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Abstract

Dysregulation of transcription is found in nearly every human disease, and as a result there has 

been intense interest in developing new therapeutics that target regulators of transcription. CREB 

binding protein (CBP) and its paralogue p300 are attractive targets due to their function as ‘master 

coactivators’. Although inhibitors of several CBP/p300 domains have been identified, the 

selectivity of many of these compounds has remained underexplored. Here, we review recent 

successes in the development of chemical tools targeting several CBP/p300 domains with 

selectivity acceptable for use as chemical probes. Additionally, we highlight recent studies which 

have used these probes to expand our understanding of interdomain interactions and differential 

coactivator usage.

Introduction

As the search for new therapeutic targets broadens, transcriptional coactivators have 

emerged as exciting opportunities. Nowhere is this more evident than with the socalled 

‘master coactivators’ p300 and CBP [1]. Due to the involvement of CBP and p300 in many 

signaling pathways that contribute to diseases including cancer and neurodegeneration, a 

significant focus has been placed on the development of CBP and p300 probes [2–4]. In 

these endeavors, the domains of CBP/p300 are often considered in isolation or significantly 

shortened constructs; however, the domains are likely interrelated in their function and work 

together to modulate transcription (Figure 1). CBP and p300 diverged due to gene 

duplication 450 million years ago and were initially believed to be functionally redundant as 

they show high sequence similarity (75% sequence similarity and 58% sequence identity). 

This sequence conservation is particularly within the conserved activator-binding domains 

(93% sequence identity for TAZ1, 90% sequence identity for KIX) [5,6]. Nonetheless, 

increasing evidence now suggests that CBP and p300 serve distinct roles in some pathways 

[7–12].

A better understanding of the roles CBP and p300 play in signaling pathways and how the 

domains within CBP and p300 work together to regulate transcription will be essential for 
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the development of new therapeutic approaches. To accomplish this, it will be critical for 

chemical biologists to have access to a complete toolbox of selective probes [13–15]. 

However, the selectivity of CBP and p300 ligands has been largely underexplored. In this 

review, we will high- light some of the recent successes in CBP and p300 probe 

development in the context of each domain. Additionally, we will emphasize areas of 

concern regarding selectivity and remaining challenges that should be addressed.

HAT

A central challenge for targeting HATs has been obtaining ligands with high affinity and 

specific inhibition [16,17]. Most reported HAT inhibitors contain electrophiles or motifs 

common in pan assay interference com-pounds (PAINs) [18]. For example, curcumin was 

reported to selectively inhibit p300 HAT over other related HATs, but curcumin is a well-

known PAIN with a broad activity profile [19]. Another small molecule inhibitor, C646, was 

among the first small molecules to demonstrate submicromolar affinity for a HAT and is 

now commonly used as a CBP/p300 HAT inhibitor. C646 was identified through a virtual 

screen and found to be selective for p300 against six other HATs, and although it contains a 

potentially reactive conjugated pyrazolonefuran it was demonstrated to be a reversible 

inhibitor of the p300 HAT [20]. In 2016, Shrimp and coworkers used a chemoproteomics 

approach to identify possible covalent targets of C646 and found through LC–MS/MS 

analysis that C646 labeled tubulin proteins as well as highly abundant cellular proteins 

known to have reactive cysteines [21]. It was further demonstrated that C646 inhibits tubulin 

polymerization in vitro at concentration typically used in cellular assays. The problems 

facing HAT inhibitor development have been further expanded upon in a recent report by 

Dahlin and coworkers [22••]. Using a suite of screens including ALARM NMR, glutathione 

reactivity, and detergent sensitivity assays, it was demonstrated that out of 23 reported HAT 

inhibitors tested half showed non-specific thiol reactivity or compound aggregation. 

Furthermore, evaluation against unrelated targets and in cellular assays showed many of 

these inhibitors have significant off target effects.

The most recently reported CBP/p300 HAT inhibitor, A-485, represents a significant step 

forward in the development of HAT chemical probes [23•,24]. A-485 is an acetyl-CoA 

competitive inhibitor with low nanomolar potency for both the CBP and p300 HATs. Upon 

selectivity testing against 6 other HATs as well as 3 bromodomains and over 150 non-

epigenetic targets, A-485 was found to be highly selective for the CBP/p300 HAT. When 

tested with 124cancer cell lines, A-485 showed broad, potent inhibition against 

hematological cancers as well as androgen receptor (AR) positive prostate cancers. In a 

mouse xenograft model of AR-positive castration-resistant prostate cancer, treatment with 

A-485 resulted in a 54% reduction in tumor growth. Finally, it should be noted that a 

structure of A-485 in the initial publication contained an error, and the correct structure is 

provided in Figure 2.

Bromodomain

The CBP and p300 bromodomains are the second most common family of bromodomain 

targets after the BET family bromodomains [25–27]. Of late, the bromodomain has also 
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been the most targeted domain within CBP and p300, and over 50% of small molecule CBP/

p300 ligands published since 2016 are bromodomain inhibitors. Although potent 

bromodomain inhibitors have been reported, achieving selectivity for the CBP/p300 

bromodomain relative to the other 59 bromodomains has posed a significant challenge [28].

Until recently, most CBP/p300 bromodomain inhibitors showed appreciable binding to at 

least one off-target bromodomain. Groups from Genentech have reported a series of 

inhibitors based on the initial compound GNE-272 that have cleared this selectivity hurdle 

(Figure 2) [29–31,32•,33] Two optimized, orally-available inhibitors, GNE-207 and 

GNE-781, have subnanomolar binding affinities for the CBP/p300 bromodomains [32•,33]. 

When evaluated against a diverse panel of bromodomains, GNE-207 was found to be >4700-

fold selective for CBP/p300 and GNE-781 was >7200-fold selective. Additional analysis of 

both inhibitors at 10 μM in a Cerep off-target screening panel found that at none of the 43 

receptors tested were inhibited at >40%.

CellCentric recently disclosed the development of CCS1477, an orally-available small 

molecule bromodomain inhibitor with single digit nanomolar affinity for CBP/p300 [34–36]. 

In a mouse xenograft model of AR-positive castration resistant prostate cancer, treatment 

with CCS1477 resulted in complete inhibition of tumor growth and reduction of tumor 

biomarkers. CellCentric has announced plans to begin phase I clinical trials of CCS1477 in 

late stage prostate cancer this year.

In addition to serving as probes of direct bromodomain functions, inhibitors of the CBP and 

p300 bromodomains are contributing to the increasing evidence that these motifs can 

modulate HAT activity [37]. Zucconi and coworkers have shown that treatment of 

recombinant full length p300 with the inhibitor I-CBP112 increased acetylation of 

reconstituted nucleosomes up to 3-fold; importantly, this effect was not observed with the 

isolated HAT domain [38]. These effects were further observed in acute leukemia and 

prostate cancer cells, where treatment with I-CBP112 resulted in increased acetylation of the 

known CBP/p300 target H3K18. In contrast, Shrimp and colleagues found that I-CBP112, as 

well as the CBP/p300 bromodomain inhibitor CBP30, inhibited transcriptional activation by 

a fusion protein consisting of catalytically dead Cas9 (dCas9) and p300. Interestingly, 

activation was also inhibited by mutations in the bromodomain that blocked acetyllysine 

binding [39]. It should be noted that while Zucconi and coworkers used full length p300, the 

dCas9–p300 fusion used by Shrimp et al. only contained the p300 bromodomain and HAT. 

The differing effects on HAT activity observed in these two studies could stem from 

additional interdomain effects that are present in full length p300. While the mechanisms by 

which the CBP/p300 bromodomain, and potential additional domains, influences HAT 

activity are still not understood the availability of potent and specific chemical probes for 

these motifs will aid in dissecting how interdomain interactions modulate function.

KIX

Unlike the HAT and bromodomain, the KIX domain lacks well-defined binding pockets and 

instead uses two broad surfaces on opposite faces of the protein to interact with a diverse 

group of transcriptional activators [40]. Consequently, the development of highly potent 

CBP and p300 KIX inhibitors has remained challenging. Additionally, determining the 
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probe binding site can be difficult and time consuming due to allosteric communication 

between the two transcription factor interaction sites and the overall conformationally 

lability of the domain [41]. There has thus been a need for new ligand discovery and 

characterization strategies for this domain.

The Pomerantz group has advanced protein-observed 19F (PrOF) NMR as a ligand discovery 

strategy for bromodomains and the CBP KIX domain that enables preliminary selectivity to 

be determined in the course of the primary screen and for determination of the binding mode 

of hit molecules [42–44]. Most recently, they have expanded this work by using PrOF NMR 

with dually 3-fluorotyrosine and 4-fluorophenylalanine labeled CBP KIX. Dual labeling 

facilitated identification of distinct signatures for native ligands of each CBP KIX binding 

site as well as determination of the binding sites of previously identified small molecule 

ligands [45••]. Interestingly, the CBP/p300 KIX inhibitor naphthol-AS-E (Figure 3), for 

which there is conflicting data concerning the binding site, produced a PrOF signature that is 

inconsistent with binding at the Myb interface as has been proposed [44,46,47]. The PrOF 

NMR signature combined with 1H–15N HSCQ NMR data and docking studies instead 

suggested naphthol-AS-E binds at a previously unidentified site between the α1 and α2 

helices. This is an exciting finding as it indicates that purely allosteric modulation of CBP/

p300 KIX with small molecules is achievable.

The Mapp laboratory has used the site-directed ligand discovery strategy Tethering to 

identify fragments with affinity for CBP KIX at defined binding sites [48–50]. These 

chemical co-chaperones such as 1–10 enable distinct conformations of KIX to be 

characterized biophysically and functionally. These probes have enabled us to dissect the 

kinetics of allosteric effects between the two activator binding interfaces and to obtain the 

first crystal structure of a KIX domain [49,51]. Most relevant for future probe discovery, 

these studies show that KIX can be regulated by a dual orthosteric/allosteric modulator 

through targeting the most conformationally mobile region of the motif, the flexible loop 

that connects α2 and α3 and comprises a portion of the MLL binding site. Although these 

probes have been powerful tools in vitro, the requirement of the engineered cognate cysteine 

has thus far limited use of these probes in vivo.

Ramaswamy and coworkers recently developed MYB-MIM, a retro-inverso peptidomimetic 

of the Myb transcriptional activation domain with low micromolar affinity for CBP/p300 

KIX [52•]. MYBMIM inhibits co-immunoprecipitation of CBP/p300 by Myb, and in various 

acute myeloid leukemia cell lines it was found that MYBMIM accumulated in the nuclei and 

had robust effects on the transcription of Myb-dependent genes including MYC and BCL2. 

Additionally, MYBMIM treatment of immunodeficient mice grafted with patient-derived 

leukemias resulted in decreased disease progression and extended survival. The in vivo 
efficacy of MYBMIM should make it a powerful tool for studying Myb-dependent 

transcription.

It should be noted that KIX domains are also found in the Med15 subunit of the Mediator 

complex and the DNA helicase RECQL5 [53]. However, selectivity evaluation for KIX 

domain ligands is often incomplete. To the best of our knowledge, no ligands have been 

evaluated for binding to the RECQL5 KIX domain, and extensive off-target profiling also 
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has not been completed. As we continue to move forward using CBP/p300 KIX domain 

probes in vivo, complete selectivity profiles will be critical for accurate evaluation of data.

TAZ1

Despite significant differences in their primary sequences, the TAZ1 and TAZ2 domains 

(also referred to as the CH1 and CH3 regions, respectively) adopt a similar fold, and this 

fold has not been observed in other zinc finger proteins [54]. The unique fold makes the 

TAZ domains attractive drug targets, and several groups have targeted the TAZ1/HIF-1α 
interaction using natural pro-ducts, small molecules, and peptidomimetics (Figure 3) [55]. 

Early inhibitors such as chetomin and chaetocin induced ejection of zinc from the TAZ1 

protein, and this mechanism of action also lead to inhibition of other proteins such as 

thioredoxin reductase and the histone lysine methyltransferase G9a [56–59]. Later inhibitors 

such as KCN1, OHM1, and HBS1 have been demonstrated to inhibit the TAZ1/HIF-1α 
interaction through direct binding to TAZ1 without affecting zinc binding [60–63]. Most 

recently, Ferguson and coworkers have reported an analogue of KCN1 with a >50-fold 

increase in aqueous solubility and similar activity in a reporter assay for HIF transcriptional 

activity [64•].

Transcription activation domains are often highly specific for TAZ1 or TAZ2, and although 

this may hold true for TAZ domain probes, the selectivity of TAZ1/HIF-1α inhibitors for 

TAZ1 over TAZ2 has not yet been tested [65]. Preliminary evaluation of off-target effects for 

HBS1 and OHM1 has been completed through monitoring changes in global gene 

expression, but beyond this the selectivity of TAZ1 inhibitors remains largely unexplored 

[62,63].

NRID

The NRID domain shows the least sequence identity (63%) between the CBP and p300 

domains and is the only domain for which compounds that can discriminate between CBP 

and p300 have been developed (Figure 4). Previously, the Kahn lab identified ICG-001 as a 

selective inhibitor of the β-catenin/CBP NRID interaction, and an analogue of ICG-001 has 

completed phase I clinical trials [66–68]. More recently, they also reported the first direct 

inhibitors of the p300/β-catenin interaction [69••]. Using a differential cell-based reporter 

gene assay to detect compounds that were selective for p300 over CBP, the closely related 

compounds YH249 and YH250 were identified from a focused library of ICG-001 

analogues. YH249 and YH250 inhibited p300-dependent transcription at nanomolar 

concentrations and showed >2400-fold selectivity for p300 over CBP. Co-

immunoprecipitation and pulldown experiments in the presence of YH249 confirmed that it 

selectively engaged p300 and antagonized the p300/β-catenin interaction. Although not 

demonstrated, the binding location is assumed to be the p300 NRID based on the structural 

similarity to ICG-001.

The development of selective inhibitors of the CBP and p300 NRID/beta-catenin 

interactions has enabled the study of the differential coactivator usage by β-catenin. A 

combination of genetic methods and treatment with ICG-001 were used to demonstrate that 

β-catenin/TCF mediated expression of the survivin gene requires CBP [70]. Additionally, 
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these probes have been used to generate a model of coactivator usage by β-catenin in stem 

cells in which interaction with CBP results in maintenance of pluripotency while interaction 

with p300 leads to differentiation [69••,71–73].

Outlook

To fully interrogate the roles of CBP and p300 in various pathways, it will be vital to have 

access to a complete toolbox of probes, including inhibitors as well as artificial activators. 

While we assemble this toolbox, the community will need to pay greater attention to probe 

selectivity. This should include testing against related domains as well as common off 

targets. Furthermore, target occupancy in cells has been underexplored for many CBP/p300 

probes. As probes with improved potency and selectivity continue to be reported, the variety 

of available approaches for determining target engagement in cells should enable a thorough 

evaluation of target occupancy [74]. The establishment of a full toolbox of vetted probes will 

enable the community to robustly establish causal relationship between target engagement 

and phenotype [15].

As evidence continues to mount that the functions of CBP and p300 are not always 

redundant, the next frontier will likely be the development of probes that are selective for 

CBP or p300. The successful development of CBP and p300 selective NRID inhibitors 

demonstrates that in some cases selective probes may be identified through counter 

screening efforts. For domains that show higher sequence identity between CBP and p300, 

such as the TAZ1 and KIX domains, the CRISPR/Cas9 system may facilitate engineering 

probe selectivity. Mutations to CBP or p300 could facilitate bump and hole strategies to 

convert ligands into selective probes, or engineered cysteine residues could enable the use of 

selective tethering fragments in vivo.

Probes of CBP and p300 will continue to be valuable tools as the field works towards a more 

complete understanding of transcriptional regulation. A complete toolbox of well-

characterized, potent, and selective probes will be essential for this task. Insight gained from 

the development and use of these probes will refine our model of CBP and p300 function 

and may also guide the development of new therapeutic approaches.
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Figure 1. 
Structure of CBP and p300. CBP and p300 have high sequence identity (58% overall), 

particularly within the conserved domains. These include an N-terminal nuclear receptor 

interaction domain (NRID), four zinc finger domains (TAZ1, PHD, ZZ, and TAZ2), a KIX 

domain, a bromodomain, a histone acetyltranferase (HAT), and the interferon binding 

domain (IBiD). Using these domains CBP and p300 can perform a variety of tasks, 

including modifying chromatin and transcription factors, reading epigenetic signals, and 

acting as a bridge between DNA bound transcription factors and the general transcriptional 

machinery (PDB IDs 1U2N, 4I9O, 4OUF, 5KJ2, 1TOT, 1F81, and 1JJS).
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Figure 2. 
Structures of CBP/p300 HAT inhibitors (top) and bromodomain inhibitors (bottom).
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Figure 3. 
Structures of CBP/p300 KIX inhibitors (top) and TAZ1 inhibitors (bottom).
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Figure 4. 
Structures of CBP and p300 NRID inhibitors. ICG-001 is selective for the CBP NRID 

domain, and YH249 and YH250 are selective for the p300 NRID. These are the only small 

molecule inhibitors reported that discriminate between CBP and p300.
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