact that in contrast to their mesophilic 
counterparts, a significantly lower number of hyperther-
mozymes is known to date. Furthermore, they are often 
more difficult to produce at high amounts as there are no 
industrially approved extremophilic production strains 
available yet. However, it was shown that expression 
problems with mesophilic hosts, such as E. coli, might be 
overcome by designing synthetic genes, which was suc-
cessfully applied for a phosphopantetheine adenylyltrans-
ferase from the hyperthermophilic archaeon Pyrococcus 
abyssi [135]. In a different approach, careful adjustment 
of expression conditions was sufficient to produce an 
archaeal chitinases with E. coli expression strains [136].

Another example highlighting the potential of 
hyperthermozymes for industrial application is the 
development of a continuous process for lactulose pro-
duction by implementation of immobilized thermostable 
β-glycosidase from Pyrococcus furiosus [137]. With the 
advance of more thorough analyses of archaea, including 
the Archaeal Proteome Project (ArcPP), further insights 
into the mechanisms and beneficial properties of archaeal 
enzymes are expected in the near future [102, 138].

Conclusion
Characterizations of already known archaeal thermo-
active and thermo-stable biomass-degrading GHs have 
highlighted their potential for high-temperature indus-
trial processes. Archaeal GH properties provide inter-
esting features for an efficient biomass conversion and 
biofuel generation. To discover new promising can-
didates, it is necessary to study in detail the microbiol-
ogy, physiology and enzymology of microorganisms 
of extremely hot habitats, and to combine and imple-
ment this generated knowledge for an efficient screen-
ing for novel promising GH candidates. Combinatorial 
approaches of cultivation and omics technologies lead 
to the discovery of highly interesting archaeal GHs with 
outstanding characteristics. Current and future global 
challenges require sustainable biobased solutions, and 
bioeconomy is becoming an important field to meet these 
challenges. Still, one of the major challenges is the effi-
cient transformation of recalcitrant plant biomass to pol-
ysaccharides that can be used as a resource for countless 
fermentation processes. Archaeal hyperthermozymes 
represent an ideal platform to support this crucial step in 
an eco-friendly way.

Abbreviations
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