Skip to main content
. 2020 Sep 3;21:382. doi: 10.1186/s12882-020-02031-0

Table 2.

Association of retinal vessel parameters and CKD status using binary logistic regression (scr and cys)

CKD status scr Unadjusted Minimally adjusted Fully adjusted
Retinal parameter OR 95% CI P Value OR 95% CI P Value OR 95% CI P Value
aCRAE (PX) 1.17 1.00,1.38 0.06 1.12 0.94, 1.34 0.20 1.15 0.95, 1.38 0.14
aCRVE (PX) 1.10 0.93, 1.30 0.27 1.06 0.89, 1.26 0.54 1.03 0.86, 1.23 0.76
aAVR 1.06 0.89, 1.25 0.53 1.04 0.87, 1.25 0.64 1.09 0.91, 1.30 0.37
aFractal dimension arteriolar 1.02 0.86, 1.21 0.83 1.10 0.91, 1.32 0.33 1.09 0.90, 1.32 0.36
aFractal dimension venular 0.86 0.73, 1.00 0.05 0.89 0.75, 1.07 0.22 0.87 0.72, 1.05 0.15
abTortuosity arteriolar 1.14 0.96, 1.34 0.14 1.13 0.94, 1.35 0.19 1.10 0.91, 1.32 0.33
abTortuosity venular 1.36 1.16, 1.59 < 0.01 1.34 1.14, 1.59 < 0.01 1.30 1.10, 1.54 < 0.01
CKD status cys Unadjusted Minimally adjusted Fully adjusted
Retinal parameter OR 95% CI P Value OR 95% CI P Value OR 95% CI P Value
aCRAE (PX) 1.09 0.98, 1.21 0.10 1.05 0.94, 1.18 0.39 1.09 0.96, 1.23 0.19
aCRVE (PX) 1.13 1.02, 1.25 0.02 1.12 1.00, 1.25 0.06 1.08 0.96, 1.22 0.21
aAVR 0.97 0.87, 1.07 0.55 0.94 0.84, 1.06 0.33 1.00 0.89, 1.14 0.97
aFractal dimension arteriolar 0.90 0.82, 1.00 0.05 0.95 0.84, 1.06 0.33 0.98 0.87, 1.10 0.69
aFractal dimension venular 0.92 0.83, 1.02 0.10 0.98 0.87, 1.10 0.68 0.98 0.87, 1.11 0.77
abTortuosity arteriolar 1.07 0.96, 1.18 0.23 1.06 0.94, 1.18 0.37 1.03 0.91, 1.16 0.66
abTortuosity venular 1.10 1.00, 1.22 0.06 1.08 0.97, 1.21 0.17 1.03 0.92, 1.17 0.59

Abbreviations: eGFR Estimated glomerular filtration rate (Calculated using the CKD-EPI equation), CKD Chronic Kidney Disease, CRAE Central Retinal Arteriolar Equivalent, CRVE Central Retinal Venular Equivalent, AVR Retinal Arteriole/Venular Ratio, scr Serum Creatinine, cys Serum Cystatin C, CI Confidence Interval, OR Odds Ratio, PX Pixels. aRMPs were transformed into standardised Z-scores before inclusion in regression models. bTortuosity values were log transformed before inclusion in regression models to produce normal distribution. Minimally adjusted models included age (yrs) and sex, with fully adjusted models also including diabetes and smoking status, cardiovascular disease, educational attainment, body mass index, antihypertensive medication, systolic blood pressure, triglycerides, high and low-density lipoproteins levels. P values and 95% confidence intervals were generated from the regression models