
Zhang et al. BMC Bioinformatics          (2020) 21:377 
https://doi.org/10.1186/s12859-020-03721-0

RESEARCH ARTICLE Open Access

LDNFSGB: prediction of long
non-coding rna and disease association
using network feature similarity and gradient
boosting
Yuan Zhang1,2†, Fei Ye2†, Dapeng Xiong3,4 and Xieping Gao2,5*

*Correspondence:
xpgao@xtu.edu.cn
†Yuan Zhang and Fei Ye
contributed equally to this work.
2Key Laboratory of Intelligent
Computing and Information
Processing of Ministry of Education,
Xiangtan University, Xiangtan
411105, China
5College of Medical Imaging and
Inspection, Xiangnan University,
Chenzhou 423000, China
Full list of author information is
available at the end of the article

Abstract
Background: A large number of experimental studies show that the mutation and
regulation of long non-coding RNAs (lncRNAs) are associated with various human
diseases. Accurate prediction of lncRNA-disease associations can provide a new
perspective for the diagnosis and treatment of diseases. The main function of many
lncRNAs is still unclear and using traditional experiments to detect lncRNA-disease
associations is time-consuming.

Results: In this paper, we develop a novel and effective method for the prediction of
lncRNA-disease associations using network feature similarity and gradient boosting
(LDNFSGB). In LDNFSGB, we first construct a comprehensive feature vector to effectively
extract the global and local information of lncRNAs and diseases through considering
the disease semantic similarity (DISSS), the lncRNA function similarity (LNCFS), the
lncRNA Gaussian interaction profile kernel similarity (LNCGS), the disease Gaussian
interaction profile kernel similarity (DISGS), and the lncRNA-disease interaction (LNCDIS).
Particularly, two methods are used to calculate the DISSS (LNCFS) for considering the
local and global information of disease semantics (lncRNA functions) respectively. An
autoencoder is then used to reduce the dimensionality of the feature vector to obtain
the optimal feature parameter from the original feature set. Furthermore, we employ
the gradient boosting algorithm to obtain the lncRNA-disease association prediction.

Conclusions: In this study, hold-out, leave-one-out cross-validation, and ten-fold cross-
validation methods are implemented on three publicly available datasets to evaluate
the performance of LDNFSGB. Extensive experiments show that LDNFSGB dramatically
outperforms other state-of-the-art methods. The case studies on six diseases,
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including cancers and non-cancers, further demonstrate the effectiveness of our
method in real-world applications.

Keywords: lncRNA-disease association, Prediction, Network feature similarity, Gradient
boosting

Background
Cumulative evidence shows that only ∼2 percent of protein-coding genes are in the
human genome and the remaining ∼98 percent of the human genome are classified as
non-coding RNAs (ncRNAs) [1]. Many studies in recent years suggest that the interaction
of ncRNA and protein has a positive effect on many biological processes, such as pro-
tein synthesis, gene expression, RNA processing, and development regulation [2]. Based
on the expression and function, ncRNAs are divided into ribosomal RNA, transfer RNA,
small nuclear RNA, and small nucleoli RNA [3]. According to its size, regulatory ncRNAs
can be further classified as small ncRNA (∼18-31nt, such as miRNA, siRNA, and piRNA),
medium ncRNA (∼31-200nt) and long ncRNA (from 200nt up to several hundred kb,
such as lincRNA and microRNA) [4].
Long non-coding RNAs (lncRNAs) play an increasingly important role in some fun-

damental biological processes such as translational regulation, cell cycle regulation,
epigenetic regulation, splicing, differentiation, and immune response [5]. For example,
GAS5 inhibits cell invasion and tumor growth [6]. HOTAIR, a 2.2 kb gene in the HOXC
locus, plays a key role in epigenetic regulation in cancer [7]. Especially, many stud-
ies demonstrate that mutations and disorders of lncRNAs are associated with human
complex diseases, including Alzheimer’s disease (AD), glioma, breast cancer, psychiatric
disease, cardiovascular disease, AIDS, and glaucoma [8]. For example, the synthesis of
51A can promote the expression of alternative splicing SORL1 variants. Quantitative RT-
PCR is often used to verify the overexpression in themetastatic samples. Nevertheless, the
metastasis of NSCLC patients is significantly related to MALAT-1 [9]. Forced expression
of HOTAIR in epithelial cancer cells induces genome-wide Polycomb repression complex
2 (PRC2) to retarget to a more similar pattern of embryonic fibroblasts, leading to gene
expression changes, and increase cancer invasion and metastasis. In contrast, the loss
of HOTAIR can inhibit cancer invasion, especially in cells with excessive PRC2 activity.
These findings suggest that lncRNAs have a positive role in regulating the epigenome of
cancer and may be an important target for cancer diagnosis and treatment [10]. There-
fore, predicting the potential association between diseases and lncRNAs can not only
promote the understanding of molecular mechanisms for human diseases at the level
of lncRNAs, but also better identify biomarkers for the diagnosis, treatment, prognosis,
and prevention of human diseases [11, 12] However, it is costly and time-consuming for
traditional biological experiments in discovering potential lncRNA-disease associations
[13]. Besides, classical biological experiment methods are usually not made available for
the analysis of a large number of candidates [14]. Therefore, it is essential to propose an
effective and efficient computational model for predicting lncRNA-disease associations
[12, 15].
In the past decades, various computation models based on different mathematical

theories have been proposed to address this issue [16, 17]. These methods can be
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divided into two categories, i.e., network-based methods and machine learning-based
methods. The network-based methods mainly use biological information related to
lncRNAs for the prediction. Chen et al. [11] proposed the Laplacian regularized least
squares model (LRLSLDA) to predict the lncRNA-disease association, which is the
first computational model used to predict lncRNA-disease association. Zhou et al. [18]
proposed RWRHLD as a candidate for the lncRNA-disease association by integrating
miRNA-related lncRNA-lncRNA crosstalk network, disease-disease similarity network,
and known lncRNA-disease association network. Chen et al. [19] introduced KATZLDA
to predict the lncRNA-disease association.
In [20], a hypergeometric distribution model for lncRNA-disease association infer-

ence was developed to predict lncRNA-disease association by integrating miRNA-disease
association and lncRNA-miRNA interaction. Ping et al. [21] constructed a two-part
heterogeneous network obeying the power-law distribution based on known lncRNA-
disease correlations to predict potential lncRNA-disease association sample pairs. The
implementation of this method requires the assumption that lncRNAs related to the same
or similar diseases may have similar functions [22]. Chen et al. [23] proposed ILDMSF
to identify an association between lncRNAs and diseases by using multi-similarity fusion
strategy. This method solves the problem of unsatisfactory prediction results using a sin-
gle similarity measure or a linear method that fuses different similarities. Yang et al. [9]
introduced genetic information to identify lncRNA-related diseases. They constructed
a coding-non-coding gene-disease bipartite network based on known associations dis-
eases and disease-causing genes. Lu et al. [24] developed a method named SIMCLDA by
using inductive matrix completion to discover the potential lncRNA-disease association.
What is common to all of these approaches is the assumption that molecules with similar
structures or ligands have similar functions. However, molecules with similar structures
or ligands may not have similar functions. Besides, the performance of the matrix fusion
method may decrease when the known association information is insufficient. There-
fore, these methods do not reveal the inherent logical association between lncRNAs and
complex diseases.
For the machine learning-based methods, some classical algorithms are often used to

predict the potential association between lncRNAs and diseases. Yu et al. [25] firstly
constructed an updated tripartite network by integrating the miRNA-disease interaction
network, miRNA-lncRNA interaction network, and lncRNA-disease network, and then
predicted lncRNA-disease association based on Naïve Bayesian classifier and collabora-
tive filtering model. In [26], InfDisSim was proposed to predict disease-related ncRNA
based on a damped random walk model. Sun et al. [27] introduced RWRlncD to infer
the lncRNA-disease association by implementing a restart random walk method on the
lncRNA functional similarity network. Li et al. [28] also proposed a local random walk
model (LREWHLDA) to predict the lncRNA-disease association. Yao et al. [29] proposed
to predict lncRNA-disease associations based on random forests. In [30], a clustering
algorithm was proposed based on unsupervised learning to predict the lncRNA-disease
association. Wang et al. [31] established a prediction model called Internal RandomWalk
with Restart (IIRWR) to predict lncRNA-related diseases. Lan et al. [32] introduced LDAP
to identify potential associations between lncRNAs and diseases by using a bagging sup-
port vector machine (SVM) classifier. Although these methods have achieved varying
degrees of success, they did not comprehensively take into account the global information
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between lncRNAs and diseases, internal information between lncRNAs, internal infor-
mation between diseases, and the sparsity of known lncRNA-disease association, which
are all thought to be able to contribute to the prediction.
Recently, Xiao et al. [33] proposed BPLLDA to predict lncRNA-disease associations.

This method mainly predicted the degree of association between lncRNAs and dis-
eases by calculating the paths connecting them and their lengths. Although this method
improved the prediction accuracy, the semantic similarity calculation in this method
only simply considered the local information of the semantics. Actually, global semantic
information on the disease is also important because the frequency of the disease may
affect its contribution. Therefore, it is necessary to consider the features of disease and
lncRNA more comprehensively to accurately predict the associations between lncRNAs
and diseases.
In this paper, we propose a novel method, called LDNFSGB, for the large-scale lncRNA-

disease association prediction. Firstly, we construct a comprehensive feature vector to
effectively extract the global and local information of diseases and lncRNAs using a
disease similarity (DISS) heterogeneous network and a lncRNA similarity (LNCS) het-
erogeneous network. Specifically, DISS is constructed by combining the disease Gaussian
interaction profile kernel similarity (DISGS) and the disease semantic similarity (DISSS)
heterogeneous network. And LNCS is constructed by integrating the lncRNA Gaussian
interaction profile kernel similarity (LNCGS) and lncRNA function similarity (LNCFS)
heterogeneous network. Here, for the calculation of either DISSS or LNCFS, the average
derived from two strategies is taken as the final score. In particular, DISSS1 (LNCFS1)
is used to consider the local information of disease semantics (lncRNA functions) and
DISSS2 (LNCFS2) is for the global information of disease semantics (lncRNA functions).
Secondly, an autoencoder is used to reduce the dimensionality of the feature vector to
get the optimal feature parameter from the original feature set. Furthermore, consider-
ing the distribution characteristics of the data, we employ a gradient boosting algorithm
to predict the lncRNA-disease associations. Finally, three validation methods, includ-
ing the hold-out, leave-one-out cross-validation (LOOCV), and ten-fold cross-validation
(10-fold CV), are implemented to demonstrate the prediction performance of the pro-
posed LDNFSGB on three publicly available datasets, i.e., LncRNADisease, Lnc2Cancer,
and LncRNADisease2.0. The experimental results indicate that the proposed LDNFSGB
achieves 0.9761, 0.9447, 0.9933 in terms of AUC values using hold-out on the three
datasets respectively, which outperforms the state-of-the-art methods for predicting can-
didate disease lncRNAs. Additional case studies on six diseases, including colorectal
cancer, osteosarcoma, cervical cancer, glioma, heart failure, and AD, further show that
LDNFSGB can successfully predict potential disease-related lncRNAs candidates.

Results
To verify the performance of the proposed LDNFSGB, a series of experiments are con-
ducted. (1) In order to construct the best similarity features, we implement a comparative
experiment on the LncRNADisease dataset based on different features and compare and
analyze the experimental results of LDNFSGB under different feature vectors. (2) To
verify the performance of the gradient boosting algorithm, we conduct an comparison
experiment on LncRNADisease using eight different classifiers including Gradient Boost-
ing, SVM, Naïve Bayes, Logistic Regression, Random Forest, Rotation Forest, AdaBoost,
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and Deep Extreme Learning Machine (DELM). (3) We use three validation methods (i.e.,
hold-out, LOOCV, and 10-fold CV) to comprehensively evaluate the performance of the
proposed LDNFSGB on three publicly available datasets. (4) To evaluate the overall per-
formance of LDNFSGB, we compare the results of the proposed method with several
state-of-the-art approaches in the literature.

Validation methods

Hold-out

The reserved method is to divide the dataset into a training set and a test set according
to a certain ratio, and then use the training set to learn the model. The test set is used
for lncRNA-disease association prediction and model performance evaluation. A large
number of experiments have demonstrated that the best training results can be obtained
by randomly dividing the datasets according to the 8 to 2 ratio [34–37].

Leave-one-out cross-validation

Although hold-out can obtain better test results, the randomness of the training sample
and test sample division causes a certain bias in the results. Thus, LOOCV is chosen as
another validation method. For the LOOCV, traverse all the samples according to the
principle of leaving one sample as the test set and all the remaining samples as the training
set. Finally, we take the average of all test results as the final result. In general, LOOCV
can obtain relatively stable results because of the large number of runs.

Ten-fold cross-validation

We herein use the 10-fold CV to further evaluate the performance of the proposed
method. The basic principle of 10-fold CV is to divide all data randomly into 10 disjoint
subsets. For each round, 9 subsets are used for training and the remaining for testing.
After 10 rounds, the average of the 10 results is used as the final evaluation result. Over-
all, the 10-fold CV method saves time to some extent and reduces the deviation caused
by the random partition of data.

Performancemetric

To evaluate the performance of LDNFSGB, the receiver operating characteristic (ROC)
curves are utilized and the area under ROC (AUC) values are calculated. Also, five other
metrics are used for the evaluation, including Accuracy (Acc), Sensitivity (Sen), Specificity
(Spe), Precision (Pre), andMatthews Correlation Coefficient (MCC), which are defined as

Acc = TP + TN
TP + FN + TN + FP

(1)

Sen = TP
TP + FN

(2)

Spe = TN
TN + FP

(3)

Pre = TP
TP + FP

(4)
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MCC= TP×TN−FP×FN√
(TP+FN)×(TP+FP)×(TN+FN)×(TN+FP)

(5)

where TP, FP, TN, FN are the number of true positives, false positives, true negatives,
and false negatives in the confusion matrix, respectively.

Parameter settings

In LDNFSGB, different parameters of the autoencoder and gradient boosting algorithm
will generate different prediction results. The parameters settings and implementation
details of our experiments are presented as following. For the autoencoder, we use the
Keras library and set the batch size and epoch to 128 and 100, respectively. For gradient
boosting, we set the maximum tree depth d to 3, the number of regression tree q to 1200,
the random seed to 0, and the learning rate η to 0.1. All the experiments are implemented
using Pycharm2019 on a PC (Intel i5-7500, 3.4GHz CPU, and 8-GB RAM).

Overall performance on the LncRNADisease dataset

Firstly, to verify the performance of ourmethod, three validationmethods including hold-
out, LOOCV, and 10-fold CV are evaluated on the LncRNADisease dataset. Among them,
LDNFSGB using hold-out obtains the highest result with an AUC of 0.9761. The average
values of AUCs obtained by LOOCV and 10-fold CV are 0.96 and 0.9586, respectively.
The ROC curves of LDNFSGB using three validation methods are shown in Fig. 1. In
particular, the closer AUC is to 1, the better the predicted result is. Besides, the closer
the ROC curve is to the top, the better the prediction performance is. For three valida-
tion methods, LOOCV has the most stable results with the highest computational cost.
While hold-out achieves a highest accuracy, the results are a little bit unstable because of
random data split. By contrast, 10-fold CV gets a good balance. Overall, the high results
obtained by these three validationmethods show that the proposed LDNFSGB is effective
for lncRNA-disease association prediction.

Comparison with different features

Most of the existing methods calculate the lncRNA similarity and disease similarity from
a local perspective and they do not comprehensively consider the sparseness and glob-
ality of the feature matrix. In this section, we construct four tetramerous heterogeneous
networks (THN1, THN2, THN3, and THN4), six tripartite heterogeneous networks
(TriHN1, TriHN2, TriHN3, TriHN4, TriHN5, and TriHN6), and four duplex heteroge-
neous networks (DHN1, DHN2, DHN3, and DHN4) on LncRNADisease based on the
disease semantic similarity, the lncRNA function similarity, the lncRNA Gaussian profile

Fig. 1 ROC curves of LDNFSGB for lncRNA-disease association prediction on LncRNADisease under hold-out,
LOOCV, and 10-fold CV
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Table 1 The detailed feature composition information of different heterogeneous networks. DISSS,
LNCFS, LNCGS, DISGS, LNCDIS represent different features

Network DISSS LNCFS LNCGS DISGS LNCDIS

FHN
√ √ √ √ √

THN1
√ √ √ √

THN2
√ √ √ √

THN3
√ √ √ √

THN4
√ √ √ √

TriHN1
√ √ √

TriHN2
√ √ √

TriHN3
√ √ √

TriHN4
√ √ √

TriHN5
√ √ √

TriHN6
√ √ √

DHN1
√ √

DHN2
√ √

DHN3
√ √

DHN4
√ √

kernel similarity, the disease Gaussian profile kernel similarity, and the known disease-
lncRNA interaction for comparison. Details are listed in Table 1. We construct different
feature vectors based on these heterogeneous networks and take them as input features
for the prediction.
Comparison results on LncRNADisease are illustrated in Fig. 2. We can find that using

the feature vector obtained by FHN can achieve the highest AUC with 0.9761, which is
higher than other results. It is verified that the feature vector by integrating the lncRNA-
disease interaction, disease semantic similarity, lncRNA functional similarity, Gaussian
profile kernel similarity for lncRNAs, and Gaussian profile kernel similarity for diseases
performs better than other feature vectors, is effective for the lncRNA-disease association
prediction.

Fig. 2 Comparison of AUC values using different features on LncRNADisease under hold-out
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Comparison with different classifiers

To evaluate the performance of the gradient boosting, we also compare it with other pop-
ular classifiers. To be fair, the same data are used for all classifiers.The ROC curves of these
eight classifiers using hold-out, LOOCV, and 10-fold CV on the LncRNADisease dataset
are summarized in Figs. 3, 4 and 5. The comprehensive indicators by calculating confu-
sion matric, including Acc, Sen, Spe, Pre, and MCC, which are illustrated in Tables 2, 3
and 4.
Although the Spe and Pre values of gradient boosting are slightly lower than those of

random forest, the Acc, Sen, MCC, and AUC values are the highest across the hold-out,
LOOCV, and 10-fold CV. Figs. 3, 4, and 5 also show that the ROC curves of gradient
boosting are located at the top of all figures. Therefore, the results verify that gradient
boosting has better performance than other classifiers.We herein conclude the reasons as
following: (1) The performance of SVM is sensitive to data. The choice of kernel function
and the setting of parameters could also affect the final result. (2) The premise of using the
Naïve Bayes is to assume that the samples are independently distributed. However, our
data may not follow such an assumption. (3) Although DELM can reduce the complexity
of the model, the experimental results are unstable due to the randomness of the weight
setting in the neural network. (4) It needs to assume that the feature vector and the target
are linearly separable when using the Logistic Regression model. (5) The Random Forest
and Rotation Forest algorithms are not affected by the non-linear relationship of the data
and can get relatively good results. However, the selection of feature attributes of the
constructed tree is random, and it will affect the prediction result when there is noise
in the sample data. (6) AdaBoost and Gradient Boosting are special ensemble learning
methods. In each iteration, the algorithm will update the sample weights according to the

Fig. 3 ROC curves of all classifiers for lncRNA-disease association prediction on LncRNADisease under
hold-out



Zhang et al. BMC Bioinformatics          (2020) 21:377 Page 9 of 27

Fig. 4 ROC curves of all classifiers for lncRNA-disease association prediction on LncRNADisease under LOOCV

Fig. 5 ROC curves of all classifiers for lncRNA-disease association prediction on LncRNADisease under 10-fold
CV
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Table 2 Hold-out test results of LDNFSGB on LncRNADisease using different classifiers

Classifier Acc Sen Spe Pre MCC

SVM 0.6189 0.8071 0.4198 0.5955 0.2468

Naïve Bayes 0.5736 0.8429 0.2886 0.5563 0.1585

Logistic Regression 0.7181 0.6997 0.7376 0.7383 0.4373

Random Forest 0.8852 0.8842 0.8862 0.8916 0.7704

Rotation Forest 0.9022 0.9283 0.8746 0.8868 0.8050

Ada Boosting 0.8824 0.9311 0.8309 0.8535 0.7674

DELM 0.8116 0.8787 0.7405 0.7818 0.6267

Gradient Boosting 0.9138 0.9311 0.8950 0.9037 0.8273

predicted effect of the trained learner and use it for a new round of learning. Different
fromAdaBoost, Gradient Boosting uses a spatial gradient descent algorithm to update the
weights and finally achieves better results. Overall, our experiments show that Gradient
Boosting has the best performance for lncRNA-disease association prediction compared
with other classifiers.

Comparison with other state-of-the-arts

We compare LDNFSGB with the following computational models: (1) BPLLDA [33],
which is a network-based method based on simple paths with limited lengths in a hetero-
geneous network. (2) IIRWR [31], which is a random walk with restart architecture with
disease clique using an internal tendency. (3) LDASR [38], which is an integrated machine
learning method using the rotation forest. (4) SKF-LDA [39], which introduces the kernel
fusion method with different types of similarities for lncRNAs and diseases. (5) ILNCSIM
[40], which develops an improved lncRNA functional similarity calculation model based
on the assumption that lncRNAs with similar biological functions tend to be involved
in similar diseases. (6) Ping et al.’s Method [21], which constructs a bipartite network to
predict potential lncRNA-disease interactions only based on the known lncRNA-disease
association. (7) Yuan et al.’s Method [30], which is a cluster correlation based method for
lncRNA-disease association prediction.
The comparison with other popular methods on LncRNADisease is shown in Fig. 6,

in which, we can find that our method has the highest prediction result with an AUC of
0.9761, which improves by 2.59%-10.49%. The reasons for improvement can be attributed
to two aspects. On the one hand, we comprehensively consider all the features of
lncRNAs and diseases for a better representation. On the other hand, we propose a high-
performance prediction model using autoencoder and gradient boosting, which are good

Table 3 LOOCV test results of LDNFSGB on LncRNADisease using different classifiers

Classifier Acc Sen Spe Pre MCC

SVM 0.6252 0.8011 0.4492 0.5926 0.2675

Naïve Bayes 0.5834 0.8572 0.3099 0.5540 0.1997

Logistic Regression 0.7101 0.7053 0.7150 0.7122 0.4204

Random Forest 0.8798 0.8787 0.8810 0.8807 0.7597

Rotation Forest 0.8878 0.9087 0.8668 0.8722 0.7763

Ada Boosting 0.8719 0.9093 0.8345 0.8460 0.7459

DELM 0.7968 0.8572 0.7365 0.7649 0.5981

Gradient Boosting 0.8975 0.9257 0.8657 0.8733 0.7929
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Table 4 10-fold CV test results of LDNFSGB on LncRNADisease using different classifiers

Classifier Acc Sen Spe Pre MCC

SVM 0.6218 0.8068 0.4368 0.5890 0.2625

Naïve Bayes 0.5824 0.8572 0.3076 0.5533 0.1970

Logistic Regression 0.7028 0.6940 0.7116 0.7069 0.4061

Random Forest 0.8816 0.8838 0.8794 0.8813 0.7641

Rotation Forest 0.8784 0.9127 0.8442 0.8574 0.7592

Ada Boosting 0.8677 0.9042 0.8312 0.843 0.7376

DELM 0.7932 0.8606 0.7258 0.7598 0.5925

Gradient Boosting 0.8946 0.9240 0.8652 0.8736 0.7913

at feature representation and integrating multiple weak learners, respectively. Compar-
ison results have shown that LDNFSGB achieves the best performance and is of great
significance for the prediction of potential lncRNA-disease associations.
Moreover, to detect the significant differences between our proposed model and other

models, a t-test is used to verify the performance of LDNFSGB. Here, we find the dis-
tribution of F1-score after repeating the process twenty times. The p-value of the t-test
between any other models vs. our method is shown in Table 5. The results demonstrate
that the performance of LDNFSGB is significantly better than others in terms of the
F1-score (p-value < 0.05).
Three verification methods (i.e., hold-out, LOOCV, and 10-fold CV) are also used

on Lnc2Cancer and LncRNADisease2.0 for evaluating the performance of the proposed
model. The ROC curves are shown in Fig. 7. Among them, LDNFSGB using hold-out
obtains the highest result with an AUC of 0.9447 and the average values of AUCs obtained
by LOOCV and 10-fold CV are 0.9302 and 0.9326 on Lnc2Cancer, respectively. Further-
more, we compare the performance of ourmodel with that of the state-of-the-artmethods
[21, 30, 40] on Lnc2Cancer as well. The results in Table 6 show that LDNFSGB improves
the AUC by 2.09%-10.4%, which indicates that our model dramatically outperforms the
competing methods. For the LncRNADisease2.0 dataset, we find that LDNFSGB achieves

Fig. 6 AUC comparison results of LDNFSGB with the state-of-the-art methods on LncRNADisease for
lncRNA-disease association prediction
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Table 5 The statistical significance validation of LDNFSGB for the performance comparison using
t-test

Method Mean ± std (%) p-value

LDASR [38] 88.09 ±1.054 0.01943

BPLLDA [33] 80.08 ±10.965 0.00302

LDNFSGB 88.94±1.067 -

amazing AUC results, which are 0.9933, 0.9926, and 0.9906 using hold-out, LOOCV,
and 10-fold CV respectively. Perhaps, this is mainly because LncRNADisease2.0, a larger
scale dataset compared with LncRNADisease and Lnc2Cancer, has more lncRNA-disease
associated pairs, and therefore, more useful information can be used for the prediction.

Cases studies

In this section, colorectal cancer, osteosarcoma, cervical cancer, and glioma are selected
as cancer case studies to verify the performance of LDNFSGB in practical application.
In order to ensure the integrity and authenticity of the experiment, we choose the LncR-
NADisease database (v2017) for model training and prediction. The CRlncRNA [41] and
NCBI [42] are selected as the sources of verification results.
Colorectal cancer is the third leading cause of cancer-related deaths worldwide, with

over one million new cases in Europe and the US every year [43]. It is the second most
common cancer affecting women, after breast cancer, and the thirdmost common inmen,
after prostate and lung cancers [25]. In this case study, the main steps are as follows: (1)
After removing the samples related to colorectal cancer from the 1765 positive samples,
the rest are used as positive examples, and the negative samples with the same number of
positive samples are randomly selected. (2) 881 sample pairs of proven lncRNA-colorectal
cancer are selected as test samples. (3) Input the training samples into LDNFSGB, and
each sample outputs a probability value accordingly. (4) Sort all the results in descend-
ing order, and finally predict the lncRNA most relevant to colorectal cancer. Finally,

Fig. 7 ROC curves of LDNFSGB for lncRNA-disease association prediction under hold-out, LOOCV, and
10-fold CV on Lnc2Cancer and LncRNADisease2.0. (a), (b), and (c) represent the results on Lnc2Cancer, and
(d), (e), and (f) represent the results on LncRNADisease2.0, respectively
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Table 6 Performance comparison of LDNFSGB and six state-of-the-art models in terms of AUC on
Lnc2Cancer using LOOCV

Method Year AUC

LRLSLDA-ILNCSIM [40] 2016 0.9094

LRLSLDA [40] 2016 0.8263

LRLSLDA-ILNCSIM1 [40] 2016 0.9046

LRLSLDA-ILNCSIM2 [40] 2016 0.9009

Ping et al.’s Method [21] 2018 0.8983

Yuan et al.’s Method [30] 2020 0.8410

LDNFSGB - 0.9303

the top 10 prediction results are verified based on existing databases and literature, as
shown in Table 7. For example, overexpression of H19 decreases overall survival and
increases the migration of colon cancer cells [45]. The expression of genes involved in
epithelial-mesenchymal transformation is regulated by changes in SPRY4-IT1 expression.
SPRY4-IT1 negatively regulates the expression of mir-101-3p in colorectal cancer cells.
The results indicate that mir-101-3p binding sites may exist in SPRY4-IT1 transcripts.
Therefore, SPRY4-IT1 knockout may be a reasonable treatment strategy for colorectal
cancer [46].
Osteosarcoma is a highly invasive common primary bone malignant tumor with an

annual incidence of approximately (1-3) per 1,000 worldwide [12]. All experimental steps
are the same as that on colorectal cancer. A total of 83 samples are related to osteosar-
coma, so the number of positive samples is 1628. Similarly, 881 out of 1628 test samples
are randomly selected. The validated top 10 lncRNAs are illustrated in Table 8. For
example, MALAT1 increases stem cell-like properties by up-regulating RET in sponge
mir-129-5p, thus activating the PI3K-Akt signaling pathway and providing potential ther-
apeutic targets for osteosarcoma treatment [48]. CCAT1 is upregulated in osteosarcoma
tissues and cells and participates in the proliferation and migration of osteosarcoma by
regulating mir-148a/phosphatidylinositol 3-kinase interaction protein 1 (pik3ip1) signal
pathway [49].
Cervical cancer is currently one of the serious and high mortality cancers in the world.

200,000 of the approximately 500,000 newly diagnosed cases worldwide die from cervi-
cal cancer every year [50]. Without early diagnosis, cervical cancer develops into invasive
cancer in many patients, which leads to a low survival rate. The common treatment
of advanced cervical cancer is radiotherapy and nuclear chemotherapy. However, these

Table 7 Top 10 colorectal cancer-associated lncRNAs predicted by LDNFSGB

Rank LncRNA name Description

1 H19 lncRNAdisease

2 SPRY4-IT1 lncRNAdisease

3 TUG1 lncRNAdisease/CRlncRNA

4 HOTTIP lncRNAdisease/CRlncRNA

5 TCL6 unknown

6 HAR1B unknown

7 BDNF-AS literature [44]

8 HOTAIR lncRNAdisease/CRlncRNA

9 ATB CRlncRNA

10 HARLA unknown
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Table 8 Top 10 osteosarcoma-related lncRNAs predicted by LDNFSGB

Rank LncRNA name Description

1 MALAT1 lncRNAdisease

2 LINC-ROR unknown

3 HOTAIR lncRNAdisease

4 TUG1 lncRNAdisease/CRlncRNA

5 MIR17HG literature [47]

6 HULC lncRNADisease

7 BANCR lncRNADisease

8 CCAT1 lncRNAdisease/CRlncRNA

9 BCTRN1 unknown

10 CDKN2B-AS1 lncRNADisease

methods are not effective and can lead to serious negative effects. To our best knowledge,
lncRNA is a molecular regulatory factor in cancer, and it can provide a therapeutic tar-
get. Therefore, lncRNA research is helpful to improve the survival rate of cervical cancer
patients [50]. As shown in Table 9, we predict the ten lncRNAs most related to the certifi-
cate cancer using the proposed LDNFSGB. Specifically, TUG1 can reverse the inhibitory
effect of mir-138-5p on cervical cancer cells. The upregulation of TUG1 expression is
closely related to the late clinical features and poor overall survival rate [51]. Besides, the
overexpression of BCAR4 may be an independent prognostic factor of cervical cancer,
and it can promote the proliferation and movement of cervical cancer cells [52].
Glioma is the most common and aggressive malignant tumor of the central nervous

system [54]. Although various treatments such as radiotherapy and chemotherapy are
available, the overall survival rate for most glioma patients remains low [55]. In particular,
in the case of glioblastoma, glioma patients survive only about 14 months [56]. Increased
or decreased lncRNA expression can lead to tumor inhibition or promoter action. The
study of glioma-related lncRNAs can provide a new direction for the diagnosis and treat-
ment of glioma. Hence, we apply our method to predict possible lncRNAs associated with
glioma. As illustrated in Table 10, nine of the top 10 predictions are proven to be related to
glioma. The results indicate that overexpression of HOTTIP inhibits the growth of glioma
cell lines (u87-mg, u118-mg, U251, and A172), so high levels of HOTTIP reduce glioma
cell growth [57]. H19 is specifically upregulated in glioma cell lines and promotes glioma

Table 9 Top 10 cervical cancer-related lncRNAs predicted by LDNFSGB

Rank LncRNA name Description

1 TUG1 literature [51]

2 BACR4 literature [52]

3 GAS5 lncRNAdisease

4 H19 lncRNAdisease

5 CDKN2B-AS1 lncRNAdisease

6 MEG3 lncRNAdisease

7 HOTAIRM1 unknown

8 SPRY4-IT1 lncRNAdisease

9 HULC lncRNAdisease

10 HNF1A-AS1 literature [53]
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Table 10 Top 10 glioma-related lncRNAs predicted by LDNFSGB

Rank LncRNA name Description

1 HOTTIP lncRNAdisease

2 LINC01158 lncRNAdisease

3 H19 lncRNAdisease

4 SPRY4-IT1 lncRNAdisease

5 ATB lncRNAdisease

6 MIR100HG unknown

7 GAS5 lncRNAdisease

8 CCAT1 lncRNAdisease

9 BCYRN1 lncRNAdisease

10 MDC1-AS1 lncRNAdisease

cell growth by targeting mir-140. Besides, H19-induced glioma cell growth requires mir-
140-dependent P53 apoptosis-stimulating protein inhibitors (iASPP). Therefore, H19
may modulate tumor growth through MIP-140-dependent iASPP [58].
The visualization results of the case studies are shown in Fig. 8. If the association

between lncRNA and disease is correctly predicted, it will provide a new perspective on
the diagnosis and treatment of diseases. In this section, we analyze the top ten lncRNAs
related to the disease and obtain 70%, 80%, 90%, and 90% accuracy, respectively. Due to
the small number of samples, the current results are better than those of most existing

Fig. 8 Case study of colorectal cancer, osteosarcoma, cervical cancer, and glioma. Orange nodes represent
lncRNAs and purple nodes represent diseases. The top 10 scored candidate lncRNAs for each disease are
linked by black edges
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literature. According to the above description, we can see that LDNFSGB has achieved
positive and satisfactory performance in predicting potential lncRNA-related diseases.
To further verify the performance of our model for the prediction of lncRNA-disease

association, heart failure and Alzheimer’s disease are selected as non-cancer case stud-
ies. Heart failure, a life-threatening condition, has been the focus of extensive research
due to its ischemic, hypertensive, infectious, or hereditary nature [59]. However, evidence
suggests that lncRNA has made significant advances in the understanding of gene recom-
bination and the regulatory role of heart growth and development during heart failure
[60]. It may provide an exciting opportunity for the effective treatment of heart failure.
AD is a common neurodegenerative disease. An estimated five million new cases of AD
are diagnosed globally each year [61]. Therefore, it is of special significance to study the
regulation mechanism of lncRNA in the process of AD.With the same experimental steps
as the previous four cancer-related diseases, we predict the top ten lncRNAs related to
heart failure and AD, respectively. More details are presented in Table 11. Evidence shows
that six of the top ten lncRNAs associated with heart failure and Alzheimer’s disease are
confirmed.
Although LDNFSGB achieves satisfactory and reliable prediction performance in the

prediction of potential lncRNA-disease associations, some new interesting related lncR-
NAs, such as DLEU1, 91H, TP73-AS1 are also undiscovered. The molecular mechanism
of these related lncRNAs is still unveiled, but a new perspective is provided to validate by
biological experiments for researchers.

Discussion
Many studies have shown that machine learning-based approaches play an increasing role
in lncRNA-disease association prediction, which can greatly help researchers understand

Table 11 The lncRNAs in the top 10 for the two non-cancer case studies predicted by LDNFSGB

Disease LncRNA name Description Rank

Heart failure HULC unknown 1

Heart failure 91H unknown 2

Heart failure XIST literature [62] 3

Heart failure TUG1 literature [63] 4

Heart failure MEG3 literature [64] 5

Heart failure H19 literature [65] 6

Heart failure UCA1 literature [66] 7

Heart failure GAS5 literature [67] 8

Heart failure DLEU1 unknown 9

Heart failure TP73-AS1 unknown 10

Alzheimer’s disease 91H unknown 1

Alzheimer’s disease HOTAIRM1 lncRNAdisease2.0 2

Alzheimer’s disease MEG3 literature [68] 3

Alzheimer’s disease SPRY1-IT1 unknown 4

Alzheimer’s disease BANCR unknown 5

Alzheimer’s disease BCAR4 lncRNADisease 6

Alzheimer’s disease GAS5 unknown 7

Alzheimer’s disease H19 unknown 8

Alzheimer’s disease NEAT1 literature [69] 9

Alzheimer’s disease HOTAIR literature [70] 10
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complex human diseases at the biomolecular level and further provide new perspec-
tives for diagnosis and targeted treatment. In this paper, we propose a novel method to
predict potential associations between lncRNAs and diseases by using network feature
similarity and gradient boosting. Firstly, a feature vector is constructed by assembling the
DISS and LNCS. Especially, DISS is constructed by combining GISDS and DISSS. We
use two methods to calculate DISSS, where DISSS1 considers local information on dis-
ease semantics and DISSS2 reflects global information on disease semantics. LNCS is
constructed by integrating LNCGS and LNCFS. Similarly, LNCFS is also obtained using
two methods to consider both the local and global information of lncRNA functions.
Besides, the introduction of the Gaussian interaction profile kernel takes into account
the sparsity of the lncRNA-disease interactions. Secondly, an autoencoder is used to
reduce the dimensionality of the feature vector to get the optimal feature parameter from
the original feature set. Thirdly, we propose to use the gradient boosting on the opti-
cal feature parameters to obtain the lncRNA-disease prediction results. In particular, the
integration of the autoencoder and gradient boosting effectively reduces the complexity
and training time of LDNFSGB. Finally, we evaluate our method on the LncRNADis-
ease database (v2017) from different perspectives, e.g., different features and different
classifiers using hold-out, LOOCV, and 10-fold CV, respectively. Moreover, another two
datasets, i.e, Lnc2Cancer and LncRNADisease2.0 are further used to verify the perfor-
mance of LDNFSGB. We also compare LDNFSGB with several state-of-the-art methods.
The results have demonstrated that LDNFSGB dramatically outperforms other compet-
ing methods in terms of best AUC values. In addition, case studies have verified the
effectiveness of LDNFSGB in predicting the potential associations between lncRNAs and
diseases.
Although the proposed model overcomes some existing problems, it still has some

limitations and there are some questions remain to be explored. For example, we only
considered the functional information of lncRNA in feature extraction. However, many
other characteristics of lncRNA are also very helpful for the prediction of lncRNA-disease
association, such as lncRNA sequence, structure, location information, etc. In this study,
we used a supervised approach to predict potential lncRNAs associated with diseases.We
summarize unlabelled samples as negative samples, but unlabelled lncRNA-disease asso-
ciation pairs may be relevant. Therefore, unsupervised learning is expected to be a new
way to further improve the performance by incorporating more useful information.

Conclusion
In this study, we propose a novel and effective method for predicting potential
lncRNA-disease associations using network feature similarity and gradient boosting.
We first construct a comprehensive feature vector to extract the global and local
information of lncRNAs and diseases. Then, an autoencoder is employed to reduce
the dimensionality of the feature vector to obtain the optimal feature parameter
from the original feature set. Furthermore, we utilize the gradient boosting algo-
rithm to obtain the lncRNA-disease association prediction. Finally, we evaluate the
proposed method on three publicly available datasets. Moreover, we also compare
our method with several state-of-the-art approaches. The results and case studies
have demonstrated the effectiveness of our method in predicting lncRNA-disease
associations.
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Methods
Datasets

The first dataset used in this paper is LncRNADisease (v2017) [71], and the known
lncRNA-disease association data was downloaded from the LncRNADisease database.
After eliminating duplicate descriptions of lncRNA-disease associations and invalid sam-
ples, we obtain 1765 lncRNA-disease related sample pairs and 287,203 lncRNA-disease
uncorrelated sample pairs, including 881 lncRNAs and 328 diseases.We summarize these
1765 lncRNA-disease association candidates as positive samples. To eliminate the imbal-
ance problem of samples, we randomly select 1765 out of 287,203 unassociated candidates
as the final negative samples.
To comprehensively evaluate the performance of LDNFSGB, another two datasets, i.e.,

Lnc2Cancer [72] and LncRNADisease2.0 [73] are used. Lnc2Cancer, a manually managed
dataset, provides experimentally supported associations between lncRNAs and cancers
by consulting more than 6,500 published papers. A dataset consisted of 725 known
lncRNA-disease associations can be obtained using the same pre-processing as the LncR-
NADisease dataset, which includes 355 lncRNAs and 76 diseases. LncRNADisease2.0 is
an updated version of the LncRNADisease dataset, which adds a lot of new lncRNA and
disease associations. Similarly, we get 7981 known lncRNA-disease associations including
6076 lncRNAs and 452 diseases.
The disease semantic similarity data were retrieved from the Medical Subject Heading

(MeSH). The MeSH, which is a definitive subject vocabulary compiled by the National
Library of Medicine, provides hierarchical organizational terms for indexing and classi-
fying various diseases. It is the source for constructing directed acyclic graphs (DAGs)
[74].

Construction of the lncRNA-disease interactionmatrix

The known lncRNA-disease interaction is the basis for calculating the similarity of all
features and is also the label of the model. After quantifying the lncRNA-disease related
sample pairs, an adjacency matrix is constructed based on the known lncRNA-disease
interaction and called LNCDIS. The matrix LNCDIS =[MLNCDIS

ij ]∈ RNd×Nl represents
the association pairs between Nl lncRNAs and Nd diseases, whereMLNCDIS

ij is 1 if disease
di is associated with lncRNA lj. Otherwise,MLNCDIS

ij is 0.

Similarity measures

Construction of the disease semantic similaritymatrix

There are currently twomethods for calculating the semantic similarity of diseases, which
are named DISSS1 and DISSS2, respectively. DISSS1, which only takes into account
the local information on disease semantics, thinks the more related to the semantics
of diseases, the greater the contribution of diseases. However, DISSS2 believes that the
higher the frequency of diseases, the greater the contribution of diseases [74], and it
takes into account global information on disease semantics. Taking both ideas of DISSS1
and DISSS2 into consideration, we herein employ two similarity calculation methods
to obtain the disease semantic similarity matrix. The calculation of DISSS1 is mainly
as follows.
(1) We download the MeSH descriptions of diseases from the National Medical Library

of Medicine. These descriptions provide detailed semantic information for each disease.
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(2) Based on the obtained MeSH information, we construct a direct graph for each
disease. The DAG of the glioma is shown in Fig. 9.
(3) DAGs are used to calculate the disease semantic similarity. A disease d can be

described as DAG(d) = (d,D(d)), where D(d) is the node-set of d and all of its ancestor
nodes. For any disease k ∈ D(d) in DAG, its semantic contribution to d is defined as [75]

{
DS1d(k)=1 if k = d
DS1d(k)=max

{
δ×DS1 d(k′)|k′ ∈ D(d)

}
otherwise

(6)

where δ represents the semantic contribution decay factor for the edge among disease
nodes. It is specified by 0 < δ < 1 and is generally set as 0.5.
(4) We calculate the final contribution of disease d as follows:

D1(d) =
∑

k∈D(d)

DS1d(k) (7)

(5) Then, the association between the two diseases can be calculated by

DISSS1
(
i, j

) =
∑

k∈D(i)∩D(j) (D1i(k) + D1j(k))
||D1(i)|| + ||D1(j)|| (8)

For DISSS2, the pipeline is as follows:

Fig. 9 The DAG of the glioma
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(1) The semantic contribution to disease d is defined as

DS2D(d) = log
( ||DAG(d)||

Nd

)
(9)

(2) The final semantic value of disease d can be calculated by

D2(d) =
∑

k∈D(d)

DS2d(k) (10)

(3) Therefore, the association between the two diseases can be calculated by

DISSS2
(
i, j

) =
∑

k∈D(i)∩D(j) (D2i(k) + D2j(k))
||D2(i)|| + ||D2(j)|| (11)

Finally, we can obtain disease semantic similarity matrices DISSS1 =[MDISSS1
ij ]∈

RNd×Nd and DISSS2 =[MDISSS2
ij ]∈ RNd×Nd respectively, where both DISSS1ij and

DISSS2ij denote the similarity values betweenD(i) andD(j).Nd is the number of diseases.

Construction of the lncRNA function similaritymatrix

After obtaining the feature vector of semantic similarity of diseases, we adopt a similarity
method proposed by Chen et al.[20] to calculate the functional similarity of lncRNAs.
Supposing lncRNA p is related with a disease set Dp = {dk|1 ≤ k ≤ m} and lncRNA q
is associated with a disease set Dq = {dl|1 ≤ l ≤ n}. Especially, m is the total number of
diseases related to lncRNA p and n is the total number of diseases related to lncRNA q.
The degree of association between lncRNA p and disease Dq is

LS1
(
p,Dq

) = max {DISSS1 (dk , dl)} (12)

The functional similarity between p and q is calculated as

LNCFS1p,q =
∑

1≤k≤m LS1(dk ,Dq)
m+n +

∑
1≤l≤n LS1(dl ,Dp)

m+n (13)

We can obtain the lncRNA function similarity matrix LNCFS1 =[MLNCFS1
ij ]∈ RNl×Nl .

Similarity, we can also get LNCFS2 =[MLNCFS2
ij ]∈ RNl×Nl , where Nl denotes the number

of lncRNAs. Obviously, LNCFS1 and LNCFS2 are symmetric matrices.

LDNFSGB

Methods overview

In this paper, we propose LDNFSGB to predict lncRNA-related diseases. The main work-
flow of LDNFSGB is illustrated in Fig. 10a. We firstly construct a comprehensive feature
vector to effectively extract the global and local information of diseases and lncRNAs by
combining DISS and LNCS. As shown in Fig. 10b, the average of DISSS1 and DISSS2
is taken for the disease semantic similarity network. Then, we get DISS by combining
DISSS and DISGC. As shown in Fig. 10c, the average of LNCFS1 and LNCFS2 is taken for
the lncRNA function similarity network. Similarly, the LNCS is obtained by combining
LNCFS and LNCGS as well. Secondly, we utilize an autoencoder to reduce the dimen-
sionality of the feature vector to get the optimal feature parameter from the origin feature
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Fig. 10 The flowchart of the proposed LDNFSGB. (a) The main workflow of LDNFSGB. (b) The construction
process of DISS. (c) The construction process of LNCS. (d) Autoencoder. (e) The gradient boosting algorithm.
(f) LNCDIS

set (Fig. 10d). Finally, more discriminative feature vectors are put into the gradient boost-
ing for training, testing, and prediction based on the regression tree (Fig. 10e). Besides,
Fig. 10f shows the association between known lncRNAs and diseases. It is the basis for all
feature calculations and the label of the model.

Construction of the Gaussian interaction profile kernel similaritymatrix for lncRNAs and

diseases

To eliminate the effects caused by missing MeSH information and lots of zero values in
the lncRNA-disease adjacency matrix, the Radial Basis Function (RBF) Gaussian kernel
function is utilized. Given diseases D(i) and D(j), the Gaussian interaction profile kernel
similarity between them can be represented as

DISGS
(
i, j

) = e(−μd||D(i)−D(j)||)2 (14)

where μd is a weight used to control the bandwidth of the kernel, which can be
calculated by

μd = μ′
d

⎛
⎝ 1
Nd

Nd∑
i=1

||D(i)||2
⎞
⎠ (15)
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whereNd represents the number of diseases and the best value ofμ′
d is 0.5. Obviously, the

third disease semantic similarity matrix DISGS =[MDISGS
ij ]∈ RNd×Nd is symmetric. Sim-

ilarly, we can obtain the third lncRNA function similarity matrix LNCGS =[MLNCGS
ij ]∈

RNl×Nl , where Nl is the number of lncRNAs.

Construction of feature vector

The integration is performed to obtain the final disease semantic similarity feature vector
based on the DISSS1, DISSS2, and DISGS.

DISS =
{
DISSSi,j if DISSS1ij ∪ DISSS2ij = 1
DISGSi,j otherwise

(16)

where

DISSSi,j = DISSS1i,j + DISSS2i,j
2

(17)

Similarly, we can obtain the lncRNA functional similarity feature vector based on
the LNCFS1, LNCFS2, and LNCGS, which is called as LNCS. Remarkably, all similarity
matrices are symmetric.

Autoencoder

After feature extraction, dimensionality reduction is necessary to increase the per-
formance and efficiency of classifiers. Here, the autoencoder is chosen to obtain the
discriminative feature subsets. In general, autoencoder is mainly composed of an encoder
and a decoder. The encoder is used to reduce the dimensionality of the input data and the
decoder contributes to restoring initial input data. The vital steps are presented as follows:
(1) Assuming the activation functions of the encoder and decoder are defined as h(x)

and g(k) respectively, and both of them can be represented using a Sigmoid function by

h(x) = 1
1 + e−(wx+b) (18)

g(k) = 1
1 + e−(βk+γ )

(19)

where w and β are the weights of the encoder and decoder, b and γ are the thresholds
of the encoder and decoder, respectively.
(2) We employ a loss function to represent the difference between the original input

and the prediction, which is defined as

Loss=−
∑n

i=1
[ xilog(g(f (xi)))+(1 − xi) log(1 − g(f(xi)))] (20)

where the Loss function is based on logistic regression, g
(
f (xi)

)
represents the feature

value after encoding and decoding. xi represents the original input feature value.
Finally, the optimal and dimensionality-reduced feature vector X is obtained based on

Eq. (20) through multiple iterations.

Gradient boosting

In this paper, we employ a gradient boosting algorithm as the classifier for the predic-
tion of lncRNA-disease associations. Gradient boosting is an ensemble model that uses
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a regression tree as a basic learner [76]. In this model, the main parameters are the
maximum tree depth d, the number of regression tree q, and the learning rate η.
Supposing X = [X1,X2,X3, . . . ,XNd ]T is the optimal and dimensionality-reduced fea-

ture vector and Y =[ y1, y2, y3, . . . , yNd ] is the label of sample pairs. The predicted value of
each weak learner ŷi can be obtained by

ŷi = −
[

∂L(yi, Fm(Xi))

∂Fm−1(Xi)

]
i=1,2,3,...,Nd

(21)

where Fm (Xi) is a function of the weak learner.
Each learner is obtained by fitting the gradient descent algorithm based on the error of

the previous function as

Fm(x) = Fm−1(x) + ρmhm(x) (22)

where

hm(Xi) = −1
2

∂

∂fm−1 (Xi)
(yi, Fm−1 (Xi))

2 (23)

The goal of hm(Xi) is to find the direction of the spatial gradient descent of fm−1 (Xi),
so that the error propagates faster. ρm is defined as

ρm = argmin
ρ

N∑
i=1

L(yi, Fm(Xi) + ρhm(Xi;w∗)) (24)

where ρ represents the search step size when finding the direction of the fastest gradient
descent based on the line search method. L(yi, Fm−1(x) + ρmhm(x)) is the mean square
error loss function. w∗ is the weight of Fm−1 (Xi), which is define as

w∗ = argmin
w

Nd∑
i

(ŷi − hm(Xi; yi))2 (25)

Gradient boosting is an ensemble learning algorithm. The specialty of this algorithm is
that it directly updates the parameters based on the model functions. Therefore, it can
extend the additivity of parameters to function space. For example, in the m-th iteration
of the model, a new learner fm is firstly obtained using the previous m-1 base learners
(f0 - fm−1), and then ρm and w∗ can be updated continuously in the direction of gradient
descent. The procedure of gradient boosting is summarized in Algorithm 1.
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Algorithm 1 Gradient Boosting Algorithm
Input: Feature vector X= [X1,X2,X3, . . . ,XNd ]T ,

the targets Y =[ y1, y2, y3, . . . , yNd ],
the maximum tree depth d,
the number of regression tree q,
and the learning rate η.

Output : predicted association result
Y ∗ =[ y∗

1, y∗
2, y∗

3, . . . , y∗
i , . . . , y∗

Nd
].

1.initial a function F0
2.form=1 to q do
3. obtain the predicted value of the current learner

ŷi = −
[

∂L(yi,Fm(Xi))
∂Fm−1(Xi)

]
i=1,2,3,...,Nd

;

4. update the weight

w∗ = argmin
w

Nd∑
i

(ŷi − hm(Xi; yi))2;

5. obtain the step size of line search

ρm = argmin
ρ

N∑
i=1

L(yi, Fm(Xi) + ρhm(Xi;w∗));

6. fm = ρmhm (Xi; ρm));
7. Fm (Xi) = Fm−1 (Xi) + fm;
8. y∗

i = Fm (Xi);
9.end

Abbreviations
ncRNAs: Non-coding RNAs; lncRNAs: Long non-coding RNAs; LOOCV: Leave-one-out cross-validation; ROC: Receiver
operating characteristic; AUC:Area under ROC; FPR: False positive rates; TPR:True positive rates; Acc: Accuracy; Sen:
Sensitivity; Spe: Specificity; Pre: Precision; MCC: Matthews correlation coefficient; MeSH: Medical subject heading; DAGs:
Directed acyclic graphs.

Acknowledgements
The authors would like to thank the anonymous reviewers for their insightful comments, which greatly helped to
improve the quality of this paper.

Authors’ contributions
YZ and XG designed this study. YZ and FY conceived and implemented the model, performed and analysed the
experiments and wrote the paper. DX and XG revised the paper. All authors have read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China under Grants 61802328, 61972333 and
61771415, the Natural Science Foundation of Hunan Province of China under Grant 2019JJ50606, and the Research
Foundation of Education Department of Hunan Province of China under Grant 19B561. Funding sources did not play a
role in any part of the study.

Availability of data andmaterials
The code of LDNFSGB and data processing are available at https://github.com/MLMIP/LDNFSGB.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China. 2Key Laboratory of
Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China.
3Department of Computational Biology, Ithaca, New York 14853, USA. 4Weill Institute for Cell and Molecular Biology,

https://github.com/MLMIP/LDNFSGB


Zhang et al. BMC Bioinformatics          (2020) 21:377 Page 25 of 27

Cornell University, Ithaca, New York 14853, USA. 5College of Medical Imaging and Inspection, Xiangnan University,
Chenzhou 423000, China.

Received: 25 May 2020 Accepted: 21 August 2020

References
1. Sequencing HG. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.
2. Yuan J, Wu W, Xie C, Zhao G, Zhao Y, Chen R. NPInter v2. 0: an updated database of ncRNA interactions. Nucleic

Acids Res. 2014;42(Database issue):D104.
3. Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011;12(2):136–49.
4. Ma L, Bajic V, Zhang Z. On the classification of long non-coding RNAs. RNA Biology. 2013;10(6):925–33.
5. Zhang Y, Cao X. Long noncoding RNAs in innate immunity. Cell Mol Immunol. 2016;13(2):138.
6. Zhang Z, Zhu Z, Watabe K, Zhang X, Bai C, Xu M, et al. Negative regulation of lncRNA GAS5 by miR-21. Cell Death

Differ. 2013;20(11):1558–68.
7. Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, et al. LncRNA loc285194 is a p53-regulated tumor suppressor.

Nucleic Acids Res. 2013;41(9):4977.
8. Ma L, Li A, Zou D, Xu X, Xia L, Yu J, et al. LncRNAWiki: harnessing community knowledge in collaborative curation

of human long non-coding RNAs. Nucleic Acids Res. 2015;43(Database issue):D187.
9. Yang X, Gao L, Guo X, Shi X, Wu H, Song F, et al. A Network Based Method for Analysis of lncRNA-Disease

Associations and Prediction of lncRNAs Implicated in Diseases. PLoS One. 2014;9(1):e87797.
10. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms

chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.
11. Chen X, Yan GY. Novel human lncRNA–disease association inference based on lncRNA expression profiles.

Bioinformatics. 2013;29(20):2617–24.
12. Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Long non-coding RNAs in osteosarcoma. Oncotarget. 2017;8(12):20462.
13. Gu C, Liao B, Li X, Cai L, Li Z, Li K, et al. Global network random walk for predicting potential human

lncRNA-disease associations. Sci Rep. 2017;7(1):12442.
14. Signal B, Gloss BS, Dinger ME. Computational approaches for functional prediction and characterisation of long

noncoding RNAs. Trends Genet. 2016;32(10):620–37.
15. Chen X, Sun YZ, Guan NN, Qu J, Huang ZA, Zhu ZX, et al. Computational models for lncRNA function prediction

and functional similarity calculation. Brief Funct Genomics. 2019;18(1):58–82.
16. Yu J, Ping P, Wang L, Kuang L, Li X, Wu Z. A novel probability model for lncRNA–disease association prediction

based on the naïve bayesian classifier. Genes. 2018;9(7):345.
17. Yan C, Zhang Z, Bao S, Hou P, Zhou M, Xu C, et al. Computational methods and applications for identifying

disease-associated lncRNAs as potential biomarkers and therapeutic targets. Molecular Therapy-Nucleic Acids. 2020.
18. Zhou M, Wang X, Li J, Hao D, Wang Z, Shi H, et al. Prioritizing candidate disease-related long non-coding RNAs by

walking on the heterogeneous lncRNA and disease network. Mol BioSyst. 2015;11(3):760–9.
19. Chen X. KATZLDA: KATZ measure for the lncRNA-disease association prediction. Sci Rep. 2015;5:16840.
20. Chen X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the

information of miRNA. Sci Rep. 2015;5:13186.
21. Ping P, Wang L, Kuang L, Ye S, Iqbal MFB, Pei T. A Novel Method for LncRNA-Disease Association Prediction Based

on an lncRNA-Disease Association Network. IEEE/ACM Trans Comput Biol Bioinform. 2019;16(2):688–93.
22. Mori T, Ngouv H, Hayashida M, Akutsu T, Nacher J. ncRNA-disease association prediction based on sequence

information and tripartite network. BMC Syst Biol. 2018;12(Suppl 1):37.
23. Chen Q, Lai D, Lan W, Wu X, Chen B, Chen Y, et al. ILDMSF: Inferring Associations between Long non-coding RNA

and Disease Based on Multi-similarity Fusion. IEEE/ACM Trans Comput Biol Bioinforma. 2019.
24. Lu C, Yang M, Luo F, Wu FX, Li M, Pan Y, et al. Prediction of lncRNA–disease associations based on inductive matrix

completion. Bioinformatics. 2018;34(19):3357–64.
25. Yu J, Xuan Z, Feng X, Zou Q, Wang L. A novel collaborative filtering model for LncRNA-disease association

prediction based on the Naïve Bayesian classifier. BMC Bioinf. 2019;20(1):396.
26. Hu Y, Zhou M, Shi H, Ju H, Jiang Q, Cheng L. Measuring disease similarity and predicting disease-related ncRNAs

by a novel method. BMC Med Genomics. 2017;10(5):67–74.
27. Sun J, Shi H, Wang Z, Zhang C, Liu L, Wang L, et al. Inferring novel lncRNA–disease associations based on a

random walk model of a lncRNA functional similarity network. Mol BioSyst. 2014;10(8):2074–81.
28. Li J, Zhao H, Xuan Z, Yu J, Feng X, Liao B, et al. A Novel Approach for Potential Human LncRNA-Disease Association

Prediction based on Local RandomWalk. IEEE/ACM Trans Comput Biol Bioinform. 2019.
29. Yao D, Zhan X, Kwoh C, Li P, Wang J. A random forest based computational model for predicting novel

lncRNA-disease associations. BMC Bioinf. 2020;21(1):126.
30. Yuan Q, Guo X, Yang R, Xiao W, Gao L. Cluster correlation based method for lncRNA-disease association prediction.

BMC Bioinf. 2020;21:1.
31. Wang L, Xiao Y, Li J, Feng X, Li Q, Yang J. IIRWR: Internal Inclined RandomWalk With Restart for LncRNA-Disease

Association Prediction. IEEE Access. 2019;7:54034–41.
32. Lan W, Li M, Zhao K, Liu J, Wu FX, Pan Y, et al. LDAP: a web server for lncRNA-disease association prediction.

Bioinformatics. 2017;33(3):458–60.
33. Xiao X, Zhu W, Liao B, Xu J, Gu C, Ji B, et al. BPLLDA: Predicting lncRNA-Disease Associations Based on Simple

Paths With Limited Lengths in a Heterogeneous Network. Front Genet. 2018;9:411.
34. Razzak MI, Naz S. Microscopic blood smear segmentation and classification using deep contour aware CNN and

extreme machine learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). Honolulu: IEEE; 2017. p. 801–7.



Zhang et al. BMC Bioinformatics          (2020) 21:377 Page 26 of 27

35. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep learning system for differential diagnosis of skin diseases.
Nat Med. 20201–9.
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