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Abstract

cially those without a bioinformatics background, with an easy-to-
The purpose of this review is to provide medical researchers, espe
understand summary of the concepts and technologies used in microbiome research. First, we define primary concepts such as
microbiota, microbiome, and metagenome. Then, we discuss study design schemes, the methods of sample size calculation, and the
methods for improving the reliability of research. We emphasize the importance of negative and positive controls in this section.
Next, we discuss statistical analysis methods used in microbiome research, focusing on problems with multiple comparisons and
ways to compare b-diversity between groups. Finally, we provide step-by-step pipelines for bioinformatics analysis. In summary, the
meticulous study design is a key step to obtaining meaningful results, and appropriate statistical methods are important for accurate
interpretation of microbiome data. The step-by-step pipelines provide researchers with insights into newly developed bioinformatics
analysis methods.
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Introduction The purpose of this review is to provide researchers

without a bioinformatics background with an easy-to-

Xu-Bo Qian and Tong Chen contributed equally to this work.
With the development of sequencing technologies and data
analysis methods, several achievements in microbiome
research have been made in recent years.[1-3] These include
compelling discoveries in the field of medicine such as
associations between the microbiome and metabolic dis-
eases,[4-6] digestive diseases,[7-10] and cardiovascular dis-
eases.[11] These developments and discoveries have increased
the interest of physicians on microbiome research, with a
dramatic increase in thenumberofpublications in thefield.[12]

In addition, microbiome analysis methods have improved
rapidly due to the emergence of advanced technologies or
pipelines, including Quantitative Insights Into Microbial
Ecology (QIIME) 2[13] and multi-omics analyses,[1,9]

which are broadly used in medical and non-medical
research. However, understanding and mastering these
technologies or pipelines are challenging, especially for
medical researchers.
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understand summary of the concepts and technologies
used in microbiome research. In particular, we provide a
detailed discussion on primary concepts, study design,
sample collection, statistical methods, and bioinformatics
analysis used in microbiome research.

Primary Concepts
Microbiota, microbiome, and related terms

Microbiota refers to the microorganisms that inhabit a
specific site on/in the body, which consists of a wide variety
of bacteria, archaea, viruses, fungi, and protozoans.[14,15]

In medical research, microbiota refers to bacteria and
archaea if samples are determined using 16S ribosomal
RNA (rRNA) gene (also known as rDNA) sequencing. On
the other hand, microbiome refers to the entire habitat,
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including the microorganisms, their genomes, and the
surrounding environmental conditions.[14,15]Note, however,

Operational taxonomic units (OTUs) and amplicon sequence
variants (ASVs)
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that the terms of microbiota and microbiome are sometimes
used interchangeably. We recommend that the term micro-
biota should be used when referring purely to the micro-
organisms in your research, otherwise the term microbiome
should be used [Figure 1]. For example, if a researcher would
like to explore the relationship between the short-chain fatty
acids in blood and feces and the microorganisms in gut, then
the term microbiome should be used in this research.
Metagenome is the collection of all genomes of the
microbiota, which is obtained using shotgun metagenomic
sequencing,[14] and metagenomics is the study of the
metagenome.[12,14] Virome refers to the collection of all
viruses in or on humans, including endogenous retroviruses,
eukaryotic, and prokaryotic viruses.[16] The study of the
virome is known as viromics or viral metagenomics.
Bacterial taxonomy
In bacterial taxonomy, the most commonly used ranks or
levels in their descending order are: phyla, classes, orders,
families, genera, and species. For example, the taxonomic
ranks for Escherichia coli, which is a very common
bacteria in human intestines, are shown in Table 1.
Figure 1: Definitions of microbiome, microbiota, metagenome, and 16S rDNA. (A) The concept
conditions. Microbiota only means the microorganisms. (B) Metagenome means all genomes of
measures the diversity within a sample, while b-diversity compares the difference between
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The construction of an OTU table is important for marker
gene (amplicon) data analysis.[17] OTU, which refers to a
group of closely related sequences, is used to categorize
bacteria based on sequence similarity. The similarity
threshold of an OTU is typically defined as 97%.[18,19]

That is, the marker-gene sequences which have the 97%
similarity are considered as an OTU. However, the OTU
method has apparent drawbacks. In particular, it imposes
an arbitrary similarity threshold on OTU picking and
misses subtle and real biological sequence variations.[20]

The ASV has been developed recently to address these
problems, which uses error profiles to resolve sequence
data into exact sequence features. ASV has single-
nucleotide resolution and has similar or better sensitivity
and specificity than OTU.[20] It is important to note that
the OTU or ASV is not equal to species. An OTU/ASV may
include several species and vice versa.[21]

a-diversity
a-diversity refers to the diversity within a sample such as
fecal, saliva, or bronchoalveolar lavage fluid sample.[15]

There are three a-diversity indices often used in medical
of microbiome covers not only the microorganisms but also the surrounding environmental
the microorganisms, while 16S rDNA only covers a segment of the genomes. (C) a-diversity
samples.
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research: Chao 1 index, Shannon-Wiener index, and
Simpson index.

information in the computation.[28] The weighted UniFrac
distance incorporates the abundance information[29] andTable 1: Taxonomic ranks or levels in descending order.

Rank or level Taxonomic name

Phylum Proteobacteria
Class Gammaproteobacteria
Order Enterobacteriales
Family Enterobacteriaceae
Genus Escherichia
Species E. coli
Strain EIEC112ac
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The Chao 1 index, a metric of richness, estimates the total
number of species in a sample.[22] It takes into account the
following three factors: thenumberof species, thenumberof
singleton taxa, and the number of doubleton taxa.[22] This
means that it cannot reflect theabundanceof themicrobiota.

The Shannon-Wiener index combines richness and
evenness.[23] It gives more weight to rare species,[22] which
means that it is higher when the number of rare species
increases. Its value generally does not exceed 5.0; the
higher its value is, the more abundant is the a-diversity.[22]

The Simpson index also combines richness with evenness.
However, in contrast to the Shannon-Wiener index, it puts
more emphasis on common species. Its value ranges from 0
to almost 1; the higher its value is, the more abundant is the
a-diversity.[22]

In the above indices, richness refers to the total number of
species in a sample,[17,24] while abundance refers to the raw
read counts of a species.[24] Note that relative abundance
is used when the raw read counts are normalized or
converted to percentages.[24]

b-diversity
846
b-diversity refers to microbiota differences between
samples or groups.[15] It is typically used to understand
whether differences in the microbiota compositions of two
groups are significant.[25] Here, we focus on two
commonly used b-diversity indices: Bray-Curtis dissimi-
larity and UniFrac distance.

The Bray-Curtis dissimilarity is a statistical measure used to
quantify the compositional dissimilarity between two
samples or groups. Its value ranges from 0 to 1, where 0
means that the two samples or groups share all species, and 1
means that theydonot shareany.[26] Inaddition, it givesmore
weight to common species.[23] Note that Bray-Curtis is not a
real distancemeasure so the term “Bray-Curtis dissimilarity”
is more appropriate than “Bray-Curtis distance.”[22]

The UniFrac distance, which can be unweighted or
weighted, estimates differences between samples or groups
based on phylogenetic distance.[27] The unweighted
UniFrac distance takes into account the presence and
absence of taxa. It is sensitive for detecting richness
changes in rare species but ignores the abundance
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reduces the contribution of rare species.[25]

Ordination
Ordination is amethod to explore data structure in a graph
constructed with a reduced set of orthogonal axes. The
ordination plot is an effective way to visualize the
b-diversity. The ordination can be classified into two
types: unconstrained ordination and constrained ordina-
tion.[30-32] The ordination is unconstrained if the ordina-
tion axes are not constrained by environmental factors
(sample metadata); otherwise, it is constrained.[32] The
commonly used unconstrained ordinations include princi-
pal component analysis (PCA), correspondence analysis
(CA), principal coordinate analysis (PCoA), and non-
metric multidimensional scaling (NMDS).[30,32] On the
other hand, the commonly used constrained ordinations
are redundancy analysis (RDA) and canonical correspon-
dence analysis (CCA).[31,32]

The microbiome information corresponds to high-dimen-
sional data. PCA is used to simplify the complexity by
geometrically projecting the data onto fewer dimensions
calledprincipal components, it uses the Euclideandistance in
its computation.[30] In general, it is not suitable for the
analysis ofmicrobial abundancedatabecause the underlying
structure of the data must be linear.[30] However, it could be
used if the data are Hellinger-transformed.[30] In contrast,
CA is suitable for the analysis of microbial abundance data
without pre-transformation. In CA analysis, all samples are
ordinated by using the Pearson x2 distance.[30] Note,
however, that rare species could have an unduly large
influence on the CA analysis.[33] If a researcher wishes to
ordinate samples or features based on some other
dissimilarity measures, then PCoA is a good choice. In
microbiome research, the Bray-Curtis dissimilarity and
UniFrac distance aremost commonly used in PCoAanalysis.
NMDS is used to represent the relative positions of samples
in an ordination plot. Similar to PCoA, any distance or
dissimilarity matrix can be used in NMDS analysis. The
differences between PCoA and NMDS have been well
described in the literature,[30] with the former used in most
circumstances.[30]

RDA is a constrained ordination that combines PCA and
regression. Its response matrix corresponds to the micro-
biota data and the explanatory matrix corresponds to
clinical indices (sample metadata). It is useful for showing
whether the microbiota data are constrained by clinical
indices. Note, however, that the dataset may need to be pre-
transformed because the underlying structure of the
response matrix must be linear due to the PCA proce-
dure.[30] Finally, CCA is a constrained counterpart of CA,
which shares the basic properties and drawbacks of CA.[31]

Study Design
Study design schemes

A meticulous study design is important for obtaining
accurate and meaningful results. The most popular study
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designs used inmedical microbiome research include cross-
sectional studies, case-control studies, longitudinal studies,

factors such as age,[36,45] sex,[35] BMI,[46] diet,[47] season,[39]

medication,[40,41] ethnicity,[48] geographic region,[45] and

research
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and randomized controlled trials (RCT). The first three are
observational studies that do not apply interventional
factors, while the last is a typical experimental study.

The cross-sectional studies are divided into descriptive and
analytical cross-sectional studies.[34] The former is purely
descriptive and is mainly used to investigate the microbiota
composition in one or more populations, while the latter is
used to explore the associations between the microbiome
and health outcomes. However, the associations between
the microbiome and health outcomes may stem from
confounding factors such as sex,[35] age,[36] body mass
index (BMI),[37] diet,[5,38] season,[39] andmedication.[40,41]

Moreover, the microbiome and the outcomes are measured
simultaneously, making it is difficult to determine the
causal relationships between them. Generally, the cross-
sectional study is only used for exploring the elementary
features of the microbiome, and it could serve as a
preliminary experiment for subsequent research.

In most instances, the microbiome is considered as an
exposure and a disease is assumed to be an outcome in
medical research. Under these assumptions, the conven-
tional case-control study is rarely used in the microbiome
research because the previous exposure (the microbiome)
is difficult to obtain. However, it works if the exposure and
the outcome are reversed.

Similarly, a prospective longitudinal study is also difficult to
perform under the above assumptions because it is difficult
to know which microbes are the underlying exposures.
Moreover, the specific microbiome patterns, which could
serve as exposed or unexposed factors, cannot be defined
easily so it is difficult to define a participant as being an
exposed or an unexposed individual. In practice, partic-
ipantswith orwithout a disease often serve as a study group
or a control group, and samples containing the microbiome
are prospectively collected at different time points.[17] That
is, the subjects involved in a prospective longitudinal study
are often grouped according to a clinical outcome rather
than according to the specific microbiome patterns.

Finally, the purpose of an RCT or other experimental
studies is to evaluate the effectiveness of an intervention.
The intervention could be a medication or the microbiome.
For example, the intervention in a fecal transplantation
study is the microbiome.[42,43]

It is worth noting that the control group should be selected
appropriately. Some confounding factors should be
matched in these studies, which will be discussed below.
The control selection is sometimes difficult, especially
when the intervention is the microbiome itself in a clinical
study. In this scenario, a controlled before-after trial or
historical controlled trial would be a good option if other
study designs may be inappropriate.[44]

Defining the inclusion and exclusion criteria
847
Defining the exact inclusion and exclusion criteria enables
better matching of different groups and limits confounding
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comorbidities.[7] Age significantly influences on the micro-
biome, especially in those younger than 16 years old.[36,45]

Thus, age should be well matched in a microbiome research
involving children. Diet is another factor contributing to
microbiome alterations so it needs to be matched.[47] To
improve the comparability between groups, geographic
regions where the participants live should also be taken into
account when designing a microbiome study.[45] On the
other hand, individuals who underwent medications in the
preceding several months should be excluded from a
microbiome study.[41,49] For example, a patient treatedwith
antimicrobial drugs 3 to 6 months before a microbiome
study should be excluded.[49]

Sample size and power calculations for microbiome
When a researcher designs an experiment, it is important to
estimate the sample size. An appropriate sample size
enables a microbiome research to discern the differences
between groups and to save resources and time. However,
sample size and power calculations remain a challenge.[50]

The most commonly used methods for sample size and
power calculations in microbiome research are based on t-
test, analysis of variance, x2 test, and the Dirichlet
multinomial model.[51] Using the t-test as an example,
the sample size and power calculations are determined in
three steps. First, a small number of amplicon data is
acquired through a preliminary experiment. Second, the
Shannon-Wiener values of every sample are obtained using
the R package vegan.[52] The last step is the calculations of
the sample size and power using the power.t.test() function
in the R package pwr. The t-test is used to calculate the
sample size and power when a researcher only focuses on
the differences in species diversity between two groups.
Other methods for calculating sample size and power
calculations are described well in the reference.[51]

Importance of negative and positive controls

The results of microbiome research could be affected by
several factors, such as DNA extraction kits, sampling
methods, contaminations, and sequencing methods,[53]

which could be reduced by using negative and positive
controls. Unfortunately, only 30% of the previous studies
reported using negative controls, and only 10% reported
using positive controls.[53] Using the controls is important
for characterizing the microbiome especially when the
samples have low microbial biomass.[54] Previous studies
found that the specimens, such as placenta and synovial
fluid, whichwere recognized to be sterile in the past, maybe
colonized with microbiome.[55] However, these positive
results may be caused by other factors such as contam-
inations. Interestingly, these low-biomass specimens have
been demonstrated to be sterile in recent studies that
employed the negative and/or positive controls.[56] Thus,
we recommend that negative and positive controls should
be considered when the samples are low-biomass speci-
mens such as blood, amniotic fluid, cerebrospinal fluid,
synovial fluid, and placenta. It is worth noting that the
negative and positive controls are also important in virome
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research because the virome and microbes are usually
explored simultaneously.[16] In addition, R packages

data of a microbial community should be considered.
Currently, research that explores the structure of
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decontam can be used to identify and remove contaminant
sequences in marker gene and metagenomic data.[57]

Selection of sequencing methods
The sequencing methods used in microbiome research
include amplicon, metagenomic and metatranscriptomic
sequencing. The amplicon sequencing incorporates the 16S
rDNA sequencing for bacteria and archaea and the
internal transcribed spacer sequencing for fungi. Every
sequencing method has its pros and cons, which were
discussed thoroughly in the references.[17,58] In brief, the
amplicon sequencing is inexpensive and can be applied to
low-biomass specimens contaminated by host DNA, but it
is limited to genus level taxonomic resolution and is
susceptible to some sources of inherent bias such as the
number of polymerase chain reaction (PCR) cycles.[59] The
metagenomic sequencing method sequences all DNA
present in a sample including bacterial, viral, eukaryotic,
and host DNA. It does not only extend its taxonomic
resolution to species or strain level but also provides the
potential functions.[17] However, both the amplicon and
metagenomic sequencing methods cannot discriminate
between dead and live microbiota.[17] The metatranscrip-
tomic sequencing only yields active functional information
of a community. With the different advantages and
disadvantages of these sequencing methods, it is advisable
to integrate multi-sequencing methods for optimal study
design. Briefly, the selection of the sequencing methods
mainly depends on the scientific question of interest,
sample types, the quality of samples, and the cost of
experiments. Amplicon sequencing is often used to gain an
overview of a microbial community,[60] and it is typically
applicable to large-scale studies.[6,61] If you have enough
project funding, and you would like to gain strain-level
resolution and potential functions, or even to recover the
whole genomes, the metagenomic sequencing is a preferred
method.[62-66]

Multiple measures for improving the reliability of research
848
Simple cross-sectional studies have limited significance in
microbiome research. Hence, in this section, we discuss
ways to improve the reliability of research. First, a
longitudinal or a RCT is preferred rather than a cross-
sectional study or a case-control study.[17,67] Second, the
sample size should be calculated.[51] Third, the con-
founding factors should be matched, and the metadata
should be collected carefully. Fourth, the inclusion and
exclusion criteria should be defined in detail. For
example, the pediatric disease of juvenile idiopathic
arthritis has several sub-types, each of which may
represent a different disease entity.[68] A researcher
should decide whether all the sub-types are included in
the patient group. Fifth, it would be better to take
negative and/or positive controls into account.[54] Sixth,
integrating other omics methods, such as metabolomics,
metatranscriptomics, and metaproteomics, is vital for a
comprehensive understanding of the structure and
function of a microbial community.[17] Thus, plans to
acquire the metabolite profiles and/or other multi-omics
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a microbial community for this sole purpose is no
longer considered as a robust study design.[17] Lastly, it is
advisable that the preliminary results obtained from
a clinical experiment should be verified in an animal
model.

Considerations for the design of clinical microbiome
research are shown in Table 2, and a typical workflow
is presented in Figure 2. Researchers can refer to the
considerations for experimental research in the litera-
ture.[49]

Sample Types, Preservation, and Storage
Sample types

Sample types in human microbiome research include feces,
colonic lavage fluid, luminal brush, pinch biopsy, sub-
mucosal biopsy, synovial fluid, urinary sample, dental
plaque, saliva, and skin. The choice of a sample type
depends on the scientific question of interest. For example,
fecal samples are easy to collect and can be used in large-
scale and longitudinal studies. On the other hand, biopsy
samples are more useful for exploring the interactions
between the microbiota and the host.[69] It is important to
note that the sampling site should be fixed in one research
because different parts of the human body are colonized
with different microbiota.[70,71]

Preservation and storage
The methods of sample preservation and storage should be
tailored to the experimental method and sample type. The
most versatile method is to freeze the samples directly,
which can be used in various sequencing and experimental
methods such as amplicon, metagenomic, metatranscrip-
tomic sequencing, and metabolomic measurement. It is
suggested that the samples should be preserved at �20°C
within 15 min after collection,[72,73] and then transferred
to a laboratory on dry ice within 24 h of collection and
stored at �80°C thereafter. However, samples are
commonly collected at home rather than in clinical
settings. Under these circumstances, using preservation
kits is an alternative. Samples preserved in the kits can be
stored at ambient temperature for more than a week.[74]

Note that the sample preservation and storage methods
should be consistent across all samples to minimize
potential confounding variations.

Statistical Analysis in Microbiome Research
Medical researchers are typically familiar with univariate
statistical methods, such as t-test, analysis of variance, x2

test, and the Mann-WhitneyU test. Hence, we here discuss
problems related to multiple comparisons and other
multivariate methods. We first discuss the problems with
multiple comparisons and their solutions including P value
adjustments and false discovery rates (FDRs). Then, we
discuss other multivariate methods such as the permuta-
tional multivariate analysis of variance (PERMANOVA)
and the Mantel test.
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Problems with multiple comparisons and their solutions

of OTUs or ASVs, and each of them may be compared
between groups. Another example often encountered by

Table 2: Checklist for the design of clinical microbiome research.

Considerations Details

Study type □Cross-sectional □Case-control □Longitudinal □RCT □Other:
Sex □Matched □Unmatched □Other:
Age □Matched □Unmatched □Other:
BMI □Matched □Unmatched □Other:
Ethnicity □Matched □Unmatched □Other:
Geographic location □Matched □Unmatched □Other:
Diet □Monitored: detailed information

□Not monitored
Season factor □All samples in different groups are collected in the same season(s)

□All samples in different groups are not collected in the same season(s)
Medications What kinds of medications were used before the study?

How long were the medications not used before the study?
Inclusion criteria □Defined well □Not defined well
Exclusion criteria □Defined well □Not defined well
Sample size □Estimated □Not estimated
Sequencing methods □Amplicon □Metagenome
Negative and/or positive controls □Negative controls: detailed information

□Positive controls: detailed information
Multi-omics methods □Metabolome □Metatranscriptome □Metaproteome
Sample types □Fecal sample □Colonic lavage fluid □Luminal brush □Pinch biopsy

□Sub-mucosal biopsy □Synovial fluid □Urinary sample □Dental plaque
□Saliva □Skin □Other samples:

Animal model □Results will be verified in an animal model
□Results will not be verified in an animal model

BMI: Body mass index; RCT: Randomized controlled trial.

Figure 2: Typical workflow of the human microbiome research.
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849
Multiple comparisons are commonly used in microbiome
research because microbiome data are high-dimensional.
For example, the feature table has hundreds or thousands
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medical researchers may be more easily understood.
Suppose a study has three groups, for example, group
A, group B, and group C, and a researcher would like to
compare differences between the three groups. In this case,
the P value should be adjusted because each group is
compared twice, that is, group A vs. group B, group A vs.
group C, and group B vs. group C. P value adjustments are
needed if each group or variable is compared to limit false-
positive discoveries.[75]

The classic method to adjust the P value is to control the
family-wise error rate, that is, the type I error or a level.
The Bonferroni adjustment is the most commonly used
method to control the family-wise error rate. The
calculation of an adjusted P value is very easy: the a level
for an individual test divided by the number of tests. Thus,
in the above example, the adjusted P value is 0.05/
3= 0.017, and only the test results with P< 0.017 are
considered to be significant.[75] Note that the Bonferroni
adjustment is only applicable to a hypothesis testing with a
small number of multiple comparisons, otherwise, it would
lead to a high rate of false negatives [Figure 3].[75]

An alternative way to tackle the problems with themultiple
comparisons is to control the FDR, which is the expected
proportion of type I errors or the number of false positives
in all the rejected null hypotheses. For example, if five out
of 100 hypothesis tests are false discoveries, then the FDR
is 5%. The “Benjamini-Hochberg (BH) adjusted P values”
rather than raw P values are often used in microbiome
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research. The adjusted P= raw P ∗ m/i, where m is the
number of tests and i is the rank of each P value.[75] If the

whether the grouping factor (eg, smoking status) of the
metadata impacts on the composition of gut microbiome.

Figure 3: Strength of different P value adjustment methods. The plot shows that the
Benjamini-Hochberg method is less conservative than the Bonferroni. The adjusted P
values that are generated using the Bonferroni method approach 1.0 sharply as the raw P
values increase.

Chinese Medical Journal 2020;133(15) www.cmj.org
adjusted P value is smaller than the chosen FDR you
choose, the test is considered to be significant. In contrast
to the Bonferroni method, the BH method is less
conservative and is often used in multiple comparisons
of microbiome features. The Bonferroni and BH are the
most commonly used P value adjustment methods.[76] The
strength of the two P value adjustment methods is shown
in Figure 3.

The PERMANOVA

The b-diversity of different communities can be compared
using several statistical methods or models such as the
PERMANOVA, theMantel test, analysis of similarity, and
multi-response permutation procedures. The PERMA-
NOVA is the most popular and considered to be the most
powerful.[77] It is implemented through the function adonis
() in the R package vegan.[52] Four dissimilarity or distance
metrics can be processed in the vegan package: the Bray-
Curtis dissimilarity, the Jaccard distance, and weighted
and unweighted UniFrac distances.[25] If the P value of the
permutation test is smaller than 0.05, which indicates that
the b-diversity between different communities is statisti-
cally significant. Another output of the test is R2, which
indicates how much of the total variance can be explained
by grouping factor.[25]

The Mantel test
850
The Mantel test is often used to analyze associations
between metadata matrix and community matrix.[77] It is
implemented using the function mantel() in the R package
vegan.[52,77] The output of the test has at least two main
statistics: P value and r. The value of r, similar to other
types of correlation coefficients, ranges from � 1 to +1.[25]

For example, suppose a researcher would like to know

1

If the P value is smaller than 0.05 and r is greater than 0,
which indicates that the composition of the gut micro-
biome differs between the smoking group and non-
smoking group, then the metadata matrix and community
matrix are positively related.

Bioinformatics Analyses
Marker gene analyses: from raw data to taxonomy profile

Several popular software or pipelines, such as QIIME 2,[13]

USEARCH,[78] VSEARCH,[79] and mothur,[80] are avail-
able for amplicon data analysis. The former two have many
advantages and have been recommended by many
researchers. The advantages and disadvantages of each
software or pipeline have been described in detail in our
previous paper.[81] The main steps of amplicon analysis are
shown in Figure 4A. We usually start with the raw paired-
end Illumina data in fastq format, and the final output is a
feature table, which is also known as OTU table. The first
step is to recover clean amplicon sequences from the raw
data because the raw data include artifacts such as primers
and barcodes. It comprises three main procedures: merging
paired-end sequences, assigning sample ID by the barcodes,
and removing the primers. Due to the raw data having no
uniform standard format, we need to design a proper
analysis pipeline tailored to the above procedures. Alterna-
tively, we could use the clean amplicon data provided by
gene sequencing companies. A typical analysis flowchart for
recovering the clean amplicon sequences is shown in
Figure 4B. The second step is to filter low-quality reads
out to limit the background noise. The third step is to
identify non-redundant sequences and their counts. High-
quality sequences still have lots of artifacts such as sequence
errors and chimera. The counts of the non-redundant
sequences are key information to find out credible
sequences. The fourth step is to select representative
sequences (features). This step is based on unique reads
and implemented by clustering the sequences into OTUs or
by denoising selected ASVs.[18,82] This step also includes the
de novo detection and removal of chimera. The fifth step is a
reference-based chimera detection, which is an alternative
process to the fourth step.[83] The feature sequences can be
further filtered by mapping the sequences into the database
such as the comprehensive rRNA gene database, SILVA.[84]

It should be noted that the step can reduce false-positive
rates and is prone to cause false-negative results. Finally, the
feature table is generated by comparing clean amplicon data
with feature sequences [Figure 4A]. The feature sequences
are then assigned to taxonomic classification using the
classifier based on the Ribosomal Database Project[85] or
Greengenes[86] database. Additionally, based on the 16S
rRNA gene profile, a functional profile can be predicted by
PICRUSt,[87,88] FAPROTAX,[87,89] and BugBase.[90]

Metagenome analyses: from raw data to taxonomy and
functional profiles

Amplicon sequencing only yields taxonomy profile, and
the PCR process easily generates bias and chimera.[83]

Shotgun metagenomic sequencing provides more detailed
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genomic information and higher taxonomic resolution
than the amplicon sequencing.[67] Compared with the

recommend the read-based method to profile taxonomy and
metabolic pathway using theHUMAnN2,[93]which is highly

Figure 4: Bioinformatics analysis pipelines for human microbiome research. (A) Main steps for taxonomic profiling of amplicon data. (B) Typical flowchart of pre-processing in amplicon
data: from raw paired-end sequences to clean amplicons. (C) Analysis pipeline for metagenomic sequencing data. (a) Pre-processing. It involves removing low-quality, adaptor and host
reads. The output corresponds to clean reads. (b) Read-based profiling. It involves that reads map against the databases to infer taxonomic and metabolic profiles. (c) Assemble-based
profiling. It involves assembling short reads into contigs, predicting genes, constructing non-redundancy gene catalog, and blasting against the databases to profile taxonomy and functions.
(d) Binning. It involves recovering draft genome of uncultured microbe and reconstruction of phylogenetic and metabolic pathways. CARD: Comprehensive antibiotic resistance database;
CAZy: Carbohydrate-active enzymes database; eggNOG: Evolutionary genealogy of genes: non-supervised orthologous groups; KEGG: Kyoto encyclopedia of genes and genomes; VFDB:
Virulence factor database.
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amplicon method, metagenomic analysis is more complex
but it provides more accurate taxonomy, multi-dimen-
sional functional profile, and draft genomes of uncultured
microbes. The overview of the metagenomic pipeline is
shown in Figure 4C. The first step is to pre-process raw
sequence data. The raw data contain the contamination of
low quality and host-associated reads. We can perform
data quality checks using FastQC software (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/), and then
use the KneadData pipeline to perform quality control[91]

and to remove host DNA.[92] The KneadData is available
at http://huttenhower.sph.harvard.edu/kneaddata. The
second step is to profile taxonomy and metabolic potential
using the read-based approach. The human microbiome
has a high-quality gene catalog and genome,[65,66] so we

1

efficient and easy-to-use. However, this method only uses a
small part of the sequence informationand itsuse is limitedby
the known database.[67] If the discovery of new species or
gene function is desired, the third step is needed. Several good
software tools, such as MEGAHIT[94] and metaSPAdes,[95]

were developed for assemblingmetagenomic clean reads into
contigs. The genes are then predicted from contigs by
MetaProdigal[96] or Prokka.[97] Additionally, other software
tools can also be used for predicting coding genes from
metagenomic short reads, such as MetaGeneAnnotator,[98]

MetaGeneMark,[99] Glimmer-MG,[100] MetaGUN,[101]

FragGeneScan,[102] and Orphelia.[103] To limit duplicated
genes, non-redundant gene sets need to be constructed using
theCD-HITwhenanalyzingmultiple samplesorbatches.[104]

Gene abundance is calculated by mapping using the Bowtie

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2[92] or Salmon.[105] There are at least 20 software tools that
can be used to perform taxonomic classification of

choice of an appropriate statistical method is important for
accurate interpretation of microbiome data. Finally, the

Chinese Medical Journal 2020;133(15) www.cmj.org
metagenomic data.[106] We recommend the ultra-fast
classifier Kraken 2, which provides fast, accurate, and
species-level results.[107] As for functional annotation,
DIAMOND, which is a blast-like, fast, and sensitive protein
alignment tool, has been recommended by many research-
ers.[108] Other databases used for functional annotation
include Kyoto Encyclopedia of Genes and Genomes,[109]

EggNOG (a database of orthology relationships, functional
annotation, and gene evolutionary history),[110] Carbohy-
drate-Active enZYmes Database,[111] Virulence Factors of
Pathogenic Bacteria,[112] and Comprehensive Antibiotic
Resistance Database.[113] Metagenome usually contains
100 to 1000 species,[65] which is difficult to disentangle
from each other. The binning algorithm makes it possible to
recover draft genomes from metagenomes and reconstruct
phylogenetic and metabolic pathways. The last step is to
perform the binning algorithm using the metaWRAP[114] or
DASTool [Figure 4C].[115] The software tools have step-by-
step tutorials, and there are several sample datasets
concerning the human microbiome are available at their
websites.[81] Additionally, several integrated pipelines, such
as metagenomic analysis toolkit (MOCAT) 2,[116] bioBak-
ery,[98] IMP,[117] and Microbiome Helper,[118] can perform
some or all of the above analysis steps. The Chinese tutorials
of most popular software can be found in the WeChat
subscription account, “meta-genome.”

Now you have owned the taxonomy and functional
profiles. It is easy to find out your interesting biomarkers
by STAMP or LEfSe.[119,120] All the results can be
visualized using R language or ImageGP (http://www.
ehbio.com/ImageGP).

Role of Virome in Human Diseases
The role of virome in human diseases has attracted the
attention of medical researchers.[121] Many compelling
results have been discovered using viral metagenomics in
recent years,[122] and some of these technologies have also
been used in clinical settings.[123] Viral metagenomics,
when integrated with other multi-omics methods, would
seem to have a promising application in microbiome
research. However, virome research still confronts some
challenges. For instance, at least 40% of viral sequences
cannot be annotated.[124] Moreover, the sequencing results
of the virome are subject to background noises.[17] Lastly,
the commercial positive controls, that is, the viral mock
communities, used in virome research can hardly be
acquired.[16]

Summary and Conclusions
852
In this review, we discussed the study design, sample
collection, statistical methods, and bioinformatics analysis
methods for microbiome research. In the “study design”
section, we emphasized the importance of the study design,
especially the scheme used, the sample size calculation, and
the multiple measures used to improve the reliability of
research. This is important as a poor study design could
yield useless data. In the “statistical analysis” section, we
introduced detailed multiple comparison methods. The

1

“bioinformatics analysis” section illustrated the different
bioinformaticsmethods for analyzingmicrobiomedata.The
scripts employed in the figures and examples are available at
https://github.com/YongxinLiu/Qian2020CMJ.

In summary, for the microbiome research, the meticulous
study design has a pivotal role in obtaining meaningful
results, and appropriate statistical methods are important
for accurate interpretation of microbiome data. The step-
by-step pipelines provide researchers with insights into
newly developed bioinformatics analysis methods.
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