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INTRODUCTION

Hereditary retinal disease is one of the important causes of blind-
ness, which leads to an irreversible retinal damage affecting the 
quality of life and daily activities. Bestrophinopathy is one of 
the most common inherited macular degenerations, and it is 
caused by mutations in the BEST1 gene. BEST1 is located in 
chromosome 11q13,1,2 and encodes a 585 amino acid protein 

known as bestrophin that localizes to the basolateral membrane 
of the retinal pigment epithelium (RPE).3 When mutated, lipo-
fuscin accumulates beneath the RPE, with degeneration of the 
RPE and the overlying photoreceptors.4 The broad spectrum of 
clinical presentations in bestrophinopathy ranges from well-
defined clinical abnormalities restricted to the macula in Best 
disease [BD, also known as vitelliform macular dystrophy; On-
line Mendelian Inheritance in Man (OMIM) 153700] and auto-
somal recessive bestrophinopathy (ARB; OMIM 611809) to the 
widespread symptoms affecting peripheral retina in a rare con-
dition of autosomal dominant vitreoretinochoroidopathy (AD-
VIRC; OMIM 193220).5,6 

BD was first described by Friedrich Best in 1905,7 and is most 
common among bestrophinopathies. BD occurs in about 1 in 
every 10000 individuals, and is inherited by autosomal domi-
nant fashion.6 The age at onset of BD is variable, with a mean 
age onset in the fourth decade.8 The macular lesion that is most 
characteristic of the disease is single egg-yolk-like vitelliform 
lesion on the central fovea, which is usually followed by vitel-
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liruptive stage, pseudohypopyon stage, and atrophic stage.6 A 
significantly decreased light rise on electrooculography (EOG) 
is a characteristic finding of BD.9 Although an abnormal EOG is 
crucial in the diagnosis of BD in patients with vitelliform le-
sions, mutation analysis is necessary to confirm a clinical diag-
nosis of BD since 20% of patients with BEST1 mutation could 
have a normal EOG.10 

BEST1 mutation has long been believed to segregate only in 
an autosomal dominant manner. Then, autosomal recessive 
disease with BEST1 mutation was first defined as a distinct cat-
egory of bestrophinopathy by Burgess, et al.11 in 2008, which is 
now widely known as ARB.6 Nearly 40 biallelic mutations in 
BEST1 have been reported in ARB patients to date.12-15 Retinop-
athy includes an irregularity of the RPE throughout the poste-
rior fundus with punctate flecks, which is easily seen on auto-
fluorescence imaging. Retinal edema and subretinal fluid are 
common findings on OCT imaging. ARB shows markedly ab-
normal EOG and pattern electroretinography (ERG).11

Human induced pluripotent stem cells (iPSC) are relatively 
non-invasive and renewable, and iPSC-derived models can re-
capitulate cellular and molecular processes without genetic ma-
nipulation.16 The retina and the brain are promising candidates 
for iPSC modeling as it is difficult to perform biopsy in these tis-
sues, and there are established preexisting protocols to isolate 
their progenitors from iPSC.17-19 The RPE can be readily differ-
entiated and re-seeded widely, which is a promising candidate 
for iPSC modeling. In this study, we sought to model BD and 
ARB using iPSC technology, which would be useful in studying 
the pathophysiology and therapeutic targets of BEST1-associat-
ed retinopathy. 

MATERIALS AND METHODS 

Differentiation of human iPSC lines

Generation of iPSC lines
This study was approved by the Institutional Review Board of 
Severance Hospital, Yonsei University College of Medicine (3-
2017-0167). Twenty milliliters of peripheral blood were obtained 
from one ARB patient (L40P and A195V mutations in BEST1 
gene), one autosomal dominant BD patient (G96A mutation in 
BEST1 gene), and two normal controls. Human iPSC lines were 
generated using previously established methods.17,18 Mononu-
clear cells (MNC) were isolated from the blood samples and were 
expanded in MNC media for 7–10 days.

MNC were transfected with episomal vectors (OCT4, SOX2, 
c-MYC, KLF4, LIN28) (Thermo Fisher Scientific, Waltham, MA, 
USA) and cultured on extracellular matrices (BD, Franklin Lakes, 
NJ, USA). Culture on iPSC medium (STEMCELL Technologies, 
Vancouver, Canada) were performed for 1–2 weeks till coloni-
zation of iPSC. iPSC colonies were isolated and expanded on 
iPSC medium (STEMCELL Technologies). Differentiation was 

initiated after 10–20 passages of expansion to remove an epi-
genetic memory. 

Differentiation of iPSC into functional RPE cell 
Embryoid body (EB) was formed for 1 week on EB media (Ther-
mo Fisher Scientific) and free-floating culture. EB was then 
switched to a chemically defined neural induction media (Ther-
mo Fisher Scientific) and laminin-coated plate (Thermo Fisher 
Scientific) for 10 days for neural differentiation. For retinal dif-
ferentiation, iPSC-derived neuroepithelial rosettes were switched 
to a chemically defined retinal differentiation medium (Thermo 
Fisher Scientific). 

RT-PCR 
Total RNA was isolated from cell cultures from various stages of 
differentiation and treated with DNase I (Thermo Fisher Scien-
tific). cDNA was synthesized using the SuperScript III RT-PCR 
kit (Thermo Fisher Scientific). Samples were denatured at 95°C 
for 5 minutes followed by 30 cycles of PCR amplification (95°C 
for 15 seconds, 60°C for 30 seconds, 72°C for 1 minute) and a 
final extension at 72°C for 10 minutes. PCR products were run 
on 2% agarose gel. 

Immunocytochemistry 
Cells were washed in ice-cold phosphate-buffered saline (PBS) 
and fixed in 2–4% paraformaldehyde at 4°C for 30 minutes. Fixed 
cells were washed twice in PBS and placed in blocking solu-
tion (10% normal donkey or goat serum and 0.01–0.05% Triton-
X100 in PBS) for 1 hour at room temperature. Cells were then 
incubated overnight at 4°C with mouse anti-BEST1 monoclo-
nal antibody (E6-6) (Thermo Fisher Scientific) and rabbit anti-
ZO-1 polyclonal antibody (Thermo Fisher Scientific). The fol-
lowing day, cells were washed three to five times in PBS with 
0.01% Triton-X100 and incubated with Alexa Fluor 488-conju-
gated goat anti-rabbit antibody (Thermo Fisher Scientific) and 
Alexa Fluor 568-conjugated donkey anti-rabbit antibody (Ther-
mo Fisher Scientific). After secondary antibody incubation, cells 
were stained with DAPI (Thermo Fisher Scientific), washed three 
times in PBS with 0.2% Triton-X100, and imaged on a confocal 
microscope (Zeiss, Jena, Germany). 

Transepithelial resistance (TER) measurement
TER of RPE monolayers cultured on permeable transwell filters 
(Merck KGaA, Darmstadt, Germany) was measured using an 
epithelial voltohmmeter (Merck KGaA) according to manufac-
turer’s instructions. Electrodes were sterilized with 70% ethanol 
and rinsed in Hank’s balanced salt solution prior to placement 
in the transwell inserts. Net TER was calculated by subtracting 
the background measurement obtained from transwell filters 
and multiplying the difference by the area of the transwell filter 
(Ω*cm2). 
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Measurement of fluid flux
The quantification of active fluid transport from apical to bas-
al side in the RPE was measured using a previously described 
method.20 A fixed amount of medium (Thermo Fisher Scien-
tific), 150 μL in the apical and 400 μL in the basal chambers of 
transwell, was loaded. The amount of fluid remaining in the 
apical chamber was measured 20 hours later, and the rate of 
fluid transport was calculated (μL/hr/cm2). 

RNA sequencing and data analysis 
RNA sequencing was performed on ARB iPSC-RPE, BD iPSC-
RPE, and normal iPSC-RPE (n=2 for each) using the Macrogen 

(Seoul, Korea). Total RNA quality was assessed with Agilent 
bioanalyzer system (Agilent, Santa Clara, CA, USA). Extracted 
RNA samples were processed with TruSeq Stranded Total RNA 
Prep Kit (Illumina, San Diego, CA, USA) and sequenced on No-
vaSeq 6000 system (Illumina). A median 1.2×108 single-end 
reads (range, 1.1×108 to 1.3×108) with 101 base pairs were gen-
erated. Reads were trimmed based on sequencing quality using 
Trimmomatic (RWTH Aachen University, Aachen, Germany).21 
Trimmed reads were aligned on a human reference sequence 
(hg19) using HISAT2 (Johns Hopkins University, Baltimore, 
MD, USA).22 Using Gene Set Enrichment Analysis, an enrichment 
of a specific gene set was tested, and core enrichment genes 
were determined.23  

Statistical analysis
All statistical analyses were performed using SPSS version 23.0 
(IBM Corp., Armonk, NY, USA). Shapiro-Wilk test was used to 
assess distribution patterns of data. TER measurement and the 

Table 1. Demographics and Characteristics of Patients and Normal Controls

Patient Sex Age Diagnosis ERG EOG Inheritance BEST1 mutation Amino acid change
NL 1 F 46 NL control NL NL NA NA NA
NL 2 M 44 NL control NL NL NA NA NA
Patient 1 F 41 BD NL Flat AD c.287A>G Gln96Arg

Patient 2 F 57 ARB NL Flat AR
c.119T>C
c.584C>T

Leu40Pro
Ala195Val

AD, autosomal dominant; AR, autosomal recessive; ARB, autosomal recessive bestrophinopathy; BD, Best disease; EOG, electrooculography; ERG, electroretinog-
raphy; NA, not applicable; NL, normal; F, female; M, male.

Fig. 1. Clinical findings of Patient 1. A 41-year-old woman presented 
with decreased visual acuity in the right eye. (A and B) Color fundus 
photography showed RPE atrophy and pigment disruption in the right 
eye and a dome-shaped accumulation of yellowish material in the cen-
tral macula of the left eye. (C and D) Hyperreflective materials with sub-
retinal fluid were found in the subretinal space on optical coherence 
tomographic images. RPE, retinal pigment epithelium.

A

C

D

B A B

C

Fig. 2. Clinical findings of Patient 2. A-57-year-old woman presented 
with decreased visual acuity in her left eye for 2 months. She had re-
ported significant visual loss in both eyes at the age of 20 years. (A and 
B) Color fundus photography showed bilateral RPE irregularities in the 
posterior pole with scattered yellowish flecks. (C) A neurosensory reti-
nal detachment with subretinal fluid was observed in the left eye on an 
optical coherence tomography image, which appeared similar to that 
of the fellow eye. RPE, retinal pigment epithelium.
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rate of fluid flow obtained from ARB iPSC-RPE were compared 
with those of control and BD iPSC-RPE using Mann-Whitney 
test. A p-value <0.05 was considered statistically significant. 

RESULTS 

Clinical findings
Demographics and characteristics of patient with Best vitelli-

form macular dystrophy and patient with ARB are summarized 
in Table 1. Patient 1 was a 41-year-old woman with decreased 
visual acuity in the right eye. Her best-corrected visual acuity 
was 20/40 in the right eye and 20/20 in the left eye. The patient 
was hyperopic with spherical equivalent +1.75 diopter (OD) and 
+1.00 diopter (OS). The fundus showed RPE atrophy and pig-
ment disruption in the right eye and a dome-shaped accumu-
lation of yellowish material in the central macula of the left eye 
(Fig. 1A and B). Hyperreflective vitelliform materials with sub-

SOX2 TRA-1-60 OCT4 SSEA4

N1 (normal)

N2 (normal)

P1 (BD)

P2 (ARB)

Fig. 3. Immunocytochemistry in iPSC lines. Immunocytochemistry analysis demonstrated the expression of pluripotency markers (OCT4, SOX2, TRA1-
60, and SSEA4) in all iPSC lines of normal controls and patients. iPSC, induced pluripotent stem cell; BD, Best disease; ARB, autosomal recessive be-
strophinopathy.

Fig. 4. RT-PCR in iPSC lines. RT-PCR revealed mRNA expression of pluripotency markers (c-MYC, OCT4, SOX2, NANOG, and KLF4) in undifferentiated 
iPSC lines from normal controls and patients. Human embryonic stem cells (H9) were used as a positive control. iPSC, induced pluripotent stem cell.
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retinal fluid were found in the subretinal space on OCT images 
(Fig. 1C and D). EOG showed decreased response with Arden 
ratio 1.1 in both eyes. 

Patient 2 was a 57-year-old woman who reported significant 
visual loss in both eyes at the age of 20 years. She presented with 
a further decrease of the visual acuity in her left eye for 2 months. 
Her visual acuity was 20/400 in the right eye and 20/800 in the 
left eye. The patient was hyperopic with spherical equivalent 
+3.00 diopter (OD) and +3.25 diopter (OS). The fundus showed 
bilateral RPE irregularities in the posterior pole with scattered 
yellowish flecks (Fig. 2A and B), which were more prominent 
on autofluorescence images. A neurosensory retinal detach-
ment with subretinal fluid was observed in the left eye on an 

OCT image, which appeared similar to that of the fellow eye 
(Fig. 2C). Electrophysiology showed normal response for the 
full-field ERG, but a light rise on EOG was absent (Arden ratio 
1.0) in both eyes.

 

Generation of iPSC lines
MNC were isolated from peripheral blood, and iPSC lines were 
generated using previously established methods.17,18 Immu-
nocytochemistry and RT-PCR in iPSC lines were performed to 
confirm the pluripotent markers. Immunocytochemistry anal-
ysis using confocal microscopy demonstrated that all iPSC lines 
expressed the pluripotent markers including OCT4, SOX2, 
TRA-1-60, and SSEA4 (Fig. 3). RT-PCR revealed pluripotency 

Fig. 5. Teratoma analyses of iPSC lines. Teratoma studies from normal controls and patients demonstrated derivatives from the endodermal, ectoder-
mal, and mesodermal germ lineages. iPSC, induced pluripotent stem cell.
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markers including c-MYC, OCT4, SOX2, NANOG, and KLF4 
(Fig. 4), and teratoma studies confirmed that 7-day embryoid 
bodies derived from iPSC showed markers for all three lineages 
(Fig. 5).  

Differentiation of iPSC into RPE cell 
Light microscopy and RT-PCR were performed to confirm the 
differentiation of iPSC into the RPE cell. RPE differentiation was 
performed in retinal differentiation media until approximately 
Day 40–90, at which characteristic polygonality and pigmen-
tation of the RPE could be confirmed on light microscopy (Fig. 
6A). RT-PCR revealed the expressions of a characteristic RPE 

gene BEST1 and a tight junction gene OCCLUDIN (Fig. 6B).

Cytological and functional analysis of ARB iPSC-RPE
Morphological characteristics of the RPE were evaluated using 
confocal microscopy and immunocytochemistry. The rate of 
fluid flow across iPSC-RPE monolayer on transwell insert was 
measured to compare apical to basal fluid transports by the 
RPE. Immunocytochemistry revealed uniform tight junction 
protein ZO-1 in both ARB and control iPSC-RPE (Fig. 7). There 
was no significant difference in TER measurements between 
ARB patient, autosomal dominant BD patient, and normal con-
trol (Table 2). TER measurements obtained from ARB iPSC-RPE 

A B

Normal BD iPSC-RPE ARB iPSC-RPE

BEST1

OCCLUDIN

GAPDH

ARB iPSC-RPE

BD iPSC-RPE

Norm
al

Fig. 6. Differentiation of induced pluripotent stem cells into functional RPE cells. (A) Characteristic polygonality and pigmentation of the RPE could be 
confirmed using light microscopy. (B) RT-PCR revealed the expressions of a characteristic RPE gene BEST1 and a tight junction gene OCCLUDIN. 
GAPDH was as a loading control. BD iPSC-RPE, Best disease induced pluripotent stem cell retinal pigment epithelium; ARB iPSC-RPE, autosomal re-
cessive bestrophinopathy induced pluripotent stem cell retinal pigment epithelium.

BE
ST

-1
ZO

-1

Normal BD iPSC-RPE ARB iPSC-RPE

Fig. 7. Immunocytochemistry in iPSC-RPE. Immunocytochemistry for BEST1 and ZO-1 showed uniform morphology and tight junction in Best disease, 
ARB, and control iPSC-RPE. BD iPSC-RPE, Best disease induced pluripotent stem cell retinal pigment epithelium; ARB iPSC-RPE, autosomal reces-
sive bestrophinopathy induced pluripotent stem cell retinal pigment epithelium.
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(290.00±10.24 Ω) were similar to those of BD iPSC-RPE (312.67± 
23.84 Ω, p=0.936) and control iPSC-RPE (305.83±13.33 Ω, p= 
0.335) (Fig. 8A). The rate of fluid flow was the lowest in ARB 
iPSC-RPE (0.12±0.01), and was significantly lower than those 
of control iPSC-RPE (0.35±0.02, p<0.001) and BD iPSC-RPE 
(0.29±0.02, p<0.001) (Fig. 8B). 

Gene expression profiles of ARB iPSC-RPE 
RNA-sequencing was performed to identify the differences in 
gene expression profiles between ARB iPSC-RPE, BD iPSC-RPE, 
and control iPSC-RPE. Gene Set Enrichment Analysis showed 
that ARB iPSC-RPE exhibited significant enrichment of epithe-
lial-mesenchymal transition (EMT) gene set compared with 
control iPSC-RPE (Fig. 9A). Genes encoding TNF-α signaling via 
NF-κB were also significantly enriched in ARB iPSC-RPE com-
pared with control iPSC-RPE (Fig. 9B). ARB iPSC-RPE showed 
similar results compared with BD iPSC-RPE (Fig. 9C and D). 

DISCUSSION 

In this study, a human iPSC model of ARB was evaluated to un-
derstand its pathophysiology, which revealed a functional de-
ficiency rather than anatomical defects. Morphological charac-
teristics, gene expression, and epithelial integrity of ARB iPSC 
were comparable to those of normal control. Fluid transport 
from apical to basal was more reduced in ARB iPSC-RPE than 
in autosomal dominant BD iPSC-RPE. 

RPE-based disorders appear to be ideal for human iPSC mod-
eling, given the ease and extent to which this cell type can be 

generated, manipulated, and tested. The maturation state of 
iPSC-RPE can be also monitored in live cultures using morpho-
logical features and measurement of TER.24 Singh, et al.16 devel-
oped a iPSC-RPE model of Best vitelliform macular dystrophy 
utilizing these characteristics of human RPE. They demonstrat-
ed that RPE from mutant iPSC displayed disrupted fluid flux 
and increased accrual of autofluorescent material after long-
term photoreceptor outer segment feeding. Therefore, human 
iPSC-derived RPE is a potentially useful tool for disease mod-
eling and therapeutics in human retinal degenerative diseases. 

Defect in transcellular fluid in iPSC-RPE was more promi-
nent in ARB patient than in autosomal dominant BD patient, 
which could explain the common macular edema and subreti-
nal fluid in ARB patient. The macular pathology in BD patients 
usually seems to be stable until the late stage of the disease course, 
and most patients retain moderate visual acuity until later in 
life.25,26 Therefore, the result may also suggest that BD is caused 
by the cumulative effects of one or more subtle alterations in 
RPE physiology. Other cytological examinations, including mor-
phological characteristics, gene expression, and epithelial in-
tegrity, revealed similar results between ARB iPSC-RPE and 
normal control. Considering the more prominent defect in tran-
scellular fluid in ARB iPSC-RPE than in autosomal dominant 
BD iPSC-RPE, these findings may suggest that ARB is caused 
by BEST1 dysfunction.

EMT is a biologic process resulting in the conversion of epi-
thelial cells to myofibroblasts.27,28 It is characterized by the loss 
of epithelial characteristics, which includes apical-basolateral 
polarity and cell-cell adhesions.29 Increased expressions of trans-
forming growth factor-β, α-smooth muscle actin, extracellular 

Fig. 8. TER measurements and the quantification of fluid movement in BD iPSC-RPE, ARB iPSC-RPE, and control iPSC-RPE. (A) TER were comparable 
between patients and control iPSC-RPE. (B) The rate of fluid flow was the lowest in ARB iPSC-RPE, and was significantly lower than those of control 
iPSC-RPE and BD iPSC-RPE. *p<0.001 compared with control or BD iPSC-RPE. BD iPSC-RPE, Best disease induced pluripotent stem cell retinal pig-
ment epithelium; ARB iPSC-RPE, autosomal recessive bestrophinopathy induced pluripotent stem cell retinal pigment epithelium; TER: transepithelial 
resistance.
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Table 2. TER Measurement and the Rate of Fluid Flow in BD iPSC-RPE and ARB iPSC-RPE

Control BD iPSC-RPE p value ARB iPSC-RPE p value
TER (Ω*cm2) 305.83±13.33 312.67±23.84 0.936 290.00±10.24 0.335
Fluid flow (µL/hr/cm2) 0.35±0.02 0.29±0.02 0.038 0.12±0.01 <0.001
ARB iPSC-RPE, autosomal recessive bestrophinopathy induced pluripotent stem cell retinal pigment epithelium, BD iPSC-RPE, Best disease induced pluripotent 
stem cell retinal pigment epithelium, TER, transepithelial resistance 
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matrix proteins collagen type 1, and matrix metalloproteinases 
induce this process.27,29-31 EMT of the RPE is known to be related 
to the pathogenesis of subretinal fibrosis in various retinal dis-
eases, including age-related macular degeneration.32-34 NF-κB 
activation by TNF-α is well-known to play a crucial role in EMT.35-38 
Recently, an association between EMT genes and genes involved 
in NF-κB activation has been reported.37,39,40 Gene expression 
profiles of ARB iPSC-RPE exhibited significant enrichment of 

EMT gene set compared to control iPSC-RPE or BD iPSC-RPE. 
Genes encoding TNF-α signaling via NF-κB was also enriched 
in ARB iPSC-RPE compared to control iPSC-RPE or BD iPSC-
RPE. These results indicate that inhibiting EMT and NF-κB 
activation in the RPE could be a potential therapeutic target 
for ARB. 

The lack of peripheral retinal findings in BD and ARB is pos-
sibly related to the capacity for RPE cells to withstand the pres-

A

C

B

D

Fig. 9. GSEA plots showed that epithelial-mesenchymal transition gene set and TNF-α signaling via NF-κB gene set were significantly enriched in 
ARB iPSC-RPE compared with control iPSC-RPE (A and B) or BD iPSC-RPE (C and D). GSEA, Gene Set Enrichment Analysis; ARB iPSC-RPE, autoso-
mal recessive bestrophinopathy induced pluripotent stem cell retinal pigment epithelium; BD iPSC-RPE, Best disease induced pluripotent stem cell 
retinal pigment epithelium; FDR, false discovery rate; NES, normalized enrichment score; NOM, nominal.
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ence of dysfunctional BEST1. This difference in phenotype be-
tween central and peripheral retina in BD and ARB could be 
explained by regional differences in the RPE or superimposed 
environmental stress upon the macular RPE.16 Further studies 
are necessary to evaluate whether iPSC-RPE cells are more simi-
lar to macula or peripheral retina. Studies on ADVIRC iPSC-RPE 
would be also useful in finding the difference between central 
and peripheral lesions of bestrophinopathy. 

In conclusion, this study established an in vitro model of ARB, 
which showed a functional deficiency rather than anatomical 
defects. Fluid transport from apical to basal was significantly re-
duced in ARB iPSC-RPE compared to that of autosomal domi-
nant BD iPSC-RPE. ARB may be caused by RPE dysfunction 
following BEST1 mutation.
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