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Highlights
RNA can manipulate targets that were
previously undruggable by monoclonal
antibodies (mAbs) or small molecules.

RNA therapy is a safer alternative to DNA
therapy and is versatile as it can either
increase or decrease gene expression
in order to introduce new transcripts for
protein replacement therapy and more.

Clinical translation of RNA therapeutics
has accelerated in recent years.

Chemical manipulation of RNA mole-
Therapeutic RNA molecules possess high potential for treating medical condi-
tions if they can successfully reach the target cell upon administration. However,
unmodified RNAmolecules are rapidly degraded and cleared from the circulation.
In addition, their large size and negative charge complicates their passing through
the cell membrane. The difficulty of RNA therapy, therefore, lies in the efficient
intracellular delivery of intact RNAmolecules to the tissue of interest without induc-
ing adverse effects. Here, we outline the recent developments in therapeutic RNA
delivery and discuss the wide potential in manipulating the function of cells with
RNAs. The focus is not only on the variety of delivery strategies but also on the
versatile nature of RNA and its wide applicability. This wide applicability is espe-
cially interesting when considering the modular nature of nucleic acids. An optimal
delivery vehicle, therefore, can facilitate numerous clinical applications of RNA.
cules render them more stable and
hence increase their potency and
applicability.

Various carriers for the in vivo delivery of
RNA molecules have been invented
that include antibody–RNA conjugates,
aptamer–RNA conjugates, lipid nano-
particles, and polymers.

Delivery to extrahepatic tissues might
require targeting moieties.
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Current Landscape of Biopharmaceutical Industry
For many years pharmaceutical companies have relied on small-molecule therapeutics to generate
drugs. These small molecules bind to pockets of target proteins such as enzymes, receptors, or
other proteins, mostly in an antagonistic way. By doing so they interfere with a certain biological
process resulting in a therapeutic effect [1]. While small-molecule drugs possess certain favorable
characteristics (such as ease of production, possibility of oral administration, favorable pharmaco-
kinetics, and the ability to pass through the cell membrane), their potential is limited as they rely on
the druggability of the target.Whether a biological target is druggable or not depends on a variety of
factors such as the presence of suitable pockets in the protein structure in which small molecules
can dock, a suitable size to accommodate binding, and the degree of polarity. Docking into a deep
cavity is crucial in achieving sufficiently high binding affinities (generally with a KD in the nanomolar
range or better) [1]. It is estimated that out of the ~20 000 human proteins, only ~3000 are
druggable [2]. As of 2017, approved drugs targeted only 667 human proteins [3]. This not only
indicates that more drugs can be developed to reach the 3000 druggable targets, but also
highlights that the vast majority of 20 000 human proteins remain undruggable.

To tap into this unexplored potential, we need to look beyond small-molecule drugs. Over the
years, more complex, biological macromolecules such as monoclonal antibodies (mAbs) have
entered the pharmaceutical arena. Major benefits of their use, compared with small-molecule
drugs, include long half-life, ability to target a broader group of proteins (due to the vast mAb
repertoire), ability to be engineered to widen their applicability and increase their specificity, and
lower toxicity. Disadvantages of themore complex biological macromolecules includemore com-
plicated pharmacological profiles, higher cost of production, and limits in route of administration
(mostly intravenous) [4].While small molecules still dominate the pharmaceutical market, biologics
have started to gain a higher share in the last few years. In 2018, 17 of the 59 newly approved
drugs were biologics [5,6]. Altogether, this shows that besides traditional small-molecule
drugs, larger biomolecules are becoming increasingly important to treat diseases.

In line with the trend of developing more specific and efficacious medicines, a new therapeutic
avenue is gaining momentum: that of nucleic-acid-based therapy. Examples of such therapeutic
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Glossary
Asialoglycoprotein receptor
(ASGR): a C-type lectin that is highly
expressed on hepatocytes and removes
desialylated glycoproteins from the
circulation.
Endosomal escape: when a payload
is internalized through endocytosis, it
enters endocytic vesicles called
endosomes. The payload needs to
escape from the endosome in order to
reach the cytosol, failure to escape
results in transport to late endosomes
and eventually lysosomes resulting in
degradation of the payload.
Enhanced permeability and
retention (EPR) effect: a theory by
which high-molecular-weight
nontargeted drugs accumulate in cancer
tissues or tissues with inflammation due
to hypervascularization and leaky
vascular walls.
Locked nucleic acid (LNA): nucleic
acid analog that possesses a 2'-O, 4'-C
methylene bridge that reduces the
flexibility of the pentose ring. LNAs have
higher resistance against nucleases and
altered hybridization properties.
Macropinocytosis: ingestion of
extracellular liquid and dissolved
molecules by cells.
Ribozymes: RNA enzymes; RNA
molecules with catalytic activity.
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agents include the use of oligos [7], plasmid DNA [8], mRNA [9], ribozymes [10,11] (see
Glossary) and RNAi-related nucleic acids such as miRNA [12], siRNA [13], and short hairpin
RNA (shRNA) [14]. While the use of mAbs are limited to cell surface receptors or secreted
proteins, nucleic acids can interfere with protein expression itself and therefore circumvent the
druggability issue during drug development.

While clinical development of RNA therapeutics has faced decades of significant challenges in
terms of potency and immunogenicity, in recent years, the field has gained some momentum
with the recent approval of two siRNA-based drugs patisiran and givosiran [15,16] within a
short period of time. This, combined with a well-filled clinical pipeline of mRNA therapeutics
[17], shows the potential of clinical development of RNA therapeutics in the coming years.
Because of the rapid developments in this field, this review focuses specifically on RNA
therapeutics, its delivery, challenges, and finally, the outlook on clinical applications.

Types of RNA Therapeutics
RNA therapeutics span from antisense oligonucleotides (ASOs), siRNA, miRNA, mRNA, RNA
aptamers, short activating RNA (saRNA), to single guide RNA (sgRNA) for CRISPR/Cas9
systems. Below, we discuss each of these classes of RNA therapeutic molecules.

ASOs
ASOs are short, single-stranded oligonucleotides that are complementary to a target mRNA to
which they hybridize and thereby modulate protein expression. ASOs can be based on both
DNA and RNA [18].While classical ASOs are DNA based and act by formation of DNA–RNA
hybrids that serve as a substrate for RNase H, other ASO functionalities also exist and open
the door for RNA-based ASOs. For example, ASOs can hybridize close to the start codon and
sterically interfere with translation or hybridize to untranslated regions and sterically interfere
with RNA-binding proteins (Figure 1). Besides inhibiting translation, ASOs can also increase
translation efficiency of the target protein by sterically inhibiting the translation of an upstream
open reading frame and can alter splicing by binding to splice sites or to exonic/intronic inclusion
signals [19]. An example of an advanced stage RNA-ASO is a splice-modulating oligonucleotide,
QR-110, that is currently being investigated in clinical trials for use against a severe type of
inherited retinal dystrophy (Table 1) [20]. Furthermore, other types of RNA-ASOs are anti-miRs
which bind directly to the mature strand of the target miRNA and block its functionality [21].
Locked nucleic acids (LNAs) enhance the functionality of anti-miRs by increasing their stability [22].

siRNA and miRNA
siRNAs are short (20–25 nucleotides), double-stranded RNA molecules that use the RNAi path-
way to degrade a target mRNA in a sequence-specific manner. Upon delivery into the cytoplasm,
argonaute (AGO)2 cleaves the passenger (sense) strand and the guide (antisense) strand of the
siRNA is loaded into the RNA-induced silencing complex (RISC). The guide strand then guides
the RISC to the target mRNA which is recognized and cleaved (Figure 1). The RISC and guide
strand can be recycled and therefore one siRNA molecule can drive the cleavage of multiple
mRNA molecules resulting in highly efficient gene silencing [23].

Another type of RNA that uses the RNAi pathway are miRNA mimics (Figure 1). miRNA mimics
are synthetic, double-stranded RNAs that mimic a naturally occurring miRNA. These miRNA
mimics can replenish altered miRNA functionality. For instance, in certain types of cancer,
miRNAs that silence oncogenes are downregulated and miRNA mimics can give a therapeutic
effect in such cases [22]. For examples of siRNA and miRNA therapeutics that are currently in
advanced clinical trials for various disease indications, see Table 1.
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mRNA
The concept of transfectingmRNA directly into cells instead of transfecting DNA has been around
for a few decades [24,25]. mRNA is seen as a safer alternative to DNA [26] for therapeutic pur-
poses such as protein replacement therapy, as it degrades quickly leading to no concerns
about potential adverse effects from long-lasting expression or genomic integration. However,
mRNA expression is more difficult to regulate than DNA expression, which remains a concern
in mRNA therapy, as possible toxicity can arise frommRNA expression at off-target sites, leading
to unwanted protein expression. For instance, unspecific expression of factor VIII, factor IX, and
interleukin-12 has been shown to be dangerous [27]. Strategies that are commonly used for
spatial control of DNA expression (such as use of transcription factors, inclusion of tissue specific
promoters [28]) and for temporal control [such as the use of transcriptional on/off switches,
e.g., tetracycline-responsive repressor (TetR) [29]] are not available for mRNA control. This,
along with the unstable nature of mRNA, has delayed its potential for in vivo applications, and
the field of mRNA therapeutics received a major boost only as advances in chemistry created
more stable modified nucleotides (see later) and sophisticated regulation systems for mRNA
expression were generated. mRNA therapeutics have found a role in protein replacement therapy
[e.g., vascular endothelial growth factor (VEGF)-A delivery after myocardial infarction] [30], vaccines
for infectious diseases (e.g., expression of viral antigens in dendritic cells) [31,32], or for in vivo
production of mAbs [33]. For examples of mRNA therapeutics that are currently in advanced
clinical trials for various disease indications, see Table 1.

RNA Aptamers
Aptamers are short single-stranded oligonucleotides that can consist of both DNA and RNA.
Aptamers were first generated in 1990 using the Systematic Evolution of Ligands by Exponential
Enrichment (SELEX) selection method. Using SELEX, aptamers that selectively bind small molec-
ular ligands or proteins with high affinity and high specificity are selected from a library [34,35]. To
date, only one RNA aptamer has received FDA approval: pegabtanib, which is used for treatment
of age-related macular degeneration (mechanism of action is the binding to the VEGF isoform 165)
[36]. Several other aptamers are currently being investigated in clinical trials (Table 1). Besides the
therapeutic potential of RNA aptamers, aptamers are also used solely as targeting moieties to aid
delivery of other RNA payloads such as siRNA (seemore discussion in the section ‘Delivery of RNA
Therapeutics’).

saRNA
saRNAs are 21-nucleotide, double-stranded, noncoding RNA that possess two nucleotide over-
hangs on both ends [37] (Figure 1). saRNAs are initially loaded on the AGO2 protein where the
passenger strand is cleaved. The saRNA–AGO2 complex then enters the nucleus and binds to
promoter regions of genes to enhance transcription [38]. In a study by Zhao et al., a combination
of saRNA and siRNAwas used tomodulate the balance between the transcription factors CCAAT/
enhancer-binding protein α and β (CEBPA, a tumor suppressor and CEBPB, an oncogene,
respectively), where saRNA-driven activation of CEBPA decreased proliferation and migration
in the differentiated hepatocellular carcinoma (HCC) cell lines [39]. saRNAs have recently
Figure 1. Overview of Different Mechanisms of Action of Different RNA Therapeutics. (1) Without therapeutic RNA
molecules, the translation of a pathogenic protein proceeds without inhibition (shown in the broken line box). (2) ASOs
hybridize to the target mRNA, while the (3) siRNA/miRNA mimics utilize the RISC in the RNAi pathway to (4) inhibi
translation of target mRNA. (5) Overexpression of a therapeutic protein that counteracts the function of the pathogenic
protein can be done by delivering the mRNA of the therapeutic protein. (6) saRNA can be delivered to the cell where i
binds to AGO2, is imported to the nucleus, and in turn activates an endogenous gene. (7) A more permanent approach to
remove the pathogenic protein is by gene knockout using Cas9 and sgRNA RNPs. Abbreviations: AGO2, argonaute 2
ASO, antisense oligonucleotide; RISC, RNA-induced silencing complex; RNP, ribonucleoprotein; saRNA, small activating
RNA.
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progressed to the clinical setting aswell, and the first saRNA-based clinical trial is currently ongoing
(clinical trial numberi: NCT02716012; Table 1). This clinical trial uses liposomal nanoparticles,
termed SMARTICLES, encapsulated with saRNA that activates the CEBPA gene for treatment
of patients with HCC. CEBPA is considered a master regulator in normal liver function and its
expression is decreased in HCC. Lowered CEBPA expression is seen in many liver abnormalities
and increasing CEBPA expression in HCC might result in improved therapeutic outcome [40].

gRNA for CRISPR/Cas9-Directed Knockout
The development of CRISPR-Cas9 gene editing technology (Box 1) has further pushed the devel-
opment of RNA therapeutics to the forefront. The codelivery of Cas9mRNA and sgRNA against a
certain genomic target has promising applications for gene knock out strategies (Figure 1). While
in a laboratory setting, many options are available for the introduction of the Cas9 protein and
sgRNA to cells, including plasmid DNA, viral transfection, or electroporation, but this does not
easily translate to an in vivo clinical setting. [43]. Therefore, the most realistic method right now
involves ex vivo manipulation of cells with re-introduction of edited cells into the body [44].

Chemical Modifications to Increase RNA Stability and Decrease Immunogenicity
While the field has seen significant progress, some of themajor obstacles in RNA therapeutics are
the unstable nature (due to the high stability and activity of RNases) and high immunogenicity of
the RNA molecules [45]. Both single-stranded and double-stranded RNA molecules induce the
production of type I interferons and various other proinflammatory cytokines through multiple sig-
naling pathways, involving Toll-like receptor (TLR) 3, 7, or 8, or retinoic-acid inducible gene (RIG)/
melanoma differentiation-associated (MDA)5 [46,47]. The high immunogenicity combined with
low RNA stability necessitates chemical modifications of the RNA molecule to make advance-
ment to the clinic more realistic. Such modifications can involve alterations of the ribose group,
the phosphate backbone, the RNA termini, or modification of the nucleobases themselves [45].
For example, modifying the ribose on the 2'-O position dramatically increased the in vivo potency
of siRNA. At least 13 ribose modifications have been reported previously and especially 2'-OMe,
2'-F, and 2′-O-methoxyethyl modifications turned out to be highly successful for increasing siRNA
serum stability [45]. Effective phosphate modifications include phosphorothioates (PSs) and
borine-modified phosphorus (boranophosphate). Such modifications replace nonbridging
phosphate oxygen atoms with either sulfur or borane, leading to nuclease- resistant nucleotide
linkages [45,48]. Another popular modification is the phosphorodithioate linkage (PS2) that
replaces both nonbridging phosphate oxygens with sulfur [48]. Furthermore, as the RNA termini
are vulnerable to exonucleases, protecting them is equally important. This has been done by
including inverted thymidine residues at the 3' end [45]. Other strategies towards stabilizing
RNA termini have included addition of palmitic acid [49] and the covalent attachment of aromatic
compounds (such as phenyl, hydroxylphenyl, pyrenyl, and naphthyl derivatives) to the 5' sense
strand of siRNAs [50].
Box 1. The CRISPR/Cas System

The CRISPR/Cas system, a form of acquired immunity in bacteria and archaea, has been harnessed as a genome-editing tool
and has also revolutionized the field of RNA therapeutics. TheCRISPR system consists of twodistinct classes (1 and 2). Class 2
is themost frequently utilized for genome editing applications, in particular, CRISPR/Cas9. CRISPR/Cas9 requires theCRISPR-
associated nuclease Cas9 along with a gRNA. The gRNA consists of two RNA molecules: the CRISPR/RNA (crRNA) and the
transactivating RNA (tracrRNA). To simplify the tool, these two RNAs are combined on a single guide RNA chimera (sgRNA)
[41]. While the gRNA guides the Cas9 nuclease to a specific genomic location, the Cas9 cuts the DNA, resulting in a
double-strand break, which in eukaryotes can be repaired by two mechanisms: nonhomologous end joining (NHEJ) and
homology-directed repair (HDR). The more prominent of the two DNA repair pathways, NHEJ, is prone to introducing indel
errors during the repair causing frameshift mutations resulting in premature termination of translation, generating a knockout
of the gene of interest. When an HDR (donor) template is introduced, HDR-directed repair can be utilized, which enables
correction of mutated genes, insertion of genes, or replacement of genes [42].
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Delivery of RNA Therapeutics
The major challenge in RNA therapeutics is delivery and difficulties in intracellular uptake of RNA
molecules due to the large molecular weight and negatively charged phosphate backbone that
hinders internalization [51]. Previous studies on systemic administration of naked RNA has re-
vealed that their pharmacokinetic profile is generally poor [52–54]. While chemical modifications
of the RNA molecules dramatically increase the stability and decrease the immunogenicity, intra-
venous injection of naked RNA remains challenging where multiple barriers hamper RNA uptake.
Cellular barriers include difficulties in both passing of the cell membrane as well as the subsequent
endosomal escape. While other RNAmolecules might be hampered with these cellular barriers,
naked mRNA delivery somewhat circumvents these barriers as dendritic cells actively internalize
naked mRNA by micropinocytosis [55,56]. Another barrier is the mononuclear phagocyte
system (MPS), which effectively clears administered particulates through phagocytosis [57]. Al-
though the smaller RNA molecules such as siRNA are not taken up by the MPS, a disadvantage
of the small size is the increased clearance rate by the kidneys as the glomerular filtration barrier
limit is about 8 nm [57]. Kidney clearance is therefore the major obstacle for intravenous admin-
istration of naked RNA. Fortunately, including PS modifications decreases the rate of kidney
clearance of RNA molecules by increasing binding to plasma proteins, thereby increasing the
serum half-life of the administered RNA [58].

When naked siRNA is injected intravenously, generally high doses are required. A study from
2012 reported that when ≤200 mg/kg siRNA was administered, the plasma concentration
30 min after injection was ~90% lower than 5 min after injection. At 2 h after injection, there
was virtually no siRNA left in the plasma (<2%) due to rapid clearance by the kidneys. Even in
partially nephrectomized rats, the clearance of siRNA was rapid. Higher dosages like 800 and
1200 mg/kg, however, yielded better results, which was mirrored in monkeys [52]. The fact
that the clearance rate is slower with the higher doses indicates that the high dose, at least
partially, saturates the kidney clearance system. However, the clearance is still fast and such
high doses are clinically irrelevant both from a financial and safety point of view. Furthermore,
the transient nature of siRNA will require multiple doses and dosing multiple times at such high
concentrations seems unrealistic.

Local administration seems to be the more viable way of delivering naked RNA. Naked siRNA has
been successfully delivered to eye, brain, and tumor tissues when injected locally [59]. Likewise,
naked mRNA has also been successfully delivered locally to the heart. In 2018, Carlsson and
colleagues reported efficient uptake of naked mRNA encoding VEGF by cardiomyocytes when
injected directly into the heart. This resulted in an improved cardiac function in an animal model
of myocardial infarction [60]. Especially for vaccination purposes, naked mRNA delivery is an
option as dendritic cells actively internalize naked mRNA by micropinocytosis [55,56]. Other
strategies that have been successful for naked mRNA delivery include intradermal injection of
mRNA using hollow microneedles for expression in the skin [61], and injection of self-amplifying
mRNA resulting in prolonged protein expression [62]. Below, we discuss several delivery strate-
gies that have been developed to enable safe and efficient delivery of RNA therapeutics.

RNA Conjugated with a Targeting Moiety
The attachment of an active targeting moiety such as an antibody to the RNA can aid in both
tissue/cell targeting and in internalization into target cells. Although it does not directly protect
the RNA against degradation, it facilitates accumulation into the cells of interest [63]. Important
characteristics of the targeting moiety are presence of active groups for conjugation purposes,
good binding affinity, and reduced immunogenicity [64]. A recent notable success story of RNA
conjugated to a targeting moiety is givosiran, which has been recently approved by the FDA.
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Givosiran is composed of siRNA conjugated to three N-acetylgalactosamine (GalNAc) molecules.
GalNAc binds the asialoglycoprotein receptor (ASGR)with high affinity and internalizes siRNA
into the hepatocytes rapidly, although endosomal escape remains an issue, like in other delivery
strategies [65]. This liver-specific uptake makes GalNAc suitable for siRNA delivery to the liver for
hepatic diseases.

Antibodies are a popular choice as targeting moieties due to their specificity, high affinity, well-
defined structure, and long in vivo circulation time [66]. Multiple studies have used antibody–
siRNA conjugates (ARCs) with different methods of linking the antibody to the siRNA molecule.
These conjugation methods can include either a covalent attachment (e.g., Sugo et al. used
maleimide/thiol chemistry [67]) or a noncovalent attachment (e.g., Ibtehaj et al. used protamine as
a linker using its electrostatic interactions with siRNA [68]) (Figure 2A). Moreover, linkers that allow
for attachment between the siRNA and antibody can be made cleavable. A feature of cleavable
linkers is that once the conjugate enters the target cell, the siRNA and antibody separate, which
can alter the intracellular tracking including endosomal release and RISC loading [69–71]. pH
sensitivity and photosensitivity are examples of strategies used in cleavable linker design [63].

An alternative to the use of full-length mAbs is the use of smaller antibody derivatives such as
single-chain variable fragment (scFv ) [72] (Figure 2B). Examples of such applications include
the delivery of CXC chemokine receptor (CXCR)4–siRNA for HER2+ breast cancer therapy [73]
and CD44–siRNA targeted by a scFv against epidermal growth factor receptor (EGFR) in triple-
negative breast cancer [74].

Aptamers
Aptamers have been used to direct therapeutic RNA molecules to target sites [75] (Figure 2C). In
terms of specificity and affinity, they are highly comparable to antibodies but are smaller, have a
higher stability, and are easier to generate [76]. In 2018, Zhou et al. used an RNA aptamer against
gp120 (the exterior envelope glycoprotein in HIV that drives its entry into the host CD4+ T cells) to
deliver anti-HIV siRNA to infected T cells. The siRNA induces transcriptional gene silencing by
targeting specific sites within the viral promoter, resulting in suppression of HIV infection and pro-
tection of CD4+ T cells in mice [77]. Another study used an RNA aptamer against prostate-
specific membrane antigen (PSMA), a cell-surface receptor that is highly upregulated in certain
prostate cancers, to target prostate cancer cells in a mouse xenograft model engrafted with
PSMA+ human cancer cells. The RNA therapeutic delivered in this study was the CRISPR/
Cas9 system against polo-like kinase (PLK)1. The results demonstrated high cell-type-specific
delivery that translated into antitumor activity in vivo [78].

Lipid Nanoparticles
Initially developed as carriers for in vivo siRNA delivery [79], lipid nanoparticles (LNPs) are complex
and large structures (~100 nm) that also have been used to deliver large RNA molecules such as
mRNA in vivo [80]. LNPs can encapsulate large amounts of RNA [81] and protect them against
RNase degradation and renal clearance (Figure 2D) [82]. Addition of polyethylene glycol (PEG)
lipids has been proven to enhance LNP circulation time due to the steric barrier it creates around
the LNP surface that protects the LNPs from interactions with plasma proteins, typically opso-
nins, that would target the LNPs for degradation by the MPS [83]. In fact, the use of PEG-lipids
has become the standard since novel microfluidic mixing systems require the steric barrier pro-
vided by PEG to facilitate self-assembly. However, the use of PEG-lipids is a double-edged
sword as the downside is that the same steric barrier inhibits interactions with the cell membrane
and subsequent endosomal escape of therapeutic RNA [84]. Therefore, fine tuning of the amount
of PEG-lipid and the length of the PEG chain is pivotal.
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Figure 2. Examples of Delivery Vehicles for Different RNA Payloads. (A) Antibody conjugated to RNA molecules
which can be mediated by using for instance positively charged protamine (shown as plus signs). (B) Conjugate of RNA
with a single-chain variable fragment (scFv). (C) RNA–aptamer conjugates. (D) RNA encapsulated in lipid nanoparticles
(LNPs). Cationic or ionizable lipids (shown in green) aid in encapsulating the RNA payload through electrostatic
interactions. This way, the RNA is encapsulated in inverted micelles. Cholesterol (shown in grey) provides stability to the
LNPs. The surface of the LNPs are generally coated with PEG (black lines). Reactive groups such as maleimide (purple
triangles) can be linked to the PEG and are used to functionalize the LNPs with targeting moieties (chemical conjugation of
targeting moieties). (E) Cationic polymers can encapsulate RNA therapeutics by electrostatic interactions.
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The interaction of PEG-lipid with the plasma proteins upon injection results in release of PEG from
the LNP, which further complicates optimization of the LNP formulation. An important study in
2013 reported on the desorption rate of PEG-lipids from the LNPs into the aqueous phase.
Trends in Pharmacological Sciences, October 2020, Vol. 41, No. 10 769
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This desorption involves a transition state that requires a large amount of free energy. The length
of the hydrophobic chain influences the amount of energy required to enter this activation state;
the longer the hydrophobic chain, the more energy is required and hence the lower the in vivo
PEG-lipid desorption rate. The results demonstrated that PEG-C18 desorption is low (0.2%/h),
while initial desorption rates of PEG-C14 is ~2%/min [85]. Due to the positive and negative effects
of PEG-lipids on in vivo intracellular RNA delivery, an optimal balance is required and, in most
cases, including ~1.5% PEG-lipid (as percentage of the total lipid composition) is ideal. An
increased concentration would result in a decrease of RNA delivery and can only be compensated
by including shorter chain PEG-lipids (e.g. PEG-C14) that will enhance RNA desorption rates [85].

Polymers
Cationic polymers are well suited for the delivery of RNA due to their positive charge, chemical
diversity, and compatibility with various targeting moieties (Figure 2E). Polymers can be linear or
branched polymers, or consist of many branched repeats such as in the case of dendrimers
[86]. Examples of the use of polymers for RNA delivery include polyethyleneimine (PEI) for the
delivery of siRNA [87] and self-immolative polycarbonate-block-poly(α-amino)esters (dynamic
materials that function as polycations that can lose their cationic charge to enhance endosomal
escape) for mRNA delivery [9,88]. Dendrimers are popular for RNA delivery due to their tunable
structure and monodispersity (all dendrimer molecules are as similar as possible and of a well-
defined size upon synthesis). These hyperbranched macromolecules can be functionalized with
many functional groups for use in, for instance, ligand attachment when targeted delivery is
required [89,90]. Dong et al. described an example of targeted dendrimers for RNA delivery in
2018 where dendrimers encapsulated with siRNA were targeted with the RDGK peptide,
which can target both the tumor endothelium (through ανβ3 integrin) and the tumor cells them-
selves (through neuropilin-1 receptor targeting). Using that system, the researchers silenced
the cancer survival gene Hsp27 in vivo and achieved significant anticancer activity [91].

Moving to the Clinic
Since the FDA approval of the RNA therapeutic, pegaptanib (Macugen) in 2004 [92], the field of
RNA has not progressed far. Besides the general difficulties in intracellular delivery of oligonucle-
otides to the cell/tissue of interest, RNAmolecules are notoriously unstable due to the presence of
ribonucleases. As discussed here, advances in nucleic acid chemistry combined with suitable
delivery vehicles boosted the field, and these efforts eventually crystalized into the approval of
the first siRNA-based drug, patisiran in 2018 [15]. Since then, the field of RNA therapeutics has
received a boost, and this is evident when looking at the clinical pipeline that contains a wide
range of RNA therapeutics at all stages of clinical development for a variety of medical conditions
[34,93] (Table 1).

During the clinical development of patisiran, the LNP delivery vehicle seemed by far the most
advanced and suitable carrier for siRNA delivery in vivo. The reason LNPs were so successful in
hepatic gene silencing was due to the ability of ionizable LNPs to adsorb apoliporotein E (ApoE)
in the circulation, giving rise to a natural targeting ligand that binds with high affinity to the low-
density lipoprotein (LDL) receptor that is widely expressed on hepatocytes [94]. In late 2019, a
second siRNA drug, givosiran, was approved [16]. Instead of LNPs, givosiran was delivered as a
GalNAc-conjugated siRNA. Both currently approved siRNA-based drugs thus have a strong pref-
erential uptake in the liver but use distinct mechanisms (ApoE vs GalNAc) [16,94].

Based on studies that led to givosiran, it seems that GalNAc-based siRNA delivery strategies
have some important benefits over LNPs. In terms of toxicity, ease of production and the required
dose frequency, GalNAc is superior [95]. Furthermore, GalNAc-based strategies can be
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Outstanding Questions
What options can to be explored to
enhance endosomal escape for RNA
therapeutics?

As mRNA is expensive and difficult to
deliver intracellularly, could saRNA
replace mRNA to boost expression of
endogenous genes, leaving mRNA
dedicated only for the introduction of
exogenous proteins (such as for
vaccines or Cas9)?

How can we overcome the problem
of saturation of certain intracellular
components (such as AGO2) in
situations where multiple RNAs are used
to maximize efficacy for simultaneous
silencing/knockout of one gene and
overexpression of another gene?
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administered subcutaneously [96] as opposed to intravenously for LNPs. LNPs also require
an extensive premedication regime to deal with infusion-related reactions [97]. Because of
this, many siRNA candidates currently in the clinical pipeline are based on GalNAc or similar con-
jugates (see the siRNA section in Table 1). Alnylam currently has three candidate drugs in Phase III
studies (fitusiran, lumasiran, and vutrisiran)ii. A fourth one, inclisiran, showed positive results in
Phase III studies and is currently under review for approval [98]. Arrowhead Pharmaceuticals
has two candidates in Phase II studies (ARO-AAT and JNJ-3989)iii and Dicerna is building a
clinical pipeline with three programs (Phyox, RG6346, and Shine)iv.

Multiple mRNA therapeutics are also being developed: Moderna has two candidate drugs in
Phase II and an impressive early stage pipelinev; CureVac has several candidates in Phase Ivi;
and BioNtech has one candidate against melanoma in Phase II and many candidates in
developmentvii. Moreover, the recent outbreak of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has resulted in accelerated development of several mRNA vaccines: mRNA-
1273 (Phase III) by Moderna; BNT162 (Phase II/III) by BioNTech; and CVnCoV Vaccine (Phase I)
by CureVac (Table 1).

While siRNA and mRNA candidates are the most abundant, dozens of other RNA therapeutic
candidates have also entered clinical trials (Table 1). Indeed, four RNA-based ASOs are currently
under clinical investigation: QR-010, QR-421a, QR-1123, and QR110, all developed by ProQR.
Furthermore, anti-miR and miRNA mimics, including miravirsen, SAR339375, cobomarsen, and
MRG-201 are all currently in Phase II clinical trials (Table 1).

While the first clinical trial with the in vivo delivery of CRISPR/Cas9 components was launched
recently (clinical trial number: NCT03872479), the delivery is via viral vectors [35]. This might
soon change as several studies have reported on the in vivo delivery of CRISPR/Cas9 compo-
nents using RNA-LNP in animal models. Notable examples include: delivery of Cas9 mRNA
with LNPs (although viral vectors were used to deliver the sgRNA and repair template) to correct
a fumarylacetoacetate hydrolase splicing mutation in a mouse model of hereditary tyrosinemia
[36], and delivery of both Cas9mRNA and sgRNAwith LNPs to knockout themouse transthyretin
gene, resulting in >97% reduction of serum proteins levels that lasted for at least 12 months [37].

Concluding Remarks and Future Perspectives
This review covered the recent advances in delivery of RNA therapeutics. Various RNA payloads
were described with different roles, ranging from overexpression to silencing and knockout of the
target gene. The versatility of RNA molecules makes them popular therapeutic agents for a wide
range of medical conditions. However, issues with delivery have slowed down the field of RNA
therapeutics for many years. Poor cellular uptake, fast clearance from the circulation, and the
induction of immune responses have necessitated optimization of both the RNA molecules as
well as the delivery vehicles. Chemical modifications of RNA molecules truly boosted the field of
RNA therapeutics and facilitated the shift from completely encapsulated RNA nanoparticles to
the use of less complex RNA conjugates (e.g., GalNAc). The ability to protect RNA molecules
from degradation in vivo turned out to be crucial as early attempts with RNA-based therapy
resulted in direct enzymatic degradation eliminating any therapeutic potential [95]. Additionally,
the discovery of circular RNA (circRNA) provided the scientific community with even more possi-
bilities to protect and deliver therapeutic RNA. As circRNA is stable against exonucleolytic decay,
it might become an important agent for therapeutic applications for longer-lasting effects [99].

There is, however, still plenty of work to be done to advance the dream of RNA therapy. For
example, most RNA-based therapeutics are chemically modified RNAs and it is important to
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pay attention to potential adverse effects of these modifications. Not only does modified RNA
differ structurally from unmodified RNA but it can also affect the functionality. Therefore, some
caution is necessary when focusing on an improved pharmacokinetic profile of synthetic RNA
molecules with disregard to altered biological functionalities that might not be directly visible. To
address this issue, a new class of RNAs has been explored. These are the bioengineered RNA
agents (BERAs), which are made and folded in living cells and demonstrate favorable stability in
human cells. They could represent a more natural alternative to the extensively chemical modified
RNAs currently used [100].

Furthermore, in terms of delivery of RNA therapeutics, most strategies have focused on the
‘low-hanging fruit’ by delivering the RNA to the liver and most drug candidates have hence
focused on liver- and kidney-related diseases (with some upcoming potential in the central
nervous system as well) [101]. Future ambitions should focus on sites in the body that are
harder to reach such as leukocytes that are dispersed over the body and intrinsically hard to
transfect. Currently, it seems that this necessitates the inclusion of targeting moieties such
as peptides, antibodies, other proteins, polysaccharides, and more. Besides cell targeting,
such targeting moieties might also aid in enhancing internalization of the payload.

Internalization and endosomal escape is a real bottleneck in RNA delivery. While a small fraction of
siRNA release in the cytosol is sufficient for knockdown, other RNA-based approaches still lack
potency due to endosomal entrapment, and we wonder how delivery systems can enhance
this (see Outstanding Questions). This is not trivial, as can be seen from the use of PEG, which
on the one hand is a critical component in many delivery systems, while on the other hand, it
inhibits endosomal escape.

While most delivery efforts for small RNAs such as siRNA are now invested in GalNAc-
based or similar conjugates, larger delivery vehicles such as polymers or LNPs should
not yet be disregarded. This is because other vehicles might aid in the improvement of
extrahepatic delivery. We and others have demonstrated the feasibility of accurately
targeting specific cell populations in vivo in animal models by functionalizing the surface
of the delivery vehicle with targeting moieties [102–110]. Therefore, for leukocyte-implicated
diseases such as chronic lymphocytic leukemia or autoimmunity, tumors with insufficient
enhanced permeability and retention (EPR) effect or any other condition where specific
targeting to the cell of interest is critical, a variety of delivery vehicles such as LNPs and
dendrimers that can be functionalized with targeting moieties, are in high demand [111].
Perhaps, including targeting moieties can also bring down costs by maximizing accumula-
tion of the therapeutic agents at the cell/tissue of interest. This is especially important for
mRNA, which is expensive to prepare and might therefore be universally less accessible
(see Outstanding Questions).

In conclusion, the field of RNA therapeutics has seen major developments at multiple levels
(targeting, RNA modifications, delivery vehicles, etc.) and a wide variety of different RNA mole-
cules are currently at different stages of (pre-)clinical development (Table 1). Owing to the invested
efforts, RNA therapeutics moved from unrealistic dreams to genuine realities and many actors in
the field are determined to drive the RNA revolution to the next level.
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