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Associating 197 Chinese herbal medicine with drug targets and
diseases using the similarity ensemble approach
Shuo Gu1 and Lu-hua Lai1

Chinese herbal medicine (CHM) addresses complex diseases through polypharmacological interactions. However, systematic
studies of herbal medicine pharmacology remain challenging due to the complexity of CHM ingredients and their interactions with
various targets. In this study, we aim to address this challenge with computational approaches. We investigated the herb-target-
disease associations of 197 commonly prescribed CHMs using the similarity ensemble approach and DisGeNET database. We
demonstrated that this method can be applied to associate herbs with their putative targets. In the case study of three well-known
herbs, Radix Glycyrrhizae, Flos Lonicerae, and Rhizoma Coptidis, approximately 70% of the predicted targets were supported by
scientific literature. By linking 406 targets to 2439 annotated diseases, we further analyzed the pharmacological functions of 197
herbs. Finally, we proposed a strategy of target-oriented herbal formula design and illustrated the target profiles for four common
chronic diseases, namely, Alzheimer’s disease, depressive disorder, hypertensive disease, and non-insulin-dependent diabetes
mellitus. This computational approach holds great potential in the target identification of herbs, understanding the molecular
mechanisms of CHM, and designing novel herbal formulas.
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INTRODUCTION
Chinese herbal medicine (CHM) has been intensively used in China
for more than 2000 years. As an essential branch of traditional
Chinese medicine (TCM), CHM has influenced health practices in
East Asia and has become a worldwide alternative medicine.
Starting from the first herbal medical literature, Shen Nong’s
Materia Medica (Shen Nong Ben Cao Jing, ~220 CE), to date, TCM
doctors have collected thousands of herbal materials for the
treatment of diseases. Among them, approximately 200 herbs are
frequently prescribed [1, 2].
Despite a holistic practice in CHM that addresses one’s health

from a systematic point of view, reductionist studies of each herb
to the molecular level are becoming inevitable if one aims to
understand the rationale behind the narratives of ancient medical
classics [3]. Consequently, one can demystify the power of a
curative herb with its biochemical nature. During the past century,
scientists have been working in this direction on many herbs with
fruitful outcomes; the most successful story was that of
Artemisia annua. A natural compound derived from this
herb and its derivatives saved millions of people from malaria.
One of the inventors, Youyou Tu, was rewarded the 2015
Nobel Prize in Physiology or Medicine for her tremendous
contributions [4, 5].
With computational chemistry and biology becoming a cutting-

edge technology in biomedical research, many studies have
demonstrated its power in the field of herbal medicine as well [6].

Such approaches offer us not only rapid and accurate predictions
but also, and more importantly, a comprehensive understanding
at different levels. For example, TCM databases provide us with
chemical representations of each herb for knowledge discovery
[7, 8]. Docking methods offer suggestions of binding affinities for
herbal compounds and targets [9, 10]. Herb-based docking
analysis can further suggest herb-target associations [11–13].
Systems biology, e.g., ordinary differential equations, can simulate
the dynamics of a biological network with the treatment of herbal
medicine [11–13]. Taken together, CHM can be reviewed and
designed similarly to the development of new chemical entities
for a certain disease with specific targets.
In recent decades, ligand-based techniques have been devel-

oped and applied to reveal the possible associations between
CHM and drug targets. For instance, Zobir et al. studied the mode
of action of 45 TCM therapeutic action classes by in silico target
prediction algorithms, of which the targets were annotated with
the Kyoto Encyclopedia of Genes and Genomes pathway [14].
Huang et al. used a most-similar ligand-based approach to predict
the mechanism of action targets of aloe-emodin discovered from
phenotypic screening and traditional medicine [15]. However, the
systems pharmacology of individual herbs or herbal formulas
remains largely elusive, which to some extent has hindered
modern herbal drug development.
The similarity ensemble approach (SEA) is one of the pioneering

ligand-based methods in computational systems pharmacology
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[16–18]. In SEA, molecules are expressed in topological finger-
prints as bit strings [19]. Given two strings of fingerprints, one can
calculate the overlapping bits divided by the total number of
nonoverlapping bits, termed the Tanimoto coefficient (TC) [20],
which is a common index to quantify the similarity between two
compounds and ranges from 0 to 1. SEA leverages thousands of
pairwise TC calculations between the two compound sets and
adopts a BLAST-like model to remove the biases of ligand size and
chemical composition [21].
SEA has been successfully applied to some interesting questions

related to known compounds. For example, SEA was used to
compare 3665 FDA approved and investigational drugs against
246 sets of ligands from known targets. As a result, 23 new drug-
target associations were confirmed with experiments [22]. In
another study to predict side effect targets, SEA was applied to
investigate 656 marketed drugs on 73 unintended targets, and
approximately half of the predictions were confirmed [23].
However, no study using SEA to understand herbal medicine
has been reported thus far. In this study, we first confirmed that
SEA can be reliably applied to study CHM and then used SEA to
build the associations of 197 commonly prescribed herbs with
their potential targets and corresponding diseases. Finally, we
proposed a computational strategy for target-oriented herbal
formula design.

MATERIALS AND METHODS
The successful representation of herbs in chemical space is the
foundation of CHM research. Thanks to the currently available
herbal databases, such as the Traditional Chinese Medicine
Database (TCMD) [24, 25], the Traditional Chinese Medicine
Systems Pharmacology Database and Analysis Platform (TCMSP)
[26], and the TCM Database@Taiwan [27], in silico studies were
made possible. The TCMD was used in this study because it is of
high quality and offers detailed information on more than 20 000
natural compounds. We selected 197 commonly prescribed herbal
materials (Supplementary Table S1). Each herb was labeled with
information on its Latin name, origin, Chinese name, pinyin
(Chinese Romanization) and the number of compounds retrieved
from the TCMD.
An overview of the computational workflow and scheme are

depicted in Fig. 1. The natural compounds collected from the
TCMD were converted into SMILES (simplified molecular input line
entry system) format by Open Babel (http://openbabel.org/wiki/
Main_Page) [28]. SMILES is a line notation that represents
molecules and is unique for each compound. With this format,
one can obtain topological information for different purposes [29].
Then, the SEA was applied to associate compound sets of an
herb and a target (e.g., S1 and S2) [16]. The algorithm first sums
the pairwise TCs above a threshold as the raw score (Eq. 1). Then,
by taking the difference between the raw score expected at
random and dividing by the standard deviation, the raw score is
converted into Z-score (Eq. 2). The Z-score is finally transformed
into an E-value based on an extreme value distribution and the
number of set comparisons (Ndb) made in the database search
(Eq. 3) [21].

rscore S1; S2ð Þ ¼
X

TCij S1; S2ð Þ>thldTCij S1; S2ð Þ (1)

z ¼ rscore S1; S2ð Þ � μ n S1; S2ð Þð Þð Þ=σ n S1; S2ð Þð Þ (2)

E zð Þ ¼ 1� exp �e�zπ=
ffiffi
6

p �Γ0 1ð Þ
� �� �

Ndb (3)

On the SEA Search Server (http://sea.bkslab.org), we used
ChEMBL (EBI medicinal chemistry database) version 16 as the
reference library and ECFP4 as the fingerprint [19, 30]. We
predicted targets for each of the 197 herbs and recorded those

with E-values of less than 10−10 for herb-target analysis. The
associated targets were further linked to diseases on the
DisGeNET platform (http://www.disgenet.org), one of the
largest and most comprehensive repositories of human
gene-disease associations (DGAs) [31, 32]. Each association is
measured by a DGA score from 0 to 1. With the cutoff set to
0.08, we associated the herbs with diseases via the corre-
sponding targets. Finally, we can plot the CHM target profile
for each disease and design new herbal formulas in a target-
oriented manner.

Fig. 1 An overview of the (a) computational workflow and
(b) scheme. A total of 197 herbs were associated with 2439 diseases
via 406 targets by the similarity ensemble approach and DisGeNET
platform. All the information constitutes the strategy of target-
oriented herbal formula design, which replaces the traditional
narratives of herbal healing
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RESULTS
Comparison of herbal compounds and the reference library
Since natural compounds are diverse in structure, we first
compared the chemical properties of herbal compounds and
the annotated ligand sets from the ChEMBL database. We
calculated six properties for these compounds, including the
molecular weight, LogP, number of hydrogen bond acceptors,
number of hydrogen bond donors, number of rotatable bonds,
and number of rings. The distributions were plotted and
compared (Supplementary Fig. S1). For all six properties, the
distributions from the herbal compounds and ChEMBL com-
pounds largely overlapped, and the corresponding average values
were similar in both sets. Our analysis agreed well with a recent
study that natural products populate regions of chemical space
that are of high relevance to drug discovery [33].
We further analyzed the chemical scaffolds covered by the

herbal and ChEMBL compounds. For the 4528 unique herbal
compounds from the 197 herbs, 1674 Bemis-Murcko scaffolds
were obtained [34], among which 988 scaffolds (~59%) were
shared by compounds in the annotated ligand sets. In our
prediction for each of the 4528 herbal compounds, only 583
compounds (~13%) could not be associated with any other
scaffold in the annotated ligand sets. Therefore, one can use SEA
to predict the target for the majority of the herbal compounds.
Only a small fraction of the compounds were not able to be
applied to SEA due to their unique topology. The maximum
Tanimoto coefficient (maxTC) for each pairwise association was
also calculated, with ~89% of the compounds having values of at
least 0.4. In other words, similar compounds occur in both the
herbs and the reference library.

Analysis of herb-target associations
Herb-target associations with E-values of less than 10−10 were
documented (Supplementary Table S2). At this E-value level, the
associations are significant from a statistical point of view. In total,
we obtained 3172 associations among 197 herbs and 406 drug
targets. The top 10 herb-associated targets were adhesin protein
fimH, cytochrome P450 1B1, 3-oxoacyl-[acyl-carrier protein]
reductase, arachidonate 5-lipoxygenase, fatty acid synthase,
aldose reductase, arachidonate 12-lipoxygenase, sodium/glucose
cotransporter 1, xanthine dehydrogenase and cytochrome P450
17A1. Except for the first target from E. coli, all the others exist in
the human body. Many targets bind to various glycosides and
flavonoid derivatives, which are quite popular as natural
compounds. As a result, this may account for the polypharmacol-
ogy in herbal medicine.
Herb-target associations with a smaller E-value threshold of

10−60 are depicted in Fig. 2. At this cutoff, only 195 associations
remained among 79 herbs and 54 targets, with cytochrome P450
1B1 being the most associated target with 27 herbs. This protein
belongs to the cytochrome P450 superfamily of enzymes, which
catalyzes many reactions involved in drug metabolism [35].
Therefore, herbs linked to such targets are expected to either be
well metabolized or inhibit cytochrome P450 in the human body.

Verification of the predicted targets for three representative herbs
To examine the putative targets revealed by SEA, we manually
checked three well-known herbs: Radix Glycyrrhizae, Flos Loni-
cerae, and Rhizoma Coptidis (Supplementary Table S3). Radix
Glycyrrhizae is the most frequent ingredient prescribed in diverse
herbal formulas for a spectrum of diseases [36, 37]. SEA revealed
that Radix Glycyrrhizae may associate with 27 targets in different
pathways. Among the 27 identified targets, 19 were reported to
interact with Radix Glycyrrhizae, and the remaining targets might
warrant further exploration. Flos Lonicerae is often used as an anti-
inflammatory, antibacterial, and antidiabetic herb [38, 39], which
agrees well with the predicted targets, including arachidonate 5-
lipoxygenase, adhesin protein fimH, protein-tyrosine phosphatase

1B, and aldose reductase. Rhizoma Coptidis is usually prescribed
for neurological disorders (e.g., Alzheimer’s disease), inflammation,
and skin disorders [40, 41]. Consistently, this herb was associated
with acetylcholinesterase, cholinesterase, butyrylcholinesterase,
arachidonate 5-lipoxygenase, and tyrosinase. Recently, Rhizoma
Coptidis has attracted much attention for the treatment of obesity
and diabetes due to the effective compound berberine [42]. Its
possible targets are not clarified but are suggested to be AMP-
activated protein kinase, gut microbiota, etc. [43, 44]. Our SEA
analysis showed that berberine might be an inhibitor of
butyrylcholinesterase, which has been linked to obesity as
reported in some studies [45–47].
Generally, the precision of SEA is satisfactory since the majority

of targets can be confirmed in the scientific literature, while the
remaining targets might also be true in future studies. In terms of
recall, it is largely dependent on the currently known ligands from
both the targets and herbs. With the databases becoming more
comprehensive or with new methods for ligand similarity
calculations, SEA will consequently have a higher recall. As a
proof of concept, our analysis demonstrated that SEA can be
reliably applied to predict drug targets for a given set of ligands
from herbal medicine. Moreover, the E-value threshold of 10−10 is
a reasonable cutoff in our analysis.

Analysis of herb-disease associations
Based on the targets revealed by SEA, we further linked the
targets to diseases on the DisGeNET platform. DisGeNET has a
comprehensive collection of human gene-disease associations,
integrating resources from expert-curated databases (UniProt,
CTD, PSYGENET, ORPHANET, HPO), animal models (RGD, MGD,
CTD) and text-mining results (GAD, LHGDN, BEFREE) [31, 32]. Data
from different resources are scored at different scales. For
instance, one record from the curated database has a partial
score of 0.2, while one from the animal model has a partial score
of 0.08. The DGA score is computed by summing all the partial
scores. Herein, we recorded all the associations at a cutoff of 0.08.
With this criterion, 41628 associations (Supplementary Table S4)
were made among 192 herbs and 2439 diseases, with 16% being
orphan diseases [48]. Orthodox medicine lacks drugs for orphan
diseases due to the various challenges in research and develop-
ment [49]. However, herbal medicine may provide complementary
solutions to the current situation and future drug discovery.
We have shown several well-known diseases and their

associated herbs with E-values less than 10−30 and DGA scores
of at least 0.3 (Fig. 3). One common disease was alcoholic
intoxication (chronic) with nine associated herbs. Alcohol-related
harms, either chronic or acute, are a huge public health problem
in China [50]. Alcoholic intoxication-related targets include
aldehyde dehydrogenase, alcohol dehydrogenase beta chain,
serotonin transporter, alcohol dehydrogenase gamma chain,
GABA receptor alpha-2 subunit, mu opioid receptor, etc. Here,
we would like to suggest the herbs revealed from our computa-
tional study as alternative medicines. On the other hand, the herbs
were linked to various diseases via different targets. For example,
Sophora Japonica and Radix Puerariae were associated with
alcoholic intoxication (chronic) by the target aldehyde dehydro-
genase, with asthma by interleukin-5, and with melanoma by
tyrosinase. Not surprisingly, herbal medicine, as a collection of
many natural compounds, is more likely to interact with diverse
diseases in a polypharmacological manner.

Target-oriented herbal formula design
With the herb-target and herb-disease associations in hand, we
can formalize the CHM target profile for the diseases of interest.
We illustrated the profiles for four common chronic diseases with
E-values of less than 10−30 and DGA scores of at least 0.2 (Fig. 4).
At different levels of the DGA score, the number of associated
targets varied. While many targets are associated with the disease
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of interest, the DGA score informs us as to how relevant the
targets are. Here, we chose a cutoff of 0.2 because
associations from a manually curated source are scored at the
level of at least 0.2.
Again, by checking the research literature, we verified the

predicted herbs in the CHM target profiles (Supplementary
Table S5). To the best of our knowledge, some herbs have been
prescribed or studied for the corresponding diseases, while other
associations are new. For instance, four herbs (not including
Fructus Hordei Germinatus) have been used in treating Alzhei-
mer’s disease. Among the 15 herbs associated with depressive
disorder, 10 have demonstrated antidepressive functions in
previous usage or experiments. For hypertensive disease, 20 out
of 33 herbs found to be associated were mentioned in the
literature for this disease. In the case of non-insulin-dependent

diabetes mellitus, 19 out of 24 herbs occurred previously in
different herbal treatments or studies. Therefore, our prediction
agreed well with the experimental studies and simultaneously
provided novel findings.
From the CHM target profile, we can propose a method of target-

oriented herbal formula design. In contrast to the traditional design
approach, which focuses on the syndrome of the patient while
balancing the nature and flavor of the herbal ingredients, our
method is based on the drug targets that are associated with
the disease of interest. The first example is Alzheimer’s disease
(Fig. 4a), which occurs in a large part of the population above
70 years of age, yet lacks efficient drugs that are able to cure or
prevent it [51, 52]. From computational predictions, five herbs were
associated with six targets. Therefore, our designed formula would
include the combination of Radix Aconiti Lateralis Preparata, Fructus

Fig. 2 Herb-target associations predicted by SEA with an E-value less than 10−60. This figure displays a subset of the herb-target associations
from Supplementary Table S2. Targets of adhesin protein fimH in E. coli and CG8425-PA in Drosophila are not shown for clarity. The red nodes
represent the herbs while the blue nodes represent the targets. The node size of the target is scaled by the number of associated herbs and
the thickness of the edge is scaled by the E-value (the smaller the E-value, the thicker the edge)
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Hordei Germinatus, Rhizoma Curcumae Longae, and Rhizoma
Coptidis or Rhizoma Corydalis because the last two are close in
pharmacology.
The second example is depressive disorder (Fig. 4b), which is

associated with as many as 15 targets. In this case, we have more
flexibility in the formula design depending on the understanding
of the mechanism, which also echoes personalized medicine in
depressive disorder treatment [53]. Nevertheless, the same
principles still apply. For example, we can choose Semen
Nelumbinis, Fructus Lycii, Fructus Quisqualis, and Fructus Hordei
Germinatus since they could interact with more than one target.
For the five herbs linked to P-glycoprotein 1, only one herb is
suggested. Similar strategies can be adopted for hypertensive
disease and non-insulin-dependent diabetes mellitus, as well. The
philosophy of target-oriented herbal formula design is to cover as
many targets as possible with herbs that can associate with
multiple targets, while the E-value and DGA score serve as
quantitative indexes.

DISCUSSION
The modernization of CHM requires a postmodern understanding
of the ancient narratives of the healing herbs. Although
tremendous efforts have been made to reveal the rationale
behind CHM treatment, a systematic pharmacological study on
individual herbs is still a huge challenge. Herein, we employed the
SEA to reveal 406 potential targets for 197 frequently prescribed
herbs. To verify the results, we searched the predictions in the
scientific literature for three well-known herbs and found that
approximately 70% of the putative targets have been reported.
We further linked the drug targets on the DisGeNET platform so

that the various diseases were related to herbs via the
corresponding targets. At different DGA score cutoffs, herbs were
suggested to be the alternative solutions to 2439 diseases, with
16% being orphan diseases. Consequently, the herb-target and
herb-disease analyses laid the foundation for the disease-oriented
herbal formula design, a modern design strategy leveraging and
driven by the pharmacological data. This strategy enables

Fig. 3 Selected herb-disease associations with an E-value less than 10−30 and a DGA score of at least 0.3. The yellow nodes represent the
herbs while the cyan nodes represent the diseases. The node sizes of the diseases are scaled by the number of associated herbs
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complex diseases to be approached from multiple drug targets
associated with different herbs. The method is also quantitative
with E-value and DGA score describing how strong the herb-
target-disease associations are.
In conclusion, our study provides a novel approach for

rational herbal formula design based on the pharmacological
predictions of herbs. This method holds great potential for
applications to understand and reconstruct herbal medicine
from a molecular level. It may serve as the initial step in the
pipeline of natural compound-inspired drug discovery [54].
Follow-up in vitro and in vivo tests can further confirm and
improve these predictions. Therefore, the ancient knowledge of
CHM can be inherited and appreciated in line with modern
biomedical research.
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