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Abstract

Deep learning is a powerful tool for predicting transcription factor binding sites from DNA 

sequence. Despite their high predictive accuracy, there are no guarantees that a high-performing 

deep learning model will learn causal sequence-function relationships. Thus a move beyond 

performance comparisons on benchmark datasets is needed. Interpreting model predictions is a 

powerful approach to identify which features drive performance gains and ideally provide insight 

into the underlying biological mechanisms. Here we highlight timely advances in deep learning for 

genomics, with a focus on inferring transcription factors binding sites. We describe recent 

applications, model architectures, and advances in local and global model interpretability methods, 

then conclude with a discussion on future research directions.
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1. Introduction

Deep learning is a machine learning paradigm that is represented as a multi-layer, i.e. deep, 

neural network, composed of layers that enable hierarchical representations to be learned 

automatically from the data through training on one or more tasks. The popularity of deep 

learning in -omics applications has exploded in recent years [1]. One major reason for this 

rise is the democratization of deep learning code through high-level APIs, such as Pytorch 

[2] and Tensorflow [3], which make it possible to seamlessly build and train deep neural 

networks (DNNs) on graphical processing units in just a few lines of code. Another reason is 
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the big data boom in genomics, enabled by high-throughput experiments and next generation 

sequencing [4]. Deep learning is thriving in this big data regime and its applications are 

extending to many areas in genomics [5, 6, 7, 8, 9, 10, 11]. Here, we highlight timely 

advances in applications for deep learning in genomics, with a focus on inferring 

transcription factors binding sites. We highlight recent applications and advances in model 

interpretability and then conclude with a discussion on future research directions.

Modeling sequence-function relationships with deep learning

The computational task for inferring TF binding sites from DNA sequence is framed as a 

single-class or multi-class binary classification problem (for an overview, see Fig. 1a). The 

2017 ENCODE-DREAM challenge exemplifies this task, as competitors were ranked on 

their ability to accurately predict in vivo TF binding on held out test cells and TFs (https://

www.synapse.org/#!Synapse:syn6131484). The processed data consists of DNA sequences 

(as a one-hot representation) that are input to the model and corresponding binary labels 

(peak or no peak). Convolutional neural networks (CNNs) are particularly adept at modeling 

regulatory genomic sequences (see Fig. 1b for details of CNNs). A more detailed review of 

the computational task and CNNs can be found in Ref. [12]. The primary focus of the 

following sections will be in the context of CNNs, however many of the techniques 

described, (e.g. interpretation) are extendable to other classes of DNNs. Moreover, these 

methods extend naturally to other data modalities that describe sequence-function 

relationships, such as inferring chromatin accessibility sites and RNA-protein interaction 

sites.

1.1. Recent advances in DNN architectures

There have been many advances in DNN architectures over recent years, primarily driven by 

applications in computer vision and natural language processing (NLP), that have been 

slowly ported into genomics, including hybrid models, such as CNN-recurrent neural 

networks (RNNs) [13, 14, 15], dilated convolutions [16], residual connections [17], dense 

connections [18], and (self)attention [19].

Network modules.—Dilated convolutions are interesting because they provide a 

mechanism for considering a large sequence context, with receptive fields as large as 10kb 

without pooling [10, 20, 21]. Dilated convolutions can be combined with other network 

modules such as residual blocks [10, 21] or dense connections [20], both of which foster 

gradient flow to lower layers. Notably, dilated residual modules were a key component of 

Alphafold [22], the top protein folding method in the CASP13 free modeling competition.

Attention.—An interesting direction that is worth serious exploration is attention [23, 24, 

25]. Attention provides an intrinsically interpretable mechanism to place focus on regions-

of-interest in the inputs. Albeit, recent evidence suggests that attention is not strongly related 

to explainability [26]. There are many types of attention mechanisms. State-of-the-art 

language models in NLP employ a multi-head self-attention, also referred to as a scaled-dot-

product attention, which are key components of transformer networks like BERT [27] and 

XLNet [28]. Recently, Ullah et al. demonstrated how self-attention can be employed to 

extract associations between TFs that reside in accessible chromatin sites [25].
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1.2. Incorporating biophysical priors

The salient features in domains such as computer vision or NLP (where most deep learning 

progress is taking place) are different from genomics, particularly for TF binding, which 

consists of primary and alternative protein binding sites, cooperative and competitive 

binding factors, and sequence context (e.g. DNA shape features, GC-content, nucleosome 

positioning, accessibility and chromatin structure) [29]. In genomics, low-level sequence 

features, such as motifs, are of particular interest, whereas in images, higher-level features of 

objects are generally more important. In TF binding prediction tasks, incorporation of 

biophysical features may provide additional gains in performance. For instance, the top 

scoring teams [30, 31] in the ENCODE-DREAM challenge report increases in predictive 

performance through the inclusion of manually-crafted chromatin accessibility features 

(median gains on the area under the precision-recall curve of 0.252 and 0.0504, 

respectively). Thus an emerging trend is to design DNNs with biophysical priors, making 

them more suitable to model genomic features, including reverse-compliment equivariance 

and parameters that capture biophysical properties.

Reverse-compliment equivariance.—Reverse-compliment (RC) awareness can be 

achieved via data augmentation with RC sequences, incorporating separate inputs for RC 

sequences [15], and weight tying [32, 33, 34], which is more computationally efficient. 

These domain-motivated models yield improved predictive performance over standard 

DNNs, with reported gains on the area under the receiver-operating characteristic curve of 

around 0.02 [32]. Reverse-compliment pooling can further reduce the number of parameters 

[34], albeit introducing a strong prior of motif directional invariance. These strategies are 

particularly important when analyzing data generated via single-stranded sequencing. To 

enforce positional invariance of a motif within a filter, circular filters have been shown to be 

effective [35].

Biophysical parameters.—Recasting traditional physics-based models as a neural 

network is an active area of research [36, 37, 38]. Tareen & Kinney recently showed that 

biophysical models of TF binding can be represented as a neural network [37], where edges 

represent meaningful biophysical quantities, such as free energies. In parallel, [38] has also 

demonstrated how DNNs can be designed with strong biophysical priors. These networks 

are highly-constrained, but provide interpretable biophysical parameters. They offer starting 

points which can be embellished upon with machine learning tricks-of-the-trade using deep 

learning frameworks [2, 3].

Model interpretability is key to moving forward

Biological experiments are noisy but often treated as ground truth for both training and 

testing. Improved predictions on unvalidated experimental benchmark datasets may not 

necessarily serve as a reliable way of comparing model performance (Fig. 2a). Interpreting 

models can therefore help to elucidate whether a DNN has learned new biology not captured 

by previous methods or has gained an advantage by learning correlated features that are 

indirectly related, such as technical biases of an experiment. Since binary classification tasks 

require discrimination of sequences between the positive and negative class, interpretability 

can also help to diagnose whether the DNN has learned poor features that directly result 
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from a poor choice of negative sequences. In genomics, the main approaches to interpret a 

CNN are through visualizing convolutional filters [5, 7], attribution methods [39, 40, 41], 

and more recently in silico experiments [21, 42].

1.3. Filter visualization

First layer filters can be directly visualized as sequence logos via activation-based 

alignments (Fig. 2b). This representation makes it possible to compare filter representations 

against known databases of motifs, such as JASPAR [43], using Tomtom [44], a motif 

comparison search tool. Filter visualization has been a popular interpretability approach to 

support that a CNN has learned meaningful biology [5, 7, 11, 12, 13, 45, 46, 47]. There are 

many drawbacks to filter interpretation, including the challenge in quantifying the 

importance of the feature and how to relate the features to model prediction. Due to the 

complex dependencies with other filters within and across layers, off-the-shelf CNNs may 

not necessarily learn complete motif representations in first layer filters. Representations 

learned by CNNs are strongly influenced by many factors, including inductive biases 

provided by architectural constraints [48, 49], activation functions [50], and training 

procedure [51]. Hence, filter analysis should only be employed when a model is explicitly 

trained to learn interpretable motif representations. A more thorough discussion of the 

benefits and drawbacks to visualizing first layer filters can be found in [48, 49].

1.4. Attribution methods

In genomics, attribution methods – such as in silico mutagenesis [6, 7], saliency maps [39], 

integrated gradients [52], DeepLift [41], and DeepSHAP [53] – provide a single-nucleotide 

resolution map consisting of an importance score for each nucleotide variant at each position 

that are directly linked to predictions (Figs. 2, c–d). In practice, attribution methods have 

been utilized to validate that a model has learned representations that resemble known motifs 

in TF binding [20, 21], chromatin accessibility [5, 6, 7], RNA-protein interactions [54]. 

There are other interpretability methods that have been developed for genomics, including 

maximum entropy-based sampling [55] and occlusion experiments [21, 40], as well as many 

other methods that have not yet been thoroughly explored in genomics [40, 56, 57, 58].

Limitations.—Attribution methods are local interpretability methods that provide feature 

importance of individual nucleotides for a single sequence. Hence many attribution maps 

have to be observed on an individual basis to deduce what features the network has learned 

globally at a population-level. This can be challenging, because attribution methods tend to 

produce noisy representations with spurious importance scores for seemingly arbitrary 

nucleotides. TF-MoDISco aims to simplify this process by clustering attribution scores [59]. 

Even still, attribution methods are unable to quantify the effect that a whole putative motif 

(not just one nucleotide) has on model predictions. Ongoing research is exploring to what 

extent we can trust attribution methods [60, 61, 62, 63].

Second-order interactions.—The previously described attribution methods are first-

order interpretability methods, revealing the independent contribution of single nucleotide 

variants in a sequence. There has been growing interest in uncovering interactions between 

two nucleotide positions, including second-order in silico mutagenesis [42], integrated 
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Hessians [64], self-attention networks [25], filter visualization in deeper layers [47], and 

other gradient-based methods [11, 65, 66].

1.5. Global importance analysis

Global importance analysis (GIA) provides a framework to quantify the effect size of such 

putative motifs as well as the ability to map specific functions learned by a DNN [67]. GIA 

performs in silico experiments where synthetic sequences are designed with embedded 

hypothesis patterns while the other positions are randomized by sampling a null sequence 

model (Fig. 2f). By averaging the predictions of these synthetic sequences, GIA quantifies 

the average effect of the embedded patterns while marginalizing out the contributions of the 

other positions. Important to this approach is an appropriate null sequence model that 

minimizes distributional shift between the synthetic sequences and the experimental data. 

Prior knowledge is critical to determine the null model. For instance, Koo et al. employed 

GIA to find that the number of motifs, spacing between motifs, relative positions, and 

aspects of RNA secondary structure were significant learned features in their DNN [42]. 

More recently, Avsec et al. employed GIA to understand motif syntax, including cooperative 

associations and positional periodicity [21]. We envision GIA will play a critical role in 

testing hypotheses of what DNNs have learned, moving beyond speculation from observing 

putative features in attribution maps and individual filters.

Conclusion

The timely advances in deep learning and genomics have made research at this intersection 

progress at a rapid pace. Improvements to architecture and interpretability have been key to 

the synergy. Yet there are many pressing avenues that are beginning to emerge, including 

end-to-end models, generative modeling, causal inference, variant effect prediction, and 

robustness properties.

End-to-end models.

Framing TF binding as a binary classification task is limiting, because peak calling is noisy 

and the read distributions themselves can be informative of the underlying biological signals. 

Recent applications have by-passed the peak calling preprocessing step altogether, directly 

predicting read distributions from sequence [20, 21]. This allows the DNN to learn how to 

discriminate peaks. Interpreting these so-called end-to-end DNNs may help to isolate 

biological signals from experimental noise.

Generative modeling.

In contrast to supervised representation learning, which are informed only through the task 

they are trained on, unsupervised representations learned with deep generative models, such 

as generative adversarial networks [68] and variational autoencoders [69], can reveal latent 

structure of the data on a low dimensional manifold. Deep generative models are an active 

research area in protein sequence modeling [70, 71] but is largely lagging for regulatory 

genomic sequences. Applications for proteins demonstrate that deep generative models 

could potentially help to study evolution of sequences across phylogenies [72] and design 

new sequences with desired properties [73].
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Causal inference.

A fundamental assumption in the field of causal inference is ignorability, for which domain-

knowledge is employed to build structural causal graphs which capture relevant data 

dependencies and explicitly formulate model assumptions to ensure there are no unmeasured 

confounders. On the other hand, highly-parameterized DNNs which estimate complex 

functions from rich functional classes run counter to such explicit formulations. A hallmark 

technique to ensure ignorability is the randomized control trial (RCT). Experiments 

performed in regulatory genomics, such as massively parallel reporter assays [4], are by 

design RCTs given a sufficiently large library. While costly, such experiments provide 

valuable insight into the underlying causal mechanism dictating sequence-function 

relationships. An alternative to physically performing these experiments is to simulate them 

in silico, namely by performing global importance analysis. To do so, however, requires 

robust models which accurately learn the functional relationships under consideration. We 

therefore prioritize the collaboration between bench scientists and computational scientists 

such that hypotheses generated in silico may be validated in vivo and a feedback loop may 

be utilized to develop better models (Fig. 2e). DNNs that accurately model the true causal 

effects are more robust to distribution shifts and improve generalizability [74]. The same 

may be said when integrating multiple data modalities. For instance, adjusting for 

confounders such as chromatin accessibility is critical for learning a generalizable function 

across cell types. Subsequent improved design of models will reduce costs associated with 

experimental validation, accelerate hypothesis generation and refinement, and provide more 

accurate discovery of causal biological mechanisms.

Robustness and interpretability.

By learning sequence-function relationships, a trained DNN can be used to score the effect 

that disease-associated variants have on the phenotype that it was trained on [5, 7, 9, 10, 11, 

20, 75]. This of course assumes that the model has learned an invariant causal representation 

which is generalizeable beyond the data that it was trained on. Demonstration of out-of-

distribution generalization performance has been limiting due to a lack of reliable 

benchmark datasets with ground truth. In other domains, it has been shown that small, 

targeted perturbations to the inputs, so-called adversarial examples [76], generated by an 

adversary whose sole mission is to trick the classifier, can result in highly unreliable 

predictions. This has resurrected the field of robust machine learning which focuses on the 

trustworthiness of model predictions [77]. Counterintuitively, high performing DNNs do not 

necessarily yield reliable attribution scores [78, 79], even in genomics [63]. This raises a red 

flag that we should not blindly trust model predictions on variant effects just because they 

generalize well on held-out test data generated from the same distribution, which share the 

same biases. It has been demonstrated that adversarial training, which incorporates 

adversarial examples during training, not only leads to improved robustness properties but 

also improved interpretability [51, 63]. Although adversarial examples is not a meaningful 

phenomenon in genomics, their potential for improving the robustness and interpretability 

properties of DNNs through adversarial training makes them an exciting area of exploration. 

A thorough evaluation and understanding of how training procedure, incorporation of 

biophysical priors, and the various advances in DNN architectures all influence model 

robustness and interpretability is an avenue for future research.
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Beyond validation – discovering new biology.

Deep learning offers a new paradigm for data analysis in genomics. As powerful function 

approximators, DNNs can be employed to challenge our underlying assumptions made by 

traditional (non-deep learning) models. To make meaningful contributions, however, we 

need to move beyond performance comparisons on benchmark datasets. Through model 

interpretation, we can identify what novel features drive performance gains. In practice, we 

believe that a combination of interpretability methods – such as first-order and second-order 

attribution methods and filter visualization – can collectively help to generate hypotheses of 

putative features and their syntax. This strategy should compensate for the failures of any 

individual approach. As a follow up, global importance analysis can be employed to quantify 

the effect size of putative features and also tease out specific functional relationships of the 

features, including positional dependence, sequence context, and higher-order interactions. 

We recommend training various DNNs – ranging from models designed to be highly 

expressive to models designed to learn interpretable representations – to identify features 

that are robust across models and initializations. Averaging an ensemble of models is a 

powerful approach to improve performance and it can also be extended to improve 

interpretability. Interpreting model predictions is a powerful approach to suggest biological 

insights and generate hypotheses. The patterns they learn are not proof of biological 

mechanisms, so any new insights should be followed with experimental validation.
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Figure 1: 
Overview of TF binding site prediction task. a) Transcription factors bind to regions of the 

genome based on sequence specificities and modulate various biological functions. ChIP-seq 

experiments enrich for short DNA sequences that are interacting with the TF under 

investigation. The resultant DNA sequences (so-called reads) are aligned to a reference 

genome and a peak calling tool is employed to find read distributions that are statistically 

significant compared to background levels. Upon binning the full genome into bins of length 

L, it is possible to then associate each bin with a binary label denoting the presence (Yi = 1) 

or absence (Yi = 0) of TF i based on sufficient overlap between the peaks and the bin. The 

DNA within each bin is represented by a 1-hot encoded matrix and the associated label 

vectors are used to train a model as a single-class or multi-class supervised learning task. b) 

Convolutional neural networks are powerful methods to learn sequence-function 

relationships directly from DNA sequence. A CNN is comprised of a number of first layer 

filters (F1) which learn features directly from the N input sequences by computing the cross-

correlation between each set of filter weights and the 1-hot encoded sequence. The resultant 

scans, so-called feature maps, intuitively represent the match between each pattern being 

learned in a given filter and the input sequence. The feature map then undergoes a series of 

functional (e.g. batch normalization, non-linear activation) and spatial transformations (e.g. 

pooling) resulting in a truncated length (L1). This tensor is then fed into deeper 

convolutional layers which discriminate higher-order relationships between the learned 

features. Two convolutional blocks are depicted however this feed-forward process may be 

repeated any number of times, after which a flattening operation is utilized to reshape the 

tensor into a N × L3 matrix. Fully-connected layers perform additional matrix 

multiplications and ultimately output a probability of class membership for each target. Loss 

is calculated between the predicted values and the targets, and the weights are updated with 

a learning rule that uses backpropagation to calculate gradients throughout network.
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Figure 2: 
Overview of model evaluation and interpretability. a) Model performance is assessed using 

the receiver-operating characteristic curve (top) or precision-recall curve (bottom). b) 

Visualizing CNN filters helps to understand learned representations. This can be achieved by 

scanning each filter across test set sequences, extracting subsequences (the length of the 

filter) centered on sufficiently large activations (above some threshold), aligning the 

subsequences, from which a position frequency matrix can be constructed and visualized as 

a sequence logo. Motif comparison search tools, such as Tomtom, can compare motif 

similarity against a database of previously-annotated motifs. c) In silico mutagenesis 

provides a single-nucleotide resolution map consisting of an importance score for each 

nucleotide variant at each position by calculating the difference in predicted values between 

a given wildtype sequence and new sequences with all possible single nucleotide variants. d) 

Gradient-based attribution methods analogously provide a single-nucleotide resolution map 

by calculating the derivative of the output (or logits) of a given class with respect to the 

inputs. e) A CNN can be used to generate and refine biological hypotheses by querying the 

model with a set of carefully chosen sequence models and estimating the global importance. 

f) Given a representative null background model (light gray N nucleotides) the global 

importance of a pattern (left panel) or spacing between patterns (right panel) may be 

estimated by querying the trained CNN with a sufficiently-large corpus of randomized, null 

sequences, each with an instance containing the feature as well as a matched instance 
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without the feature. Such a method allows practitioners to quantitatively test a variety of 

biological hypotheses while controlling for unwanted confounders.
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