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Abstract

Context-—The highly invasive properties demonstrated by Head and Neck Squamous Cell 

Carcinoma (HNSCC) is often associated with locoregional recurrence and lymph node metastasis 

in patients, and is a key factor leading to an expected 5-year survival rate of approximately 50% 

for patients with advanced disease. It is important to understand the features and mediators of 

HNSCC invasion so that new treatment approaches can be developed.

Objective-—To provide an overview of the characteristics, mediators and mechanisms of 

HNSCC invasion.

Data Sources-—A literature review of peer-reviewed articles in PubMed on HNSCC invasion.

Conclusions-—Histological features of HNSCC tumors can help predict prognosis and 

influence clinical treatment decisions. Cell surface receptors, signaling pathways, proteases, 

invadopodia function, epithelial-mesenchymal transition, microRNAs, and tumor 

microenvironment are all involved in the regulation of the invasive behavior of HNSCC cells. 

Identifying effective HNSCC invasion inhibitors has the potential to improve outcomes for 

patients by reducing the rate of spread and increasing responsiveness to chemoradiation.

The clinical relevance of invasion

The ability of tumors to invade into surrounding tissues is a “hallmark of cancer”1 and is 

arguably the property that most greatly impacts morbidity and mortality. The head and neck 

region is very complex, with a dense organization of fascial planes, bony and cartilaginous 

scaffolding, and abundant neurovascular structures. On one hand, this complex anatomy 

poses several barriers for an invasive tumor to overcome. On the other hand, these structures, 

when breached, can provide insidious pathways for cancer cells to travel, cause damage, and 

evade treatment. From a clinical perspective, levels of invasion impact prognosis and are 

therefore considered both in the current cancer staging system and in the decision-making 

process for determining treatment.

Head and neck squamous cell carcinoma (HNSCC) is an epithelial cancer, arising from the 

mucosa of the upper aerodigestive tract. Therefore, an invasive cancer, by definition, must 

first invade the basement membrane of the native epithelium. This property is achieved 
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during the process of carcinogenesis as multiple genetic insults are accumulated and in turn 

the acquisition of invasive capabilities allows invasion through the basement membrane. 

This primary event of invasion differentiates carcinoma in situ from invasive carcinoma. In 

oral tongue cancer, as this layer of connective tissue is breached, the invading tumor 

encounters the underlying tongue musculature. Depth of invasion (DOI) for these tumors is 

directly associated with patient outcome, and as the depth approaches 2–4 mm of invasion, 

the rate of lymph node metastasis increases greatly and prognosis worsens2–4. Therefore, 

elective neck dissection is recommended for oral tongue cancers with a depth of invasion of 

more than 2–4 mm, even when no clinical evidence of lymph node spread exists. A modified 

staging system has been developed which integrates DOI into the T category of the currently 

accepted American Joint Committee on Cancer (AJCC) TNM staging3,5. DOI was 

significantly associated with disease-specific survival in oral squamous cell carcinoma 

(OSCC)3.

In addition to depth, analysis of histological parameters in resected tumors of patients has 

indicated that invasion of tumor cells into the normal host tissue can predict patient outcome. 

The invasive front of an invading tumor has been shown to be an important indicator of 

patient prognosis2,6–10. Bryne et al. developed an invasive front grading system (IFG) of 

tumors that incorporated four parameters: the pattern of invasion, the degree of 

keratinization, nuclear polymorphism, and host response (inflammatory cell infiltration)9,10. 

The scores for each parameter were combined to yield a total malignancy score for the 

whole tumor. The worst part of the tumor (most invasive) was used for the assessment. A 

higher malignancy score meant a poorer prognosis. Sandu et al. used the invasive front 

grading system described by Bryne et al. and found that patients with a higher IFG score had 

significantly lower disease-free survival2. Brandwein-Gensler et al. found the histological 

parameter, the pattern of invasion, to predict patient outcome in OSCC patients as part of 

their risk assessment model6,8. The worst pattern of invasion was significantly associated 

with overall survival, as well as local recurrence6,8. Li et al. demonstrated that this risk 

model predicted local recurrence and disease-specific survival in an independent study for 

patients with low-stage OSCC7.

Bone and cartilage are ensheathed in a dense layer of connective tissue. Therefore, the 

mandible has a natural barrier to tumor invasion. If a mandible cancer is able to breach the 

mandibular periosteum and invade the bony cortex, the relatively uninhibited spread of 

tumor in the bone marrow space can lead to extensive involvement and ill-defined tumor 

margins with poor prognosis11–14. The presence of mandibular invasion places a tumor in an 

advanced primary stage (T4a) and overall stage (IV) according to the AJCC staging 

system11. Similar to invasion of OSCCs into surrounding normal tissue, the histological 

pattern of invasion of OSCC into bone can also be assessed and correlated with outcome. 

Invasion into bone displaying a broad pushing front and a sharp interface between tumor and 

bone is categorized as an erosive pattern. Projections of tumor cells along an irregular front 

with residual bone islands within the tumor are categorized as an infiltrative pattern11–14. A 

retrospective study of patients with mandibular invasion by OSCC found that patients with 

an infiltrative pattern of invasion into the bone had a four-fold increased risk of death with 

disease compared to the patients who displayed erosive pattern of invasion13. The infiltrative 

pattern of invasion into bone tissue is associated with more aggressive tumor behavior, 
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increased likelihood of positive margins, recurrence, death with disease, and shorter disease-

free survival11–13. Tumors with mandibular spread are generally treated aggressively, most 

often with segmental mandible resection, followed by postoperative radiation or 

chemoradiation. Similarly, the laryngeal cartilage poses a barrier to tumor spread. A cancer 

of the larynx that exhibits frank cartilage destruction is deemed a T4/stage IV cancer by 

AJCC criteria. If extensive cartilage invasion is present, often an organ-sparing approach 

with chemoradiation is not feasible, and laryngectomy with postoperative adjuvant therapy is 

the treatment of choice.

Another feature that HNSCC can exhibit is a propensity for invasion into neural structures. 

The head and neck region is populated by a rich network of innervation. The hypoglossal 

nerve extensively innervates the fine musculature of the tongue, while the lingual nerve 

provides a network for tongue sensation, and carries distal fibers from the chorda tympani to 

provide special sensory taste fibers. The mandible carries the V3 branch of the trigeminal 

nerve, which innervates the teeth and transits to the mental foramen and provides sensation 

to the buccal mucosa of the lower lip and the skin of the chin. Similarly, the pharynx and 

larynx are innervated by vagus nerve fibers and branches of the glossopharyngeal nerve. 

When tumor cells invade perineurium and nerve sheaths, the cranial nerves can essentially 

provide a direct route of spread toward the base of the skull and intracranial extension. This 

is particularly evident for adenoid cystic carcinoma of the salivary gland, which has a very 

high affinity for perineural spread. HNSCC also commonly exhibits perineural invasion, and 

this feature has been cited as a harbinger for an increased rate of locoregional recurrence and 

poor outcome. Brandwein-Gensler et al. found that perineural invasion (PNI) of small and 

large nerves was associated with reduced overall survival, and PNI of large nerves was 

specifically associated with local recurrence6. De Matos et al. applied the same criteria6,8 to 

independently assess another set of OSCC cases and found a significant positive correlation 

between PNI and POI, as well as between POI and tumor thickness15, or depth of invasion 

(DOI)3. High levels of nerve growth factor have been found to be correlated with PNI and 

worse survival16. When perineural spread is identified after surgical resection, this feature 

can influence the decision to administer postoperative adjuvant treatment. Clinicians have 

evaluated PNI as an indicator in patients with early stage (I and II) OSCC tumors to 

determine treatment strategies, but PNI and lymphovascular invasion (LVI) were not found 

to be significant risk factors for disease-free or overall survival17.

The clinical significance of invasive properties is not limited to local disease. It has been 

well established that in regional lymph node metastases, invasion outside of the lymph node 

capsule is associated with poor outcome18,19. Two large randomized clinical trials 

demonstrated that extracapsular spread of lymph node disease identified after surgical 

resection is an indication for maximized treatment with postoperative radiation and 

concurrent cisplatin20.

The strategies that cancer cells use to achieve all of the invasive properties highlighted above 

likely require genetic and molecular alterations that are highly complex. The details of how 

these cancers acquire the ability to invade normal, organized, anatomic structures are being 

revealed. An improved understanding of the molecular events that lead to these invasive 

phenotypes may provide insight that could improve both prognostication and treatment. The 
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following sections summarize what is known about the mechanisms of invasion of head and 

neck cancer cells.

Cell surface receptors shown to influence invasive behavior in HNSCC

The best characterized receptor for stimulation of HNSCC invasion is the epidermal growth 

factor receptor (EGFR, Figure 1)21–26. Epidermal growth factor (EGF) is present in saliva at 

concentrations around 1 ng/ml27–29. These concentrations30,31 or higher32–39 are able to 

stimulate migration and invasion in oral carcinoma lines in vitro, as well as in vivo 40. Other 

EGFR ligands besides EGF have been shown to stimulate invasion, including transforming 

growth factor alpha (TGFA), betacellulin (BTC), heparin binding EGF-like growth factor 

(HBEGF) and amphiregulin (AREG)32. Conversely inhibition of the EGFR has been shown 

to block invasion in response to EGF32,37,41–43. Intriguingly, the EGFR also mediates 

invasion induced by some other receptors, notably G protein coupled receptors (GPCRs)44 

for lysophosphatidic acid (LPA)45,46, bradykinin (BK), prostaglandin E2 (PGE2)47 and 

gastrin-releasing peptide (GRP)48. In some cases, the mechanism of cross-activation of 

EGFR by GPCRs has been identified as the release of EGFR ligands. EGFR ligands are 

initially produced as cell surface transmembrane proteins49 which can then be released from 

their transmembrane tethers by members of a disintegrin and metalloproteinase (ADAM) 

family of proteases50. ADAM17 mediates the stimulated release of TGFA by BK and 

PGE247. GRP stimulates the release of both AREG and TGFA48. In the case of GRP, EGFR 

ligand release involves a pathway in which Src activates phosphatidylinositol 3-kinase 

(PI3K), leading to phosphoinositide dependent kinase 1 (PDK1) activation and 

phosphorylation of ADAM1751. Estrogen receptor activation can also trigger EGFR ligand 

release30. In addition, autocrine release of AREG, HBEGF, BTC and TGFA has been shown 

to occur during serum starvation48,52–55, indicating that autocrine stimulation of EGFR can 

contribute to basal invasion capability.

A number of other receptors that can regulate HNSCC invasion have been identified. Other 

GPCRs that stimulate invasion with ERK and MMP9 activation include chemokine receptors 

CXCR1 and CXCR256,57 and CXCR458,59. Interleukin 6 (IL6) receptors can activate the 

ERK and c-Jun N-terminal kinase (JNK) pathways60,61. Toll-like receptors (TLRs) have also 

been shown to stimulate invasion with activation of the NFKB pathway62,63. NFKB 

signaling can synergize with the ERK/AP1 pathways to stimulate invasion64,65. Wnt-5B 

knockdown suppresses MMP10 production and invasion indicating that Wnt signaling 

pathways can also contribute to invasion66,67. Transforming growth factor beta (TGFB) can 

be produced by tumor-associated fibroblasts68 and induce NFKB activation69 and SMAD–

dependent MMP production70 as well as EMT factors such as Snail and Slug71–76. Invasion 

is stimulated by hypoxia in a Notch-dependent fashion 77. Inhibition of Notch can also 

suppress MMP production78.

Signaling pathways involved in HNSCC invasion

Several signaling pathways have been shown to be important for invasion of HNSCC. 

Inhibition of ERK results in reduced invasion 37,41,79. An important ERK target is AP1 80, 

which can increase transcription of matrix metalloproteases (MMPs), such as MMP979,81,82. 
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PI3K activity is also important for invasion37,79,83,84. Inhibition of PI3K also results in 

reduced MMP9 expression37,79. Additional contributions of PI3K to invasion can occur 

through AKT to stimulate Slug and Snail expression for enhancing EMT85,86, or 

phosphorylation of ezrin87 and yes-associated protein (YAP)88. Phospholipase C (PLC) 

gamma-1 has been shown to be important in EGFR induced invasion in some cases79,89, 

potentially in a complex with c-Src35. Src family members can contribute to invasion either 

through enhanced release of receptor ligands as described above or through stimulation of 

invadopod formation, which is described in more detail below48,55,90–94. A number of 

HNSCC cell lines have been shown to have constitutively high levels of Rac1 activity, and 

inhibition of Rac activity results in reduced invasion capability95. In most cases the 

increased Rac1 activity correlated with increased tyrosine phosphorylation of the Rac GEF 

Vav2 induced by EGFR, but an alternative pathway utilized Ras activation. The role of the 

Janus kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway in 

HNSCC invasion is complex. STAT3 has been shown to be important for ligand-independent 

invasion induced by the EGFR vIII isoform 96, but JAK2-STAT5a signaling is important for 

erythropoietin (EPO) induced invasion but not EGF-induced invasion96. STAT3 activity may 

generally enhance invasion capability through suppression of PTEN 97 and E-cadherin98.

Proteases implicated in HNSCC invasion

A key distinction between migration and invasion is the ability to degrade extracellular 

matrix barriers in the latter activity. Thus expression of proteases, especially matrix 

metalloproteases (MMPs), has been shown to be important for HNSCC invasion in a number 

of cases99. The most commonly identified MMP has been MMP9. Its activity is increased by 

EGFR32,37,42,54,100–102 and integrins75, while its inhibition reduces invasion81,103,104. 

MMP9 can degrade type IV collagen105–107, a key constituent of the basement membrane, 

and thus has the potential to play an important role in enabling HNSCC cells to become 

frankly invasive. Analysis of OSCC cases by immunohistochemistry revealed that 

expression of MMPs corresponded to areas with loss of collagen alpha IV chain. The 

enzymatic activity of MMPs was assessed by zymography and was found to be enhanced in 

higher grade OSCC and along the advancing tumor front108. MMP9 is used as a marker of 

invasive OSCC in many studies and the extent of its expression is related to the infiltration 

pattern of SCC at the invasive front109. In vitro invasion assays that utilize Matrigel, which 

is derived from basement membranes, often show a dependence on MMP9 activity. 

However, MMP9 can cleave other proteins exposed to the extracellular milieu as well, 

activating ligands such as TGFB and chemokines as well as cleaving cell surface 

receptors110. In addition, MMP9 may be involved in cleavage of E-cadherin, resulting in 

reduced cell-cell adhesion and increased invasion37.

MMP2 is another MMP that has been implicated in HNSCC invasion103,104. While MMP2 

and MMP9 are secreted MMPs, the transmembrane protease MMP14 (MT1-MMP) also 

plays a significant role. MMP14, together with TIMP2111,112, is important in the activation 

of secreted proteases such as MMP2113, and suppression of MMP14 reduces overall matrix 

degradation activity114 and invasion43. Another protein that enhances protease activity and is 

important for invasion is extracellular matrix metalloprotease inducer 

(EMMPRIN)100,115–117. Although the mechanism is unclear, EMMPRIN homophilic 
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binding induces the expression of a number of proteases, including MMPs, cathepsin B, and 

urokinase plasminogen activator receptor (uPAR) 100,115,117,118. Other proteases that have 

been shown to contribute to HNSCC invasion include MMP1066, MMP1380, matriptase119, 

fibroblast activation protein120, and uPA/uPAR117,121–124, as well as the glycosidase 

heparanase125.

The roles of adhesion in HNSCC invasion

Cell-cell adhesion mediated by E-cadherin is generally found to inhibit invasion26,126. 

Induction of cell-cell junctions can inhibit invasion127. Reduction in E-cadherin expression 

can occur through methylation of the promoter, and demethylating agents, which reverse 

this, can enhance invasion128. Inhibition of E-cadherin function also enhances invasion129. 

However, the inhibitory effect of E-cadherin may be overcome by expression of other 

invasion-inducing proteins130,131. Desmosomes are another cell-cell adhesion structure, 

which can suppress invasion132. However, overexpression of certain adhesion proteins such 

as claudin 1133 and desmoglein 3134 can enhance invasion.

Although degradation of the extracellular matrix, especially the basement membrane, is a 

key property of invasive tumors, interaction with the extracellular matrix is also important 

for invasion and prognosis135–138. Knockdown of the integrin beta 1 subunit (ITGB1) using 

siRNAs can reduce MMP2 activity and invasive capability139, mimicking the ability of 

miR-124, which has been shown to target ITGB1 and reduce invasion140. The integrin alpha 

v beta 6 (IAVB6) is upregulated in wound healing, and inhibition of AVB6 also inhibits 

invasion141–143. Integrin AVB6 is important in inducing protease expression142,144. 

Conversely, expression of specific ECM proteins such as collagen I145, collagen XVI146,147, 

or laminin148 can enhance invasion. Binding of integrins to these matrix molecules triggers a 

signaling cascade including integrin linked kinase (ILK)149, talin92,150, focal adhesion 

kinase (FAK)151–153, and Src family members90,154 that then link to the MAP kinase and 

PI3 kinase pathways for stimulation of MMPs82,145,149,154. It is unclear why both growth 

factor signaling and adhesion signaling are needed for invasion – the connection between 

adhesion and growth factor signaling in invadopod formation is an active area of 

investigation155–159.

MicroRNAs that regulate HNSCC invasion

MicroRNAs (miRNAs) are a class of gene expression regulators that often have altered 

expression in various human cancers, including HNSCC160–165. MiRNAs have emerged as 

having key roles in diverse cellular processes, including cancer cell proliferation, migration, 

invasion and metastasis160,161,166,167. Dicer, a key enzyme involved in siRNA and miRNA 

function, was reduced in expression in tongue SCC lines, and reduction of Dicer led to 

increased cell proliferation and invasion168. Consistent with these observations, the majority 

of the miRNAs that have been found to affect invasion in HNSCC are inhibitory (see Table 

1).

The targets of the miRNAs that have been identified thus far can be categorized according to 

a number of functions involved in invasion. A large number of miRNAs target proteins 
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associated with signal transduction including ligands, receptors, and intracellular regulators. 

MiR-126 was found to downregulate protein levels of ligands epidermal growth factor-like 

domain 7 (EGFLD7), vascular endothelial growth factor (VEGF), and basic fibroblast 

growth factor (FGF2)169. Dickkopf 2 (DKK2), a target of miR-21, promotes cell invasion by 

antagonizing Wnt/beta-catenin signaling170. MiR-99a was found to be a metastasis 

suppressor in OSCC by regulating expression of the insulin-like growth factor 1 receptor 

(IGF1R)171. The regulation of neurofibromyin 1 (NF1) by miR-193b impaired cell 

migration and invasion via inhibiting Erk1/2 phosphorylation172. MiR-155 promotes the 

migration and invasion of laryngeal SCC. Knockdown of miR-155 in LSCC cells suppressed 

invasion by negatively regulating suppressor of cytokine signaling 1 (SOC1), which allowed 

increased STAT3 signaling173. HNSCC cells overexpressing miR-107 had reduced cell 

invasion in vitro and tumor growth in vivo resulting from the targeting of protein kinase C 

epsilon (PRKCE) 174.

Many adhesion proteins are also targets of miRNAs. Laminin beta 3 (LAMB3), a component 

of laminin-332 in the extracellular matrix, is targeted by miR-218175. MiR-29s (miR-29a, 

miR-29b and miR-29c) target another component of laminin-322, laminin gamma 2 

(LAMC2)148. MiR-29s also target adhesion molecule integrin alpha 6 (ITGA6)148. MiR-29a 

was found to upregulate the ECM protease MMP2176. ADAM10, another protease, is a 

target of miR-140–5p177. There is also a significant group of miRNAs whose targets are 

associated with cell protrusions and the cytoskeleton, including transgelin 2 (TAGLN2), 

targeted by miR-1178, moesin (MSN) and actin-related protein 2/3 complex subunit 5 

(ARPC5), targeted by miR-133a179,180, and podoplanin (PDPN) targeted by miR-363181. 

The cytoskeleton proteins, Ras homology family member C (RHOC) and Rho-associated 

coiled-coil containing protein kinase (ROCK2) are targeted by miR-138, which also targets 

the EMT-associated protein vimentin (VIM)182–185. Other miRNA targets associated with 

EMT in terms of general gene expression are twist basic helix-loop-helix transcription factor 

1 (TWIST1) and forkhead box C1 (FOXC1), targeted by miR-181a and miR-639186,187.

Transcription factors that may regulate genes associated with motility and invasion are also 

targets of miRNAs. MiR-29b suppresses Sp1 expression, which impaired OSCC invasion via 

reduced Akt activation188. MiR-375 targets metadherin (MTDH)189–193 and miR-504 targets 

forkhead box 1 (FOXP1)194, also important for invasion. Finally, there is a small group of 

targets, whose direct function in invasion are unclear, such as programmed cell death 4 

(PDCD4)195 targeted by miR-21, BCL2 binding component 3 (BBC3)196 and manganese 

superoxide dismutase 2 (SOD2)197 targeted by miR-222.

Invadopodia as mediators of HNSCC invasion

Invadopodia (Figure 2) are specialized actin-rich structures that mediate extracellular matrix 

(ECM) proteolysis and are thought to play a key role in cell invasion198–201. An important 

component and marker of invadopodia is cortactin. HNSCC cells that have chromosome 

11q13 amplification and subsequently overexpress cortactin have elevated binding and 

activity of Arp2/3 complex together with increased HNSCC cell motility and invasion202. 

The EGFR inhibitor, gefitinib, impairs motility in HNSCC cells with the degree of inhibition 

positively correlated with the level of cortactin in the cells202. High levels of cortactin 
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reduce EGFR down-regulation and extend ERK activation203. Cortactin is important for 

both invadopodium assembly and ECM degradation204. Cortactin was shown to promote 

MMP2 and MMP9 secretion, as well as the cell surface levels of MT1-MMP in invadopodia 

of HNSCC cells204. Figure 3 shows an example of an in vitro assay to assess invadopodial 

matrix degradation, with cortactin and Tks5 as markers for invadopodia.

Src is an important regulator of invadopodium formation and activity. Saracatinib, a Src 

inhibitor, inhibited Src activation and phosphorylation of FAK, p130 CAS and cortactin in 

HNSCC cells along with reduction of invadopodia formation, ECM degradation, and MMP9 

secretion91. Intriguingly, although constitutively active Src induces invadopodium formation, 

wild-type Src expression is also needed in HNSCC cells for invadopodium-associated matrix 

degradation205. Abelson (Abl) kinase activity diminishes invadopodial ECM degradation in 

HNSCC cells: the inhibition of Abl and Arg by imatinib, an Abl family inhibitor, led to 

EGFR activation through increased HB-EGF production and shedding, and as a result of 

increased EGFR signaling, Src and ERK activity induced tyrosine and serine 

phosphorylation of cortactin55. These findings differ from a proposed model of EGFR-

invadopodia signaling in breast cancer where elevated EGFR signaling induces Src 

activation, which subsequently leads to activation of Abl/Arg and tyrosine phosphorylation 

of cortactin by Abl/Arg206. In addition to the EGFR207, transforming growth factor beta 

receptor 1 (TGFBR1) can induce invadopodium formation through stimulation of insulin-

like growth factor II mRNA binding protein 3 (IMP3) and podoplanin (PDPN), both of 

which are important for invadopodium formation, ECM degradation and MMP9 

activity73,208.

PI3K activity also regulates the formation and activity of invadopodia209,210. It has been 

shown in breast cancer cell lines that PI3K signaling induced formation of invadopodia, and 

specifically the p100 alpha catalytic subunit of PI3K was responsible for the effect210. In 

HNSCC cells, the mechanism of PI3K signaling differs from the breast cancer model209. 

LY294002, a PI3K inhibitor, suppressed invadopodia numbers and ECM degradation, as 

well as focal adhesion numbers and size. Stimulation of invadopodia by PI3K may be in part 

due to production of PI(3,4)P2 from PIP3 through the action of SH2-containing inositol 5’-

phosphatase (SHIP2)209. Expression levels of formin homology domain protein 1 (FHOD1), 

an actin nucleating protein, are dependent upon PI3K211. Silencing FHOD1 reduced cell 

migration, invasion, invadopodium formation and invadopodium-mediated ECM 

degradation211. Protein kinase C alpha (PKCA) can provide feedback negative regulation of 

cells with mutant PI3K, although in cells with wild-type PI3K, PKCA appears to stimulate 

invadopodium formation.209

Adhesion signaling has also been shown to be important for invadopodium formation and 

maturation. Adhesions rings form around invadopodia and are recruited after invadopodium 

formation114. Integrin activity and ILK are needed for adhesion ring formation, MT1-MMP 

accumulation in invadopodia and invadopodia-associated ECM degradation114. MT1-MMP 

is necessary for ECM degradation, but not for the adhesion ring formation. Invadopodia are 

key docking sites for multivesicular endosomes (MVEs) containing smaller secreted vesicles 

termed exosomes, and are secretion sites for exosomes212. Exosomes were also shown to 
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promote invadopodia formation, enable the exocytosis of MT1-MMP at invadopodia and 

stimulate invadopodia-associated matrix degradation212.

Epithelial to mesenchymal transition, cancer stem cells, and invasion

Epithelial to mesenchymal transition (EMT) is a highly regulated process in which epithelial 

cells acquire a mesenchymal morphology through coordinated changes in gene and protein 

expression that lead to decreased cell adhesion and cell polarity, resulting in a more invasive 

phenotype26,213–219. Common protein indicators of EMT are decreased expression of E-

cadherin, and increased expression of N-cadherin and vimentin. The expression of these 

genes is controlled by transcription factors including Snail, ZEB, and Twist. There are also 

changes in cellular proteins such as integrins and alpha-smooth muscle actin, as well as 

ECM proteins, such as collagen, laminin, and fibronectin149,213–216,220–223. HNSCC cells 

that undergo EMT have been shown to be more invasive57,77,152,215,217,221–224. The loss of 

E-cadherin associated with EMT has shown to be an indicator of poor prognosis in 

HNSCC26.

EMT can induce the generation of a sub-population of cells that have the potential for tumor 

initiation, called cancer stem cells (CSCs)225,226. CSCs exhibit the properties of self-

renewal, potential to behave as tumor progenitor cells, and the ability to differentiate 
223,225–227. CSCs are slow-dividing, and therefore often more resistant to 

chemotherapy225–227. CSCs are found in invasive fronts, and in many tumors are near the 

blood vessels217,223,225–227. EMT can generate cells within tumors that have stem-like 

properties216,219,223,228. In head and neck cancer, Twist, a regulator of EMT, was found to 

induce expression of Bmi-1, a regulator of stemness219,228. Twist and Bmi-1 can act together 

to repress expression of E-cadherin and p16INK4a. Higher expression of Twist and Bmi-1 

has been correlated with lower E-cadherin and p16INK4a, and was associated with poor 

prognosis219.

There are a number of common molecules and pathways involved in invasion, EMT, and 

stemness. TGF beta regulates transcription of EMT transcription factors via SMADs229. 

CD44, a cell surface glycoprotein that binds hyaluronic acid, is involved in cell-cell 

crosstalk, cell adhesion, and migration, and interacts with c-Met and EGFR227,230. EGF can 

induce EMT in HNSCC cell lines through PI3K/Akt signaling223. Expression of Bmi-1, 

ALDH, and CD44 also increases with EGF treatment, indicating an acquisition of stem-like 

properties. Notch signaling can induce EMT under hypoxic conditions, with increased 

expression of Notch pathway molecules and Snail, decreased expression of E-cadherin, and 

an increase in invasiveness77. In addition to inducing EMT and increased invasiveness, Snail 

has also been shown to induce stem-like properties in OSCC224. Adhesion-related signaling 

molecules that are important for EMT and invasion include ILK149 and FAK152. In terms of 

proteases, membrane type 1 matrix metalloproteinase (MT1-MMP/MMP14) has been shown 

to induce EMT and stem-like properties in OSCC as well as invasion, in parallel with 

increased levels of Twist and ZEB221. However, there may be subtypes of cancer stem cells, 

which differ in their invasive ability.231
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One aspect of invasion that needs more examination in HNSCC is collective invasion, in 

which cell-cell contacts may be maintained during invasion. Three-dimensional 

reconstructions of the invasive front of 14 oral tongue SCCs reveal that most invasive tumor 

cells are in multicellular structures of variable size232, suggesting the presence of cell-cell 

contacts. There is an ongoing debate regarding the relative importance of single cell and 

collective invasion for patient prognosis. One possibility is that a partial EMT could 

maintain cell-cell contacts but stimulate invasive properties sufficient to generate a more 

aggressive tumor that results in a worse prognosis233.

Tumor microenvironment and invasion

Cancer associated fibroblasts (CAFs) are the major stromal cells present in the 

microenvironment of HNSCC, and these tend to be myofibroblasts showing increased 

expression of alpha-smooth muscle actin234–237. Myofibroblasts and CAFs have been shown 

to enhance HNSCC invasion in vitro in a variety of assays238–247. Treatments that can 

enhance the ability of fibroblasts to stimulate tumor cell invasion include irradiation182 and 

reactive oxygen species (ROS)183,248,249, as well as lifestyle-correlated factors such as 

cigarette smoke250 and areca nut extract251. Fibroblasts have been shown to stimulate tumor 

cell invasion through secretion of a number of factors, including chemokine (C-C motif) 

ligand 2 (CCL2)183,252, CCL7253, stromal cell-derived factor-1 (SDF1)254, 

TGFB73,248,249,255,256, IL33257, MMP2145,249–251,258,259, EGFR ligands260, and hepatocyte 

growth factor (HGF)254,261–265. CAFs can also produce extracellular matrix molecules that 

enhance invasion, such as thrombospondin-1266 and fibronectin267. The mechanism of 

stimulation of tumor cell invasion by CAFs can include induction of EMT245,268.

In a number of studies, a paracrine interaction between tumor cells and fibroblasts has been 

shown to stimulate invasion. For example, CCL2 from fibroblasts can stimulate invasion and 

ROS production by tumor cells, which in turn stimulates fibroblast senescence and CCL2 

production from the fibroblasts183. Galectin production by tumor cells can also stimulate 

CCL2 production from fibroblasts252. IL1 from OSCC stimulates CCL7, HGF and TGFB 

production by fibroblasts73,253,265, while endothelin stimulates ADAM17 mediated release 

of EGFR ligands246,260. Interestingly, there is a report of TGFB from tumor cells inducing 

HGF production by fibroblasts as well264.

Other features of the tumor microenvironment have also been identified as stimulating 

HNSCC invasion, although not as thoroughly as CAFs. The perivascular niche has been 

associated with cancer stem cells and invasion227. Endothelial cells can secrete EGF to 

induce EMT and invasion223. Tumor associated endothelial cells have been shown to 

stimulate invasion of HNSCC cells in vitro through the secretion of IL8269 and CXCL1270. 

These chemokines are produced and secreted upon stimulation of endothelial cells by VEGF 

via BCL2 upregulation269,271. Macrophages have been shown to stimulate Axl-mediated 

invasion272 and perineural invasion through production of GDNF273. However, macrophages 

did not enhance invasion in response to EGF in an in vivo invasion assay40. Hypoxia in the 

tumor microenvironment can induce Notch and EMT factors, such as Slug and Snail, to 

increase invasion77,274. MMP9 can be induced by hypoxia to enhance invasion in an NHE1-

dependent fashion275. Hypoxia-inducible factor (HIF) 2 alpha leads to EGFR activation276, 
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while HIF 1 alpha increases integrin alpha 5 and fibronectin277 in invasion. Of concern for 

treatments utilizing erythropoietin (EPO) to mitigate chemotherapy side effects, hypoxia can 

induce the EPO receptor in tumor cells, enabling EPO to stimulate tumor cell invasion278.

Genomic changes in invasion-associated genes

DNA changes such as mutations and copy number variations (CNVs) at the genomic level 

have been implicated in cancer progression279. Higher numbers of CNVs in the genome are 

associated with the development of cancer, and more CNVs are accumulated with tumor 

progression279. It has been shown in HNSCC that disease-specific survival and recurrence 

can be predicted by CNVs280. We used HNSCC TCGA data downloaded from the UCSC 

Cancer Browser to evaluate the genes discussed in this review281. The 25 genes with the 

highest copy number variation or number of mutations in HNSCC discussed here are 

presented in Table 2. PIK3CA is top in copy number increase and second in mutations, with 

EGFR and RAC1 also being high in both mutations and copy number increases, 

emphasizing the potential importance of these genes in HNSCC .

Conclusions

Studies of invasion have identified a number of possible applications in the treatment of 

HNSCC. The most straightforward approach is to develop specific inhibitors targeted to 

molecules that are identified as being important in invasion. In particular, proteases such as 

MMP2, MMP9 and MMP14 are commonly identified as being important for invasion, and 

thus could be targeted for therapeutic development. However, there has been extensive 

development of broad spectrum MMP inhibitors with very limited success282. Inhibition of 

the beneficial roles of MMPs resulted in unacceptable side effects283, and thus there is now 

caution in considering therapeutics targeting MMPs, with the assumption that such 

treatments likely need to be brief in order to avoid side effects caused by longer term 

treatments284. A possible use for brief treatments could be in counteracting the effects of 

radiation. Radiation has been found to induce migration and invasion285, and treatment with 

invasion inhibitors during radiation treatment could then potentially enhance its 

efficacy286,287. Inhibitors targeting EGFR288, Na+/H+ exchanger 1 (NHE1)275, Src91 and 

microtubules289, can inhibit invasion at concentrations which are not toxic to cells and could 

be useful in counteracting radiation-induced spread.

For longer term treatments, potentially lower toxicity compounds for inhibiting invasion 

have been identified whose targets are unknown. These include extracts from herbs, green 

tea and other natural sources41,101,290–300. Such compounds could constrain further tumor 

spread and extend patient survival without directly killing tumor cells. Limiting tumor 

spread could develop additional benefits due to the consequences of keeping tumor cells 

clustered together. As noted above, there is an intimate relationship between invasion, EMT, 

and stem cell properties. It is possible that by inhibiting invasion of HNSCC cells, there is 

partial reversion of EMT and loss of stemness, which could result in greater sensitivity to 

cytotoxic treatments. Compounds have been identified which on their own inhibit invasion 

and EMT without affecting viability292 but then sensitize HNSCC cells to cisplatin.292,301 

Identification of invasion inhibitors which can enhance sensitivity to chemoradiation while 
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suppressing the spread of tumor cells would provide a valuable addition to the therapy 

options of head and neck cancer patients.
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Figure 1. Signaling pathways in HNSCC invasion involving the EGFR.
Epidermal growth factor receptor (EGFR), activated by EGFR ligands, can activate ERK/

AP1, PI3K/Akt, or Src activity, which all lead to increased invasion in head and neck cancer. 

EGFR can be cross-activated by GCPRs, whose downstream signaling leads to the release of 

EGFR ligands from their transmembrane precursors through activity by the ADAM family 

of proteases.
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Figure 2. Proteins that contribute to invadopodium structure and function.
Invadopodia are actin-rich structures that specialize in mediating the degradation of the 

ECM. Their formation can be induced by EGFR signaling. The key components of the core 

structure are cortactin, Tks5, N-WASP, Arp2/3, Nck-1 and −2, and cofilin. Adhesion rings, 

made up of adhesion proteins such as integrins and ILKs, are important for the formation 

and stabilization of invadopodia. Proteases, such as MMP2 and MMP9, are secreted at 

invadopodia. MT1-MMP can be transported by exosomes, which are secreted from multi-

vesicular endosomes.
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Figure 3. Invadopodial matrix degradation assay.
UMSCC1 cells, a human oral cavity squamous cell carcinoma cell line, were plated onto an 

Alexa Fluor-405 labeled gelatin matrix. After 4 hours the cells were fixed and stained for 

cortactin and Tks5, two invadopodia markers. Representative images of the degraded 

fluorescent matrix (A) Tks5 (B) and cortactin (C) and the merged (D) (cortactin: red, Tks5: 

green, matrix: blue) staining at 60X magnification. The merged image shows colocalization 

of Tks5- and cortactin-rich structures associated with degradation holes in the Alexa 

Fluor-405 matrix.
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Table 1:

MicroRNAs (miRNAs) That Affect Invasion in Head and Neck Squamous Cell Carcinoma

miRNA Effect on invasion Target Function Reference

hsa-miR-1 Reduction TAGLN2 Cytoskeleton 178

hsa-miR-107 Reduction PRKCE Signaling 174

hsa-miR-29a,b,c Reduction LAMC2, ITGA6, MMP2, SP1 Adhesion, Proteolysis, Gene expression 148,176,188

hsa-miR-99a Reduction IGF1R Signaling 171

hsa-miR-126 Reduction EGFL7, VEGF, FGF2 Signaling 169

hsa-miR-133a Reduction CAV1, MSN, ARPC5 Cytoskeleton 179,180,302

hsa-miR-138 Reduction RHOC, ROCK2, VIM, ZEB2, EZH2 Cytoskeleton
EMT

212,213,184,185

hsa-miR-140–5p Reduction ADAM10 Proteolysis 177

hsa-miR-181a Reduction TWIST1 EMT 187

hsa-miR-218 Reduction LAMB3 Adhesion 175

hsa-miR-363 Reduction PDPN Cytoskeleton 181

hsa-miR-375 Reduction MTDH Gene expression 189–193

hsa-miR-491–5p Reduction GIT1 Adhesion 303

hsa-miR-639 Reduction FOXC1 Gene expression, EMT 194

hsa-miR-21 Increase DKK2, PDCD4 Signaling, Protein Synthesis 97,170,195

hsa-miR-134 Increase WWOX Cell death 304

hsa-miR-155 Increase SOCS1 Signaling 173

hsa-miR-193b Increase NF1 Signaling 172

hsa-miR-504 Increase FOXP1 Gene expression 194

hsa-miR-222 Mixed BBC3, SOD2 Cell death/ROS 196,197

Abbreviations: EMT – epithelial to mesenchymal transition, ROS – reactive oxygen species
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Table 2:

Ranking of the 25 Genes With the Greatest Number of Mutations or Copy Number Variation (CNV) in Head 

and Neck Squamous Cell Carcinoma

Mutation Number Rank  Copy Number Variation Rank

Gene CNV Muts  Gene CNV Muts

CDKN2A −0.77299 66  PIK3CA 0.919765 64

PIK3CA 0.919765 64  CLDN1 0.896282 0

NOTCH1 0.166341 59  PTK2 0.827789 4

EGFR 0.485323 14  MTDH 0.704501 2

NOTCH3 −0.04892 14  PIK3CB 0.696673 5

NOTCH2 −0.03327 13  SNAI2 0.614481 1

FN1 −0.20744 13  CTTN 0.571429 4

TLN1 0.009785 12  EGFR 0.485323 14

ITGB1 −0.18395 10  GDNF 0.401174 1

RAC1 0.373777 9  RAC1 0.373777 9

NF1 0.060665 9  SRC 0.362035 1

ZEB2 0.050881 9  TWIST1 0.358121 1

PIK3CG 0.23092 8  IGF2BP3 0.34638 1

HGF 0.203523 8  SNAI1 0.320939 0

ZEB1 −0.18591 8  MMP9 0.318982 0

TLR4 0.242661 7  PLCG1 0.313112 5

ABL2 0.195695 7  EPO 0.293542 2

IGF1R 0.023483 7  WNT5B 0.25636 1

COL1A1 0.107632 6  LPAR5 0.25636 0

ROCK2 0.099804 6  TLR4 0.242661 7

COL16A1 −0.03523 6  ABL1 0.238748 0

AXL −0.04501 6  LPAR1 0.236791 2

THBS1 −0.08023 6  FOSL1 0.236791 0

EGF −0.20548 6  PIK3CG 0.23092 8

PIK3R1 −0.34442 6  VAV2 0.23092 1
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