Skip to main content
. 2020 Jul 23;11(9):2600–2609. doi: 10.1111/1759-7714.13580

Table 3.

Selected radiomic features for predicting tumor doubling time from generalized estimating equations in growth pattern II lung adenocarcinomas

Radiomic features Simple Multiple
Coefficient SE P‐value Coefficient SE P‐value
Shape features Roundness factor −3.06 1.15 0.00786
Solidity −4.58 1.53 0.00279 −11.119 1.65 1.60E‐11
Surface area 0.000956 0.000406 0.0187
Max3D diameter 0.0527 0.0168 0.00176
Local features (texture‐based) Auto correlation (GLCM) −0.0000321 0.0000147 0.0295
Cluster tendency (GLCM) −0.00000812 0.00000369 0.0277
Dissimilarity (GLCM) −0.0428 0.0238 0.0721
Entropy (GLCM) 0.285 0.149 0.0552
Energy (GLCM) −243 86.3 0.0048 297.929 62.323 1.70E‐06
Homogeneity (GLCM) 16.4 5.6 0.00345
Max probability (GLCM) −100 34.5 0.0037
Variance (GLCM) −0.0000329 0.0000148 0.0262
Intensity variability (ISZM) 0.0156 0.00479 0.00111
Size zone variability (ISZM) 0.0721 0.0283 0.0108
Contrast (NGTDM) −1.68 0.858 0.0504
Busyness (NGTDM) −54.661 15.476 0.00041
Filter‐based features LoG entropy (σ = 1.5) 0.403 0.232 0.0829
LoG entropy (σ = 2) 0.505 0.298 0.0906
LoG uniformity (σ = 1.5) −38.5 18.2 0.0351
LoG uniformity (σ = 2) −29.5 13.6 0.0303
LoG uniformity (σ = 3) −7.46 3.23 0.0208
LoG uniformity (σ = 3.5) −4.53 2.28 0.0465
LoG kurtosis (σ = 0.5) 0.835 0.257 0.00113
Fractal model‐based features Lacunarity 0.336 0.146 0.0213
Fractal signature dissimilarity −0.536 0.187 0.00409

Coefficient estimated by generalized estimating equation.

Variables were selected using a backward stepwise variable selection method.

Variables in bold are those that had clinical significance without redundancy within the radiomic information as well as a P‐value < 0.01 after multiple generalized estimating equation analysis.

GLCM, gray level co‐occurrence matrix‐based features; ISZM, intensity size zone matrix‐based features; LoG, Laplacian of Gaussian; NGTDM, neighborhood gray tone difference matrix‐based features; SE, standard error.