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Review

Electrical Stimulation as a Tool to Promote Plasticity
of the Injured Spinal Cord

Andrew S. Jack,' Caitlin Hurd? John Martin® and Karim Fouad®*

Abstract

Unlike their peripheral nervous system counterparts, the capacity of central nervous system neurons and axons for
regeneration after injury is minimal. Although a myriad of therapies (and different combinations thereof) to help promote
repair and recovery after spinal cord injury (SCI) have been trialed, few have progressed from bench-top to bedside. One
of the few such therapies that has been successfully translated from basic science to clinical applications is electrical
stimulation (ES). Although the use and study of ES in peripheral nerve growth dates back nearly a century, only recently
has it started to be used in a clinical setting. Since those initial experiments and seminal publications, the application of ES
to restore function and promote healing have greatly expanded. In this review, we discuss the progression and use of ES
over time as it pertains to promoting axonal outgrowth and functional recovery post-SCI. In doing so, we consider four
major uses for the study of ES based on the proposed or documented underlying mechanism: (1) using ES to introduce an
electric field at the site of injury to promote axonal outgrowth and plasticity; (2) using spinal cord ES to activate or to
increase the excitability of neuronal networks below the injury; (3) using motor cortex ES to promote corticospinal tract
axonal outgrowth and plasticity; and (4) leveraging the timing of paired stimuli to produce plasticity. Finally, the use of ES
in its current state in the context of human SCI studies is discussed, in addition to ongoing research and current knowledge

gaps, to highlight the direction of future studies for this therapeutic modality.
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Introduction

NEURONS IN THE CENTRAL NERVOUS SYSTEM (CNS) are unable
to regenerate their axons following injury. This inability is
based on various factors, including the presence of growth inhibi-
tory factors in CNS myelin and at the lesion site, a lack of trophic
support, and an age-related reduction in the intrinsic neuronal
capacity to grow."> Considering the debilitating effects of CNS
injuries, approaches to enable repair are desperately needed. One
method to promote and possibly direct axonal outgrowth, to re-
establish lost connections, and to restore function is electrical
stimulation (ES), an area of research that began nearly a century
ago.* These early experiments demonstrated the wide range of
effects that ES can have on neurons, including promoting neurite
outgrowth. The ability of ES to generate an electric field (EF) in the
target tissue to influence neuronal outgrowth in vitro was subse-
quently explored in animal models of spinal cord injury (SCI).>®
We are defining EF as the electrical field created across tissue

between an anode and a cathode. Although ES will generally
generate an EF, the intention of ES frequently goes beyond the
creation of an EF and is intended to increase the excitability of
the target neurons to increase spiking or to enable enhanced re-
sponses to afferent or descending inputs (i.e., to bring them closer
to the threshold for firing). Since the publication of these seminal
articles,> the use of ES to restore function after SCI has expanded
considerably, and ES is currently used for a variety of purposes.
Recently, ES has become more prominent in the field of SCI, as it is
clinically used to activate or facilitate the activation of neuronal
networks below a lesion rather than to promote axonal outgrowth.

The intent of this review is to provide an overview of the major
areas of ES that are used to treat SCI and to clarify their differential
purposes and approaches. Considering the vast literature for each of
the different areas, our objective is not to provide a comprehensive
review for each of them, but rather to provide an overview and
clarify their relationship to each other. For this purpose, we con-
sider four major uses for the study of ES based on the proposed or
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documented underlying mechanism, which are summarized in
Figure 1: (1) using ES to introduce an EF at the site of injury to
promote axonal outgrowth and plasticity; (2) using spinal cord ES
to activate or to increase the excitability of neuronal networks
below the injury; (3) using motor cortex (MCX) ES to promote
corticospinal tract (CST) axonal outgrowth and plasticity; and
(4) leveraging the timing of paired cortical and peripheral stimuli
to produce plasticity.

This review will focus on ES to enhance spinal circuit functions,
the strength and efficacy of spared motor pathways, and the ulti-
mately motor recovery after SCI. For each approach, we address
the questions of the mechanisms recruited and the neural target
engaged by the stimulation. We describe animal behavioral stud-
ies demonstrating efficacy in motor recovery after injury. Further,
putative mechanisms for repair of the CST, a key pathway for
movement in humans and many animals, and improved recovery of
motor function, will be discussed. These mechanisms serve as
the basis for translating ES in animals with SCI to humans. Each of
the studies discussed in this review is based on similar, but dif-
ferent, ES protocols and stimulation parameters (and therefore
potentially different mechanisms). Because of this, direct com-
parison among the different studies is difficult. Also, the animal and
injury models used in experiments from each study vary substan-
tially (a list of which, including ES parameters and major results,
can be seen in Appendix Table Al).

Promoting Spinal Neuronal Outgrowth
with Weak EFs Applied to the Lesioned Tissue

Spinal cord ES was initially explored to target axons that were
damaged after SCI in order to bias the direction and possibly extent
of neurite outgrowth. Evidence suggests that spinal cord direct
current ES creates a relatively static EF. Importantly, SCI in
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lamprey was reported to rapidly create an EF at the injury site,
likely based on Na* and Ca™ influx, possibly important for the
regenerative response of the neurons.” This is similar to what is
seen in wound healing, where injury-induced EFs have been said to
direct cell migration and growth®® and developmental biology,
where neural tube formation can greatly be affected by ES.'%!!
Various cellular changes caused by an EF have been discussed,
including asymmetrical distribution of charged protein/channels,
redistribution of the actin cytoskeleton, changes in the localiza-
tion and expression of focal adhesion proteins, and nchanges in
the Rho pathways,'>'® and a major factor linking these effects
seems to depend on voltage-gated ion channels, and possibly flow
of Ca™ jons.'

Although ES and the generation of EFs for promoting outgrowth
dates back nearly a century,®* its application to SCI in animals
has been much more recent.>'>* With a few exceptions,?>>* the
majority of early studies examining the rationale behind the use
of ES post-SCI in animal models have emanated from the labora-
tory of Borgens and colleagues.””'>' It should be noted that in
these early studies, Borgens and colleagues used both static direct
current (DC) and alternating or repetitive ES. Because of the po-
tential damaging effects of applied DC, studies generally used very
low currents (on the order of 10s of microamperes in guinea pigs,
and 600 pA in dogs) that generally do not activate spinal circuits or
muscle.”>™>” Only recently have experimental and computational
studies begun to calibrate the EF values necessary for producing
biological/biophysical effects. The extent to which microampere-
level body surface currents will generate sufficient fields in the
spinal cord needs to be validated by direct measurements or in-
formed by predictive modeling. In this way, we will be able to
evaluate if this form of stimulation weakly modulates neuronal
membrane potential to bias network function, as proposed for
transcranial DC stimulation.?®
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The difference in the approach and location of electrical stimulation following spinal cord injury of the four applications

discussed in this review are summarized. (A) Cortical stimulation to activate growth promoting cellular pathways with the intention to
promote axonal outgrowth (i.e., collateral sprouting and regeneration). (B) Using electrical fields across the spinal lesion to promote
axonal growth (i.e., regeneration) through the lesion. (C) Paired stimulation (here cortex and a peripheral nerve) to strengthen synaptic
connections by coactivating pre- and post-synaptic neurons. (D) Electrical stimulation to activate (or facilitate activation) of spinal

circuitry below the level of the injury.
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Much of the work from Borgens’ in-vivo studies in injured spinal
cords has been based on the findings that neurons respond to EFs
in vitro. EFs alter local ion gradients, which is thought to encourage
growth of lesioned axons. The idea that axons demonstrate out-
growth toward a cathode and regress from an anode in vitro has
been around for quite some time.>>** In an in-vitro experiment in
which EF polarity was reversed, McCaig found that there was an
asymmetrical response in neurite outgrowth with the cathode-
facing outgrowth being faster than anode-facing regression).! This
suggested that neurite outgrowth could be achieved in opposite
directions by reversing the EF polarity. The Borgens group applied
these ideas to several of their own models of SCI. Here, we will
discuss their use of epidural ES to produce an EF at the site of SCI
in order to promote axonal outgrowth into the lesion. However,
this is not to be mistaken for epidural ES or intraspinal micro-
stimulation below the SCI, approaches used to excite local circuitry
and/or central pattern generators to evoke or facilitate functional
movement patterns. This approach has been studied in humans and
animals, respectively, and will be discussed later in this article in
the context of the clinical applicability of ES and EFs.

One of the first studies to examine the effects of an imposed EF
on spinal cord axon regeneration was performed in a complete
spinal cord transection lamprey model.” In this experiment, larval
lamprey underwent ES in the form of 10 uA DC applied across the
spinal cord lesion for 5 or 6 days. A strength of this model for
elucidating the mechanisms by which applied fields can promote
axon outgrowth is that stimulation was delivered directly to the
spinal cord using indwelling Ringer-based electrodes. This ensured
delivery of current to the injury site and a reasonable estimate of
current value. Following the stimulation-induced enhancement of
their constitutive capacity for axonal outgrowth, Mauthner cell
axons were dye filled to reveal a significantly higher number of
axonal processes growing into and across the lesion in stimulated
versus sham animals. Intracellular recordings demonstrated action
potentials crossing the lesion.” Subsequent studies investigated ES
after complete and partial transection in a guinea pig model. These
studies showed increased axonal growth in the experimental groups
into, but not across the lesion site.'”'® Although these studies
did not include behavioral data, a follow-up study demonstrated
functional recovery in a group of electrically stimulated guinea pigs
when the EF was applied rostral to the site of the lesion.'® More-
over, further experimentation with DC ES to produce a static field
in awake dogs with complete paraplegia and implantation of an
ES pack promoted moderate functional recovery.”'

In the dog model, an oscillating field stimulator (OFS) was used
based on the idea that alternating the polarity of an EF can result in
neuronal outgrowth in opposite directions. It was reasoned that
alternating the polarity might promote outgrowth of ascending
sensory fibers in one direction of current flow, and outgrowth of
descending motor fibers in the other. Whereas polarity-dependent
effects with DC ES have been reported,®?*! oscillating ES may
directly activate axons that can trigger upregulation of growth-
promoting signaling pathways in neurons.

The success of early studies of ES of the spinal cord led to the
first clinical trial in humans in 2005.%* This was a phase 1a study
and consisted of an OFS device implanted in 10 complete SCI
patients (level C5-T10). The device was placed within 18 days of
injury with the electrodes spanning one segment on either side of
the level of injury in an extra-spinal location (no contact with any
neural elements). The device was left implanted for 15 weeks, after
which time it was removed and its function tested. Outcome
measures from this study included ongoing neurological exami-
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nation by an unblinded study neurologist, surgeon, and research
nurse using the American Spinal Injury Association (ASIA) Im-
pairment Scale (AIS), somatosensory evoked potentials (SSEPs),
and the Visual Analog Scale (VAS) for pain at baseline, 6 weeks, 6
months, and 1 year post-implantation. The trial concluded that
the surgical procedure and OFS implant were well tolerated and
safe, and resulted in improvement in all parameters assessed. This
resulted in approval of further patient recruitment, in which an
additional four patients were included and compared with 14 his-
torical control patients. Results from this expanded study were
subsequently filed in a report to the Securities and Exchange
Commission by the owner of the technology.* Patients treated with
OFS showed marked improvement in all domains assessed, with
the exception of motor recovery, a significant limitation to the trial.
However, as pointed out by Tator, much of the enthusiasm from this
preliminary and seminal clinical work is tempered by the unblinded
nature of the assessments, the small number of patients included,
minor to moderate neurological recovery, lack of a control group,
and lack of a peer-reviewed publication.>**

ES to Increase Excitability or Directly Activate
Spinal Neuronal Networks below the Level of Injury

The second distinct mechanism of action for ES following SCI is
to increase the excitability of neuronal networks in the spinal cord
or directly activate distinct neuronal motor pools. In contrast to
experiments in which the creation of an electric field was the intent,
the applied currents are higher and are not applied at the lesion
site, but rather below the level of the injury (Figure 1). This field of
research is now commonly referred to as ‘‘neuromodulation’;
however, historically, neuromodulation in the field of motor control
was not limited to ES. Research on neuromodulation was pioneered
in various in-vivo animal models and in in-vitro preparations. The
first form of neuromodulation described is likely based on re-
search in decerebrate cats in which stimulation of the mesence-
phalic locomotor region (MLR), a small region in the brainstem,
could initiate and modulate stepping. Interestingly, the higher the
intensity of this stimulation, the faster that animals would walk,
even changing their gate from walking to trotting and ultimately to
galloping.*® In order to explore spinal pattern generating networks
for locomotion in isolation and to learn how to imitate their ac-
tivity, isolated spinal cords (in vitro) were utilized as well as adult
cats® and rats***' with a complete thoracic spinal cord tran-
section. Various groundbreaking in-vitro experiments with spinal
cords from neonatal rats not only showed that pattern-generating
networks can produce rhythmic output without descending motor
and sensory input, but also demonstrated the powerful effects
of peptides, such as dopamine or serotonin, in triggering and
modulating network activity.*>**

The seminal work of Barbeau and Rossignol**** explored the
role of monoamines and noradrenergic and dopaminergic drugs
in cats with spinal transections. These animals were trained to step
on a treadmill, and represented an optimal model to study the spinal
networks in vivo. They found that neither serotonergic nor dopa-
minergic agonists successfully induced locomotion, which was,
however, achieved with noradrenergic precursors and the agonist
clonidine. Further, Barbeau and Rossignol reported that seroto-
nergic agonists and precursors modulated the stepping pattern,
suggesting that these drugs increased excitability of the spinal
networks.*** These studies pioneered the field of chemical neu-
romodulation after SCI, and laid out the path for various possible
treatment approaches. One of these approaches was to implant
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serotonin-producing cells into the spinal cord of rats with complete
spinal transections to compensate for the lack of descending sero-
tonergic innervation, and thus to enhance the excitability of spinal
networks.***’ In both cases, this approach was reported to restore
coordinated hindlimb movements in the animals.

Resulting from years of studies in cat locomotion, another pow-
erful neuromodulatory factor that has been frequently employed, but
rarely reported, is cutaneous stimulation or exteroceptive stimuli.
This approach of gentle mechanical stimulation of the perineal area
in cats was regularly employed to initiate walking. However, this
has rarely been considered for clinical translatability.*8~>°

Currently, the term ‘‘neuromodulation” has been somewhat
misused, as it is generally referred to as ES-induced modulation.
Considering the current excitement regarding ES-induced neuro-
modulation, it is surprising to learn that this approach has been
around for many years, and originated in the field of pain control.”’
Another fact is that ES of spinal networks to enhance motor
function was performed in humans long before it was considered
in animal models of SCI. In 1980, Sherwood and colleagues ex-
plored epidural stimulation to enhance motor function in individ-
uals with upper motoneuron disorders,”” and in 1998 it was shown
for the first time that lumbosacral epidural stimulation can facili-
tate rhythmic motor activity in functionally complete SCL.>® The
human trials and possible mechanism of where stimulation exerts
its modulatory effects will be discussed in more details in subse-
quent sections of the review.

In animals, epidural stimulation was frequently used as a tool to
explore pattern- generating networks in the spinal cord. These
studies showed that placing electrodes above the cervical or tho-
racic spinal cord could trigger quadrupedal or bipedal locomotion,
respectively, in cats.>* Various later studies in cats® and rats*! have
bolstered knowledge about the use of epidural stimulation in animal
models and evolved as treatments for SCL>>® More recently,
studies have focused on combining epidural stimulation of spinal
circuitry with other treatment approaches, including training and
pharmacological neuromodulation.*'**°* These studies have
been summarized in detail in excellent reviews, and the reader is
referred to these articles for specific details on the stimulation
parameters.(’]’64

Considering that the specificity of neuromodulatory epidural
stimulation is limited, and the result is typically a subthreshold
stimulation increasing neuronal excitability, approaches to stimu-
late spinal networks directly and in a more targeted fashion have
also been explored. For example, a somewhat different approach is
to use epidural stimulation to produce a spatiotemporal activation
configuration that produces a locomotor pattern. This approach to
epidural stimulation has been pioneered by Courtine and collabo-
rators, by whom a stimulation paradigm was developed to activate
muscle synergies to improve locomotion.®® This approach has then
been combined with a closed-loop brain—spine interface, in which it
was reported to restore weight-bearing locomotion in non-human
primates®®®” and rats.*®

Another approach for a more targeted stimulation of specific
neuronal populations is intraspinal micro-stimulation, which re-
quires the direct implantation of electrodes into the spinal cord
(enabling more precise targeting of interneuron and motoneuron
pools). The cost of increased invasiveness from this approach
comes with the benefit that targeted stimulation can evoke specific
and sequential movements such as leg extension or flexion,®"°
preferentially by recruiting fatigue-resistant muscle fibers.”! With a
large number of electrodes and appropriate orchestration of the
stimulation at different spinal locations, overground stepping with
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propulsive and supportive forces could be elicited in anesthetized
cats, often for very extended periods of time.”>

An interesting vision for the future is to control such intraspinal
stimulation with cortical activity, to control movements while
bypassing the injured spinal cord.”>”> The value of intraspinal
stimulation has also been explored at the cervical (C4-C5) level to
evoke forelimb function in rats following a severe, lateralized
contusion injury’® and in spinally intact primates,”’ from which a
variety of hand and arm movements were elicited. However, the
question remains whether the highly complex stimulation patterns
required to control arm and hand function can be achieved using
this approach. Similarly, intraspinal stimulation was recently re-
ported to promote diaphragm activity.”® In these elegant studies,
medullary respiratory input in rats with cervical hemisection was
utilized to trigger cervical intraspinal stimulation to activate the
diaphragm.

Less invasive than either intraspinal or epidural stimulation is
transcutaneous stimulation, in which electrodes can be easily ap-
plied and removed (reviewed in Mayr and coworkers’). Similar to
epidural stimulation, this field was also pioneered in studies on
pain, in which transcutaneous nerve and dorsal column stimulation
were reported as effective modalities for pain treatment.®*' The
ability of transcutaneous stimulation to evoke and modulate spinal
reflex function reliably was demonstrated in various studies, and
made it an attractive approach to treat and assess SCL.8*% It was
suggested that transcutaneous stimulation was able to activate large
diameter afferents in both dorsal®** and, depending on location,
ventral roots.®*® Consequently, transcutaneous stimulation has
been used as a tool to assess supraspinal and spinal connectivity,*’
and has already produced promising and persistent results in
treating individuals with cervical SCI when combined with train-
ing.”® Recently it was reported that even a single session of trans-
cutaneous stimulation in individuals with incomplete SCI had
excitatory effects on spinal and inhibitory effects on cortical cir-
cuitry, possibly contributing to recovery.”!

Clinical studies

A major advance in translating spinal stimulation to humans
with SCI followed the success of the animal studies showing effi-
cacy of spinal cord epidural stimulation to enhance the excitability
of spinal cord networks below the level of injury and promote
locomotor function. Studies from the Harkema and Edgerton
groups use epidural stimulation applied via a 16-electrode array
over spinal cord segments L1-S1 during standing training following
motor complete SCI (AIS A or B). After successful implantation
of their epidural stimulator in one AIS B patient resulted in lim-
ited weight-bearing and locomotor-like leg movements, they found
that additional SCI patients implanted (AIS A, n=2; AIS B, n=2)
displayed full weight-bearing ability during ES, as well as stepping-
like patterns of movement when ES parameters were optimized for
locomotion.”>* Whereas these participants were able to voluntarily
move their lower extremities in the presence of epidural stimulation,
this capacity was lost when the stimulator was turned off.

Stimulation and training

In a study by Gill and coworkers,” epidural stimulation was
combined with locomotor training over 43 weeks in an individual
with a chronic thoracic SCI. The use of an interleaved stimulation
paradigm allowed bilateral leg movements, and was seen as a key to
the success of the stimulation. The overall recovery was remarkable
and ranged from independent treadmill walking to overground
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walking with an assistive device (walker). This study was an im-
pressive demonstration that a lesion originally considered complete
allowed for voluntary movements when epidural stimulation was
applied. In another study from the Harkema group, it was found that
individuals were able to achieve some degree of independent
standing and trunk stability for a limited period of time with
stimulation and intense training (standing with/without assistance
1h/day, 5 days/week for a total of 80-82 sessions; stepping with
body weight support on treadmill 1h/day, 5 days/week for a total
80-84 sessions). Interestingly, the study also investigates the ef-
fects of task-specific rehabilitative training, akin to earlier cat
studies by the Edgerton group,>’®°*8 providing insight into the
mechanism behind the improved motor function that they observed
with ES. As a part of their study protocol described, the four
individuals were trained to stand in combination with ES, and
subsequently trained to step in combination with a different set of
ES parameters optimized for evoking locomotor electromyo-
graphic (EMG) patterns. They found that this subsequent step
training impaired three out of four individuals’ ability to stand.”
Similar task-specific training impairing the ability to perform al-
ternative motor tasks has been reported in cats and rats with
complete SCL'%*!°" More recent studies have also reported the
efficacy of ES in promoting recovery beyond motor function. More
specifically, promising findings on the beneficial role of ES on
cardiovascular function, bowel/bladder continence, and sexual
function in SCI individuals has increased awareness on other ES-
based therapies.'®~'%> Although many questions remain such as
the underlying mechanism for ES-based therapies, the generaliz-
ability, and larger, longer-term follow-up results from such studies,
the preliminary studies mentioned represent a promising step for-
ward in the treatment and recovery potential for SCL

Mechanisms of recovery

The mechanism behind the motor recovery facilitated by epi-
dural stimulation is not yet resolved. One plausible explanation is
that the ES-induced modulation of interneuron and motor neuron
excitability distal to the SCI may allow afferent input to enhance
and optimize neural activity within the spinal cord. This idea is
supported by studies using computer simulations and behavioral
experiments®®'%%1%7 that suggest that it is large diameter afferent
fibers that are being stimulated by the ES. This stimulation of af-
ferent proprioceptive fibers likely occurs in the dorsal roots, thereby
activating segmental interneurons and motoneurons.'®”'%® This is
consistent with the task-specificity of training, as the afferent in-
formation and neural activation patterns differ between standing
and stepping (continuous bilateral activation of extensors for
standing and a rhythmic flexor-extensor pattern for stepping). It is
also consistent with the fact that epidural stimulation parameters
must be tailored to individuals in order to produce weight bearing.”*
Further, sufficient EMG activity for weight bearing in lower limb
muscles has not been induced by epidural stimulation in a sitting
position, and requires the sensory information from standing.

It is worth noting that studies investigating the use of spinal
epidural electrical stimulation in humans, as well as in animals,
have not reported any significant harm related to the use of ES. That
is to say, no neurological deterioration of intact limbs, or increase
in pain spasticity/spasms have been observed in the stimulated
cohort.'#2%2! Although this may also be related to the small
number of SCI patients having undergone ES implantation for the
purposes outlined in this article, the lack of significant adverse
events and its importance should not be underappreciated. This is
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especially true in light of the fact that the full effects of increasing
excitability of spinal cord circuits post-SCI are as of yet unknown,
and the mechanisms have yet to be fully elucidated. It is only
through the rigorous protocols and studies such as those outlined
here that progress will be made in ES-based treatment applications
for SCIL.

Phasic Electrical Stimulation to Increase Neuronal
Axon Growth Promoters and Intracellular Signaling

The third mechanism for ES after SCI is to increase intracellular
signaling in stimulated neurons to upregulate axon growth-
promoting factors and regeneration-associated genes in injured and
spared neurons. Different from the approaches discussed previ-
ously regarding the stimulation, ES after SCI is generally applied to
the cell body of the long-axon projection neurons. As such, in this
case, the intention is to repair injured corticospinal axons by tar-
geting their cell bodies in the cortex by ES (see Figure 1).

We distinguish two forms of axonal outgrowth: regeneration and
sprouting. Axonal regeneration is defined as outgrowth of an ax-
otomized neuron from its terminal, lesioned end at the site of injury,
whereas axon sprouting is defined as outgrowth from spared axons
or axotomized neurons proximal to the site of injury.'” Mature
neurons have a reduced intrinsic capacity for axonal outgrowth that
severely hampers both axonal regeneration and sprouting.1 10 The
principal goal of phasic ES is to enhance this axon growth capacity
and, in turn, produce structural, and possibly genetic, changes that
are durable and can persist after the stimulator is turned off. Phasic
ES can be distinguished from subjecting injured neurons to very
weak currents and EFs, in that the former are expected to activate
the neuron to produce action potentials or to raise excitability close
to threshold. The latter on the other hand may bias transmembrane
functions and Ca™ influx in more subtle ways.

The use of phasic ES triggers action potentials (as evidenced by
c-Fos expression and downstream EMG responses) at and rostral
from the site of SCI (such as in upper motor neurons upstream of
the injury or downstream sensory neurons).''"!'> Here, the ob-
jective of ES is to engage mechanisms, including elevating cyclical
adenosine monophosphate (cAMP), the growth factor brain derived
neurotrophic factor (BDNF) and mammalian target of rapamycin
(mTOR), and Janus kinases/Signal transducer and activator of
transcription proteins (Jak/Stat) associated signaling, to promote
axonal outgrowth. These ideas and their link to ES of the CNS
and its descending pathways have been gathered initially from the
peripheral nervous system and the growth-promoting effects of a
peripheral nerve conditioning lesion. Further, studies have identi-
fied that the reduced axon regenerative capacity of mature neurons
can be enhanced, like that of immature neurons, by manipulating
neuronal activity and signaling.

Peripheral conditioning lesions

Conditioning lesions consist of injuring the peripheral branch of
a sensory axon from the dorsal root ganglion (DRG) followed by
the CNS branch in a delayed fashion (for example, 7 days later). In
the absence of a conditioning lesion, the CNS axon branch fails to
regenerate; it cannot penetrate the dorsal root entry zone.''* How-
ever, by first lesioning the peripheral branch, increased axonal out-
growth into the central lesion is observed.''*~"'® The first, peripheral
lesion, primes the DRG neurons and upregulates regeneration/growth
associated gene expression so that when their central branches are
lesioned there is regenerative capacity. The initial lesion upregulates
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cAMP, which, as discussed earlier, is thought to contribute to the
enhanced regenerative capacity.

Interestingly, in a combined conditioning lesion and ES exper-
iment, peripheral nerve ES was shown to increase axonal outgrowth
of the injured nerve’s central projection into a central spinal cord
lesion and increase cAMP levels to the same extent as a condi-
tioning lesion.''® The mechanism by which increased axonal out-
growth after ES, similar to a conditioning lesion, is thought to be
mediated partially through cAMP. In fact, injecting cAMP into the
DRG can mimic the effect seen by the conditioning lesion.'!” It has
been shown that cortical and spinal cAMP levels decrease fol-
lowing SCL''® and that these levels can be partially restored with
rehabilitative training.'"®

A brief period (1 h) of phasic electrical stimulation has been used
to promote the long-term process of motor axon regeneration and
muscle targeting by Gordon and colleagues.''*'2*'?! In this model,
ES has been shown to increase the expression of BDNF and its
receptor tyrosine receptor kinase B (TrkB).'?* BDNF is a multi-
faceted neurotrophin whose breadth of effects is beyond the scope
of this review; however, a full review can be found elsewhere.!??
Among its many actions, BDNF has been shown to stimulate axon
growth via the extracellular signal regulated kinase (ERK) path-
way.'?® Based on these findings, akin to a peripheral conditioning
lesion, increased cAMP and BDNF levels resulting in increased
axonal outgrowth represents a plausible and potential mechanism
for ES-induced axonal outgrowth.

ES to upregulate CNS axon growth signaling

Martin and colleagues have applied epidural ES to CST axons in
the medullary pyramid or epidural ES to the MCX, the principal
source of CST axons, to promote CST axonal sprouting of spared
CST fibers in the spinal cord.”>"'**='?7 This is a very different ap-
proach from that of other studies discussed, and was based on
earlier findings from the Martin group that CST ES promoted axon
sprouting during development, whereas CST inactivation retarded
outgrowth.”*!2-132 The stimulation pulse pattern, which is a
phasic high-frequency burst (45 ms duration; 333 Hz; 6 h) in mature
animals elevates mTOR and Jak/Stat signaling.''' Both pathways
are downregulated during development, as axons lose their intrinsic
capacity to regenerate, and are subsequently upregulated with ES.
Stimulation for 10 days in intact rats produced significant sprouting
of ipsilateral CST axons, which was used as an outgrowth assay.
Interestingly, blocking mTOR signaling with rapamycin during the
stimulation period eliminated all stimulation-dependent out-
growth.!'! By contrast, blocking Jak/Stat signaling with AG490 did
not affect axonal outgrowth, but prevented stimulation-dependent
CST pre-synaptic site formation. Genetic upregulation of these
signaling pathways has been shown to promote CST axon regen-
eration, as well as sprouting.'**~'33

Using their CST ES model, the Martin group demonstrated
that after a pyramidal tract lesion, which eliminates all CST fibers
from one hemisphere and almost all projecting to the contralateral
spinal cord, ES of the intact CST or MCX for 10 days causes
significant ipsilateral CST sprouting into the denervated side.?>"'*
Importantly, stimulation-dependent CST sprouting is able to
complement injury-dependent outgrowth: although both injury and
ES promote axonal sprouting in rats, the effects are, in fact, addi-
tive.”> Rats undergoing stimulation and pyramidotomy had a sig-
nificantly increased stepping-error rate on the horizontal ladder
task compared with the rats with injury only. Further, by the end of
the post-operative testing period, there was no significant differ-
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ence between the stimulation group and their error rate before in-
jury.'?>126:136 Errors remained elevated in the unstimulated group.
The errors that did occur in the stimulation group were comparable
with their baseline errors, arguing against behavioral compensation
or adaptation.'*® To investigate whether or not the stimulated MCX
was responsible for the observed behavioral effects, muscimol
(a GABA, agonist) was injected into the stimulated MCX. This
resulted in the reversal of the behavioral improvements seen in the
stimulated rats compared with controls. Once the muscimol effects
had worn off, the rats’ motor deficits once again improved to
baseline.'?*'3® These experiments demonstrate that the ipsilateral
MCX is a viable target for ES in order to promote recovery fol-
lowing SCI. In this model, restoration of function may be mediated
by the uninjured CST and/or indirect cortical projections to the
segmental circuits.

These studies raise an interesting question about which anatomi-
cal pathways to stimulate in order to maximize recovery of motor
function: the undamaged or the damaged pathways. The studies de-
scribed utilized unilateral lesions and stimulated the undamaged
pathway to promote sprouting to the ipsilateral, denervated, side of
the spinal cord. The CST in primates has been shown to have a higher
number of midline crossing branches than the CST in rodents,m‘138
making spared ipsilateral CST fibers an optimal target for promoting
recovery in primates after an incomplete lesion. Further, micro-
stimulation experiments investigating the use of the uninjured CST
have shown that at higher current thresholds, cortical stimulation
(to affect the uninjured CST) can generate similar movements to
those seen contralaterally.'?” Following injury to the CST, efforts to
improve functional outcome and recovery have traditionally centered
on trying to repair damaged connections or preserve spared connec-
tions from the injured CST. Alternatively, treatment can be aimed at
strengthening and expanding connections from the uninjured CST so
that it assumes control of both sides of the body.

For a midline cervical SCI, the CSTs from both hemispheres are
damaged. To begin to address translational repair strategies, the
Martin laboratory has applied stimulation bilaterally in a rat C4
midline contusion model.''> As could be expected from using such
a different model, the proposed mechanism by which ES promotes
axonal outgrowth is also substantially different from that described
previously with EFs and epidural stimulation below the level of
injury. In the rat, the majority of CST axons are located centrally
and are eliminated after a contusion injury. What remain are sparse
CST axons in the lateral and ventral white matter columns. To
address weakened CST projections, the Martin group modified the
pyramidal tract ES protocol in two ways. First, they developed a
patterned ES based on the theta burst stimulation protocol (TBS)
using transcranial magnetic stimulation (TMS) in humans to pro-
mote long-term potentiation (LTP) of motor-evoked potentials
(MEPs)."* Thirty minutes of TBS strongly facilitates evoked
motor responses, similar to LTP. Second, when MCX ES is com-
bined with concurrent cathodal DC stimulation of the cervical spinal
cord (termed trans-spinal DC stimulation [tsDCS]), which strongly
potentiates MCX-evoked muscle responses.''>'*" It was reasoned
that cathodal tsDCS would facilitate the actions of the MCX ES.

Ten days of daily stimulation, beginning 1 week after a C4
contusion injury, produced significant sprouting of spared CST
axons below the injury, as well as above the injury.!'? This was
associated with improvement in manipulation and walking (hori-
zontal ladder task) skills compared with the unstimulated group.
Interestingly, the ES protocol promoted rostral sprouting that was
very robust and primarily involved the axotomized dorsal CST,
which contains most of the CST axons. Considering the various
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studies of the Borgens laboratory showing axonal outgrowth in the
presence of EFs, the tsDCS may have also promoted sprouting of
damaged CST axons rostral to the injury. The benefit of this dual
stimulation protocol (intermittent TBS [iTBS] in MCX and tsDCS
of the cervical spinal cord) on motor improvement after C4 con-
tusion in rats was replicated by an independent laboratory, using the
Martin laboratory experimental protocol.'*!

Injury-dependent sprouting has also been shown to correlate
with functional recovery after SCL'**'*3 The expectation is
that with ES, the growing connections may be more effective than
without ES. ES after SCI appears to boost injury-dependent
sprouting and, importantly, helps to refine new connections to in-
crease their potential for becoming stronger and more functional.

More recent work examined the effects of cortical ES of the CST
prior to its injury in rats,'** in which the (to be) injured CST un-
derwent a conditioning ES (in contrast to the uninjured CST being
stimulated in the pyramidal tract lesion studies published by Martin
and colleagues).”>'**'?" The results showed that the ES in-
creased collateralization and reduced axonal dieback depending
on the ES frequency employed (20 Hz vs. 333 Hz). A more clini-
cally relevant approach recently reported comparable results and
enhanced functional recovery when the cortical ES of the lesioned
CST was performed subsequent to its spinal lesioning.'*’

Whereas the stimulated cortex is responsible for behavioral
improvement, at least after pyramidal tract lesioning,'>**® many
questions remain. For example, what capacity do extrapyramidal
tracts display for ES-induced outgrowth and recovery? Many of the
studies discussed have pertained to the CST; however, in another
study exploring the effect of ES on the rubrospinal tract, compared
with the control group, ES failed to result in BDNF upregulation,
or an enhanced growth response.'® Another issue is the role that
CST sprouting caudal to the injury plays in behavioral recovery
versus sprouting at sites rostral to the injury. In addition to spinal
CST sprouting, MCX ES increases outgrowth of corticofugal axons
into the forelimb area of the red nucleus and into the medullary
reticular formation.'* The relative amount of new connections in
the brainstem and rostral spinal cord that each contributes to the
improvement of motor impairments remains unknown. In addi-
tion, although increased axon varicosity density correlates with
increased axon density, the role of these new axon growth terminals
has not yet been established. Whether they are synapsing onto
motoneurons or interneurons, or play an excitatory role or an
inhibitory role for example, has yet to be determined.

To summarize, studies in which peripheral nerves are stimulated
show that ES increases cAMP and BDNF to enable both enhanced
muscle target selection peripherally after motoneuron peripheral
axotomy, and sensory fiber central branch regeneration through the
dorsal root entry zone after injury. Moreover, studies of central
neurons of the CST show that ES elevates mTOR and Jak/Stat
intracellular signaling, which is necessary for axonal outgrowth and
synapse formation. It remains to be determined how best to target
the disparate axon growth-regulating mechanisms to restore
function after SCI. Further, using different lesion models, axonal
outgrowth and some recovery of motor behavior has been dem-
onstrated after ES of damaged and undamaged CST projections.

Pairing Stimulation To Promote Transmission
In Specific Pathways

The fourth mechanism for ES after SCl is to leverage the timing
of paired stimulation to produce plasticity. The idea is based on
work from Hebb proposing that synaptic plasticity occurs when
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pre- and post-synaptic neurons are active together within a narrow
time window.'*” This process is frequently referred to as ““fire
together, wire together.”” This wiring (or synaptic adaptation) can
naturally occur when multiple neurons that are active simulta-
neously connect to a common target and can thus activate it.
In vitro, this can be recapitulated where it has been demonstrated
that synaptic strength can be amplified by precisely timing pre-
synaptic activity and depolarization of the post- synaptic cell.'*®

Paired associative stimulation (peripheral and MCX stimulation)
has been used for some time.'**~'>* The approach of paired asso-
ciative stimulation or paired pulse stimulation can be used to
potentiate either voluntary movements or the motor response to
another stimulus. The idea is that if the timing is correct, the neural
consequences of the two stimuli will interact in adaptive ways and,
one hopes, lead to persistent forms of plasticity. Such stimulation
can use a single site (e.g., MCX ES) or two different sites (e.g.,
MCX and a peripheral nerve or muscle). The interstimulus interval
(ISI) is typically adjusted so that a peripheral stimulus activates the
cortex at the time that the MCX stimulus is triggered, implying a
cortical locus for plasticity. Of particular interest is when the ISI
enables facilitation at the spinal cord level, implying plasticity at
the spinal level.'>*'! This convergence of descending and afferent
signaling may be on common post-synaptic interneurons or com-
mon neural populations.'®' Unlike in rodents where the CST does
not make corticomotoneuronal connections, in the human, con-
vergence for the CST would additionally be expected to be on
motoneurons, which may make this modality more impactful than
signal convergence occurring solely on interneurons.

In an example of dual stimulation at a single cortical site, Perez
and colleagues used a TMS pulse interval based on the timing of the
normal pattern of MCX-evoked activation of the CST, which re-
cruited strong temporal summation in cervical SCI subjects.'*® This
resulted in stronger MEPs and, remarkably, the participants were
able to perform basic motor tasks (involving hand dexterity) better
after the therapy. The time intervals are tailored to the timing of
synaptic events evoked by an MCX stimulus. If the stimulus
mimics a phasic movement control signal, then the synaptic events
associated with that signal are partially replicated with the paired
stimulation protocol. Importantly, if alternate timing is used, there
is no MEP plasticity or improvement in motor function. This is an
example of a stimulation protocol that can be coupled with motor
training to enhance the efficacy of rehabilitation. For two stimu-
lation sites, such as motor cortex and the periphery (see Figure 1),
the interstimulus interval can be adjusted so that the evoked re-
sponses from stimulation of both sites converge at the spinal level.

Following their work in rodents and primates, Courtine and
colleagues®’ applied epidural stimulation to activate motoneurons
via proprioceptive circuits in the dorsal roots in individuals with
chronic severe SCI. This technology was applied to selected roots
in a timed manner triggered by residual movements while the
participants were walking in a gravity assist device.'>’ This ap-
proach resulted in immediate recovery of locomotor function, and
over a few months, enabled recovery of voluntary control of orig-
inally paralyzed muscles even without stimulation. Underlying
mechanisms in this scenario was an increase in motoneuron
excitability.

An important new development is to substitute one ‘‘stimulus”
in a paired-stimulation protocol for a naturally occurring neural
event, such as a recorded action potential, local field potential, or
EMG response. In primate studies, spontaneous EMG responses
or cortical activity have been used to trigger spinal cord micro-
stimulation to strengthen the ventral spinal cord connections
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mediating the EMG response.'3®!5° After cervical injury, this ap-
proach can lead to improvement of motor function for 3 additional
weeks without stimulation.'®® Further, the detailed research on
electrical activation of spinal circuitry has been rapidly expanding
to include closed-loop brain—spinal cord interfaces that were re-
ported to be able to restore weight-bearing locomotion in non-
human primates®®®’ and rats.%

Approaches that optimize the timing of ES events may lead to
greater strengthening of the targeted connections than other ap-
proaches. However, as timing is critical to strengthening plastic-
ity, the wrong timing can lead to much weaker connections. For
example, in models of spike-timing dependent plasticity (STDP),
the stimulus that is being used to strengthen the motor response
must precede the response over a critical time window for
strengthening to occur. If it follows the response, again within a
critical time window, the response is weakened. This is an impor-
tant concern for translation of approaches that make use of STDP.
Similarly, the selective reinforcement via STDP of spared motor
pathways and their functional response after injury during the re-
habilitative process assumes that the response is adaptive. If indeed
adaptive, the use of STDP technology and mechanisms would
support improved motor control if strengthened.

Synthesis and Future Directions

ES offers itself as a straightforward treatment approach and is
currently explored primarily for neuromodulation to excite neuro-
nal networks directly. It is important to recognize that as rehabili-
tative training may not be feasible in the setting of acute trauma, ES
may be an alternative if both it and rehabilitative training work via
complementary mechanisms. ES can be applied during the acute
injury period when rehabilitation is not possible, in order to begin to
repair damaged neural networks.

As discussed, ES to promote recovery after SCI is more than
simply increasing the excitability of the spinal cord neural networks
caudal to the injury. An entire body of literature exists supporting
the notion that different modalities of ES can help promote and
direct axonal outgrowth. We are now beginning to understand some
of the cellular mechanisms that underlie the capacity of ES to
promote axonal outgrowth. Animal studies show that more active
inputs to neurons in spinal motor circuits, and the spinal neurons
themselves, are able to secure more and stronger connections than
their less active counterparts reflecting activity-dependent synaptic
competition.?®!?* If this is similar to the normal establishment of
synaptic connections, where use-dependent processes and training
strengthen connections that support function and (in the case of
development) eliminate unnecessary connections, it helps to ex-
plain how ES-assisted rehabilitation could lead to stronger and
more effective connections. Choice of which pathway to stimulate
is particularly critical with ES because of the novel activity-
dependent competitive interactions that ES may produce; stimu-
lation of the wrong pathway could be detrimental to recovery, akin
to what is seen in task-specific training. Given our limited under-
standing of the role of different motor pathways in everyday
movements (apart from the CST) and the importance of afferent
input in facilitating movement, we have even less of an under-
standing of which pathways are best promoted after injury.

It is important to understand how ES can be applied to the
chronically injured person. Whereas it is generally hypothesized
that there is an early time window for axon growth into and through
a lesion site, activity-dependent CST axon sprouting may occur
weeks after injury. With scar formation after SCI, there likely will
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be a time window in which electrical stimulation needs to be im-
plemented to promote axonal growth at and through the injury site,
and behavioral recovery. Nevertheless, spinal ES in chronically
injured people may lead to outgrowth of spared axons below the
lesion. Intriguingly, the limited reports of some improvement be-
ing observed after persistent stimulation in chronic SCI individu-
als, as well as after the stimulator is turned off, may be the result of
the durable structural plasticity induced by ES.

There are many challenges to translate ES-based approaches to
clinical practice. Among these is better target engagement by the
stimulation. This assumes that we know what the target is, so that
we can optimize electrode placement. Imaging-based finite element
method (FEM) modeling is a way to standardize electrode place-
ment and reduce between-study/subject variability, leading to an
individualized, patient-specific approach to ES. Dosing, such as for
pharmaceutical interventions, will also have to be carefully worked
out. Nevertheless, these challenges can be addressed with further
animal research in which biological parameters can be rigorously
examined in order to translate these minimally invasive approaches
to people with SCI, both acutely and chronically.
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