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Abstract 

Interpretation of brain activity responses using motor imagery (MI) paradigms is vital for medical diagnosis and 
monitoring. Assessed by machine learning techniques, identification of imagined actions is hindered by substantial 
intra- and inter-subject variability. Here, we develop an architecture of Convolutional Neural Networks (CNN) with an 
enhanced interpretation of the spatial brain neural patterns that mainly contribute to the classification of MI tasks. 
Two methods of 2D-feature extraction from EEG data are contrasted: Power Spectral Density and Continuous Wave‑
let Transform. For preserving the spatial interpretation of extracting EEG patterns, we project the multi-channel data 
using a topographic interpolation. Besides, we include a spatial dropping algorithm to remove the learned weights 
that reflect the localities not engaged with the elicited brain response. We evaluate two labeled scenarios of MI tasks: 
bi-class and three-class. Obtained results in an MI database show that the thresholding strategy combined with 
Continuous Wavelet Transform improves the accuracy and enhances the interpretability of CNN architecture, showing 
that the highest contribution clusters over the sensorimotor cortex with a differentiated behavior of rhythms µ and β.
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1  Introduction
The motor imagery (MI) paradigm is a form of brain–
computer interface (BCI) that performs the imagination 
of a motor action without real execution, relying on the 
similarities between imagined and executed actions at 
the neural level. MI is usually measured with electro-
encephalography (EEG) to register brain activity on the 
scalp surface. Thus, assessment and interpretation of MI 
brain dynamics in the sensorimotor cortex may contrib-
ute to applications ranging from evaluation of pathologi-
cal conditions and rehabilitation of motor functions  [1, 
2], motor learning and performance  [3], improving the 
learning of different abilities  [4], among others. In edu-
cation scenarios, the Media and Information Literacy 

methodology proposed by the UNESCO covers several 
competencies that are vital for people to be effectively 
engaged in all aspects of human development  [5]. Nev-
ertheless, one of the main challenges in implementing 
MI practice is recognizing and identifying the imagined 
actions since EEG signals have substantial intra- and 
inter-subject variability [6].

Currently, there is an increasing interest in deep 
learning models that are composed of multiple process-
ing layers of inference using data representations with 
multiple levels of abstraction. In discriminating physio-
logical signals, Convolutional Neural Networks (CNN) 
become the leading deep learning architectures due to 
their regularization structure and degree of transla-
tion invariance  [7], yielding an outstanding ability in 
transferring knowledge between apparently different 
tasks of classification [8, 9]. Thus, CNN models are use-
ful in learning features related to brain imaging and 
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neuroscience discovery  [10]. Nevertheless, for appli-
cations in MI tasks, designing an available end-to-end 
CNN architecture remains a challenge due to several 
restrictions: their large number of hyperparameters to 
be learned increase the computational burden (being 
unsuitable for online processing [11]), and complicated 
multilayer integration to encode relevant features at 
every abstraction level of the input EEG data [12].

Another unresolved issue is the interpretability of 
results provided by CNN models  [13]. That is, along 
with the improved accuracy, the learned features can 
be hard to understand within the context of the original 
MI paradigm. The value of neural activity interpreta-
tion becomes evident in purposes like a medical diag-
nosis, monitoring, and computer-aided learning  [14]. 
As a tool in image processing, CNN architecture has 
been discussed for enhancing the physiological expla-
nation of MI paradigms represented by multiple 
time-series (time dimension), which reflect the brain 
responses across the sensorimotor cortex (spatial 
dimension), and commonly related to µ and β rhythms 
(spectral dimension). For representing local and global 
structures in CNN models, therefore, the extraction of 
time-series features is increasingly realized as a multi-
dimensional tensor that retains the EEG data structure 
throughout the learning process, by adequately encod-
ing the spatio/spectro-temporal relationships of the 
measured MI responses [15]. Nevertheless, CNN mod-
els should extract the structure of multi-dimensional 
images properly to preserve the domain information of 
interest. Intending to make the learned features more 
interpretable in MI tasks, two main aspects are to be 
considered to retain the spatial locality of CNN mod-
els: (i) improving the 2D-feature extraction from EEG 
data for feeding the CNN models, and (ii) enhancing 
the image-based EEG representation to integrate spa-
tial domain knowledge with the extracted 2D spectro-
temporal features.

For building 2D-maps in discrimination of MI tasks, 
several algorithms of feature extraction are employed in 
CNN models, including the following: common spatial 
patterns due to the high recognition rate and compu-
tational simplicity  [16]; event-related synchronization 
to capture the channel-wise temporal dynamics of the 
power signal [17]; empirical mode decomposition to deal 
with EEG nonstationarity  [18, 19]; and time–frequency 
planes using the Fourier and wavelet transforms are fre-
quently extracted because they allow a more straightfor-
ward interpretation  [20–23], the latter decomposition 
being better suited to deal with sudden changes in EEG 
signals. Nonetheless, the extracted 2D images tend to 
have substantial variability in patterns across trials due to 
inherent nonstationarity, artifacts, a poor signal-to-noise 

ratio of EEG signals, individual differences in cortical 
functioning (like subjects exhibiting activity in different 
frequency bands).

Concerning the integration of electrode montages with 
the extracted 2D features, topographical representations 
are applied, involving either local or global spline tech-
niques to interpolate the spatial distribution of the poten-
tial field on the scalp from distributed electrode arrays. 
For low electrodes distributions, adequate mapping is the 
spherical spline interpolation  [24]. One strategy of inte-
gration is to incorporate prior knowledge to optimize 
the neural network structure for handling the lack of 
significant samples in smaller datasets. For instance, pre-
trained networks are used, but assuming a substantial 
similarity between pre-training and target sets  [25–27]. 
Otherwise, some ambiguity may remain in the foolproof 
nature of the pre-trained network methodology  [28]. In 
the case of MI tasks, there are very few accessible data-
sets having some differences in implementing the para-
digm. Another integration approach is to have some 
form of spatial dropping algorithm to remove candidate 
localities known to be not engaged with the elicited 
brain response. Relying on the fact that motor imagery 
responses are directly related to electrocortical activity 
over the sensorimotor area, the spatial dropping can be 
performed either subject-independent by excluding all 
electrodes out of the motor cortex before training and 
validation [29–31], or by thresholding the electrode con-
tribution after training and validation for each subject.

Here, we develop a CNN architecture with an enhanced 
interpretation of the spatial activity of brain neural pat-
terns that mainly contribute to the classification of MI 
tasks (left, right hand, and foot). Following the approach 
developed by  [32], the CNN framework is designed, for 
which we validate two commonly used techniques of fea-
ture extraction from EEG data: power spectral density 
and continuous wavelet transform. For preserving the 
spatial interpretation of extracting EEG patterns, we pro-
ject the multi-channel data using a topographic interpo-
lation. Besides, we include a spatial dropping algorithm 
to remove the learned weights that reflect the localities 
not engaged with the elicited brain response. Obtained 
results in a MI database show that the thresholding strat-
egy is desirable since the highest contribution clusters 
over the sensorimotor area with differentiated behav-
ior between µ and β bands. The present paper’s agenda 
is as follows: Section  2 describes the collection of MI 
data used for validation. Besides, it presents the funda-
mentals of feature extraction of time–frequency (t-f) 
EEG patterns and describes the design of Convolutional 
Neural Networks, including the spatial dropping strate-
gies for motor imagery classification. Further, Section  3 
provides a summary of the classifier accuracy performed 
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by the extracted t-f vectors and evaluates the interpret-
ability of learning weights for distinguishing between MI 
tasks. Lastly, Section 5 gives critical insights into the per-
formed interpretation and accuracy, and address some 
limitations and possibilities of the presented CNN-based 
framework.

2 � Materials and methods
Description of MI database and preprocessing. We per-
form experimental validation with nine subjects ( NS = 9 ) 
of Dataset 2a1, holding EEG signals acquired from the 
scalp by a C-channels montage ( C = 22 ). Each raw EEG 
channel xc∈RT was sampled at 250 Hz (i.e., at sample 
rate ∆t=0.004 s) and passed through a five-order band-
pass Butterworth filter within Ω = [8, 30] Hz. Since 
earlier works have shown that electrical brain activi-
ties prompted by motor tasks are frequently related to 
µ and β rhythms  [33], the spectral range is split into 
the following bandwidths of interest: ∆f ∈ {µ∈ [8−12], 
βlow∈ [16−20], βmed∈ [20−24], βhigh∈ [24−28]} Hz.

For performing an MI task, each trial began with an 
acoustic cue “beep” (at 0 s), and along with a fixation 
cross appeared on the black screen. After 2 s (at 2 s), an 
arrow cue appeared for 1.25 s on the screen, pointing 
in one direction according to the evaluated MI task: the 
left (left hand), right (right hand), or down (foot). The 
subjects were then instructed to image the correspond-
ing imaginary movement between 3 s and 6 s. At 6 s, the 
screen was black again, allowing the subjects to relax. 
Then, each subject performed a run of each MI task while 
the cross re-appeared within the time interval, starting 
from 3.25 to the recording end, T s. The recordings were 
collected in six runs separated by short breaks, perform-
ing N� = 72 trials per class and each one lasting T = 7 
s. We validated two labeled scenarios: bi-class (left hand 
and right hand), and three-class (left hand, right hand, 
and foot). Testing is carried out using only the labeled tri-
als with the removed artifacts.

Feature extraction of t-f EEG patterns. In the first case, 
the feature set is extracted from the Fourier decom-
position method. So, provided the EEG sample fre-
quency Fs∈R+ , the power spectral density (PSD) vector 
s = {sf ∈R

+ : f ∈NB} , with NB = l⌊Fs/2⌋ , is estimated 
through the nonparametric Welch’s method that calcu-
lates the fast Fourier transform (FFT) algorithm on a set 
of M∈N overlapping segments, which are split from the 
preprocessed EEG data vector xc . Due to the non-station-
ary nature of EEG data, the piecewise stationary analysis 
is carried out over the set of the extracted overlapping 
segments that are windowed by a smooth-time weighting 

window α∈Rτ that lasts τ∈N ( τ < T  ), yielding a set of 
the time segments {vm∈Rτ : m∈M}, where vmt ∈R ( t∈τ ) is 
tth element of vm . So, the t-f patterns are extracted from 
EEG signals through the modified periodogram vector, 
u = {uf ∈R

+} , u∈RNB , computed as follows:

Thus, the resulting PSD vector is computed with spec-
tral components defined as sf = uf /(Mν), being 
ν = E

{
|αt |

2 : ∀t∈τ
}
, and E{·}—the expectation operator.

In the second case, the feature set is extracted from 
Continuous Wavelet Transform (CWT) that quantifies 
similarity between a given equally sampled time-series 
at time spacing δt∈R and a previously fixed base func-
tion ψ(η) , termed mother wavelet ruled by a dimension-
less parameter vector η∈R . Namely, each time element of 
the CWT vector ς g∈CT is extracted from the preproc-
essed EEG time-series z∈Rc at scale g∈R by accomplish-
ing their convolution with the scaled and shifted mother 
wavelet in the form:

where notation (∗) stands for the complex conjugate.
To build a picture showing amplitude variations 

through time in Eq. (2), both procedures of wavelet scal-
ing g and translating through the localized time index 
t∈T  are used. As a result, the extracted wavelet coeffi-
cients provide a compact representation pinpointing EEG 
data’s energy distribution in time and frequency domains. 
Therefore, the resulting CWT vector is computed with 
spectral components defined as sf = E

{
ς
f
t : ∀t∈τ

}
.

Having extracted the feature set, we further compute a 
real-valued representative vector, ρr,∆f ∈RC for each trial 
r∈R , with electrode elements that accumulate the spec-
tral contribution as follows:

where the frequencies ηmin and ηmax determine each one 
of the bandwidths of interest f ∈∆f  , respectively, within 
the most discriminating MI information is assumed to be 
concentrated.

Then, we map the multi-channel data per patient on a 
2D surface, aiming to preserve the spatial interpretation 
of the extracted t-f patterns. In order to preserve the dis-
tance between electrodes in the 3D plane, we compute 
the topographic interpolation matrix across all trials, 
{S(ρr,∆f )∈RS× S′ : ∀r∈R} , through the projecting matrix 
that maps each EEG trial field, ρr,∆f  , as a 2-D circular 

(1)uf = E

{
∣∣∑

t∈τ

vmt exp (−j2π tf )
∣∣2 : ∀m ∈ M

}
.

(2)ς
f
t =

∑

τ∈T

zτψ
∗
(
(τ − t)δt , f

)
,

(3)ρr,c =
∑

ηmin≤f≤ηmax

sr,cf , f ∈ ∆f ,

1  BCI Competition IV, publicly available at www.bbci.de/competition/iv/.
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view (looking down at the head top) using spherical 
splines that sizes (S× S′)2, as detailed in [34].

Motor imagery classification using Convolutional Neu-
ral Networks. The proposed CNN architecture contains 
three learning stages: (i) convolutional layer that holds a 
set of kernel filters, {K i∈R

K ×K : i∈I} (I is the number of 
used kernel filters), together with the corresponding bias 
vectors {bi∈RSS′ } , which are applied by a sliding window 
across each topographic map S(ρr,∆f ) , yielding the con-
volution feature map as below:

where γ1(·) is a non-linear activation function, and ⊗ 
denotes the convolution operator. Of note, a zero-pad-
ding method is adopted to prevent losing the feature 
dimension, so that the output and input sizes of convo-
lution mapping can be the same after the zero-padding 
procedure.

(ii) Pooling layer that is a down-sampling stage to 
reduce the dimension of output neurons in Ξ r,i,∆f  
through a pool operator matrix K̄∈RK ′×K ′ , with K ′ ≤ K , 
aiming at decreasing the computational burden and 
the over-fitting issue. Then, each down-sampled map 
Ξ̄

r,i,∆f  is rearranged into a vector form ξ̄ r∈RGG′INf  (with 
G ≤ S,G′ ≤ S′ ) by concatenating all matrix rows across 
∆f  and i domains.

(iii) A fully connected stage that includes a neural net-
work with all neurons hr(q)∈RNh(q) connected directly to 
the outputs of preceding layer q−1 as follows:

where hr(1) = ξ̄
r , W  , sizing GG′INf×Nh(q) , is the 

weighting matrix that contains the connection weights 
between the preceding neurons and the hidden units Nh 
of layer q, β(q)∈RNh(q) is the bias neuron, and γ2(·) is an 
activation function.

As a result, we obtain the output vector set 
{yr = hr(Q)}, with yr∈[0, 1]N� , representing N� mutually 
exclusive classes, so that the last layer is tied to the out-
put dimension ( Nh = N�).

Due to the CNN-model training back-propagates the 
discriminating information, through the tied weights, 
from the hidden spaces in the input data, we propose to 
assess the relevance of input feature mappings, employ-
ing the matrix W (q)∈RD×Nh that holds the row vectors 
w
q
d∈R

Nh with D=GG′INf  . Based on the fact that each 
w
q
d measures the contribution of input features to build 

the hidden space hr(q) , the relevance of d-th feature is 

(4)
Ξ r,i,∆f = γ1

(
K i ⊗ S(ρr,∆f )+ bi

)
, Ξ r,i,∆f ∈RS× S′ ,

(5)hr(q) = γ2
(
W (q)hr(q − 1)+ β(l)

)
, q = 2,Q,

assessed as the generalized mean of its corresponding 
reverse projection vector, that is, ̺qd = �w

q
d�p , yielding 

the vector ̺q = {̺
q
d∈R

+; ∀d∈D} , where notation � · �p 
stands for lp-norm. The obtained relevance vector ̺q 
is reshaped into an estimated feature mapping matrix 
Θ̃∈RS×S′ that is computed for each ∆f  as follows:

where ˜̄Ξ i∈R
G×G′ is the reconstructed feature mapping 

for i-th kernel filter, and φ(·) is an extrapolation operator 
that maps from G×G′ → S×S′ . In this way, the obtained 
Θ̃ highlights the spatial discriminative information pro-
jected from topographic maps.

3 � Experiments
We validate the proposed CNN-based MI classification 
framework by appraising the following procedures: (i) 
preprocessing and extraction of t-f planes, evaluating the 
extraction methods of power spectral density and con-
tinuous wavelet transform, for which the correspond-
ing parameter tuning is carried out; (ii) tuning of CNN 
architecture for MI discrimination, evaluating the spatial 
dropping algorithm proposed for preserving the inter-
pretation of the extracted 2-D features. Two approaches 
for dropping are appraised: removing all electrodes out 
of the sensorimotor area before training and validation, 
and thresholding the electrode contribution after train-
ing and validation.

Extraction of t-f feature patterns. Each chan-
nel recording, xc∈RT , is split into Nτ = 5 segments, 
{xc∈Rτ , τ < T } , using a sliding window approach with 
a segment length τ = 2 s with overlap δτ = 1 s. Within 
each segment xc , PSD estimates are computed, fixing the 
following parameters: τ = 256, δτ = 0.9τ . Likewise, we 
compute the CWT vector ς g , selecting the Morlet wave-
let as ψ that is frequently used in spectral analysis of EEG 
signals [35]. So, we extract the continuous wavelet coef-
ficients within each time segment using a complex Mor-
let wavelet, adjusting the scaling value to g = 16 and the 
sampling period to 1/∆t.

For either method of feature extraction, we perform 
validation in four different scenarios for spectral band-
widths of interest f ∈∆f  : A) µ , B) β , C) µ ∪ β , and D) 
µ ∪ βlow ∪ βmed ∪ βhigh.

Proposed CNN architecture for MI discrimination. 
The adopted multiple input CNN model is based on the 
non-sequential Wide&Deep neural network  [36] that 
performs learning of deep patterns (using the deep path) 
under simple rules (through the short path), having the 
following units (Fig. 1): 

(6)Θ̃ = φ

(
E

{ ˜̄Ξ i : ∀i∈I
})

,

2  function topoplot() in EEGLAB toolbox.



Page 5 of 13Collazos‑Huertas et al. Brain Inf.             (2020) 7:8 	

–	 IN1: Input layer that holds an image set sizing 42× 56.
–	 CN2: Convolutional layer (first hidden layer). We use 

two spatial filters that perform two resulting feature 
maps, sizing 42× 56 . Each convolution kernel has a 
size of 3× 3 , using a stride of one sample. In addition, 
this layer incorporates a rectified linear unit ReLU 
through the activation function γ1(·) [37].

–	 MP3: Max-pooling layer (second hidden layer). This 
layer sub-samples the resulting mapping that picks 
up the maximum value of each feature map to reduce 
the number of output neurons, also using a stride of 
one sample. Thus, each feature mapping in CN2 is 
down-sampled using a pool size of 2× 2 , resulting in 
a matrix of size 21× 28.

–	 CT4: Concatenate layer, linking together of all result-
ing MP3 feature maps into a single block.

–	 Fl5: Flatten layer that arranges the set of concate-
nated feature maps from CT4 into a single 1D array. 
So, the map is vectorized into a one-dimensional 
array of size (21)(28)(2)(4) = 1176 points, resulting 
from 2 spatial filters, and 4 bandwidths of interest.

–	 Batch normalization (BN) layers (BN6 and BN8) 
that address the vanishing and exploding gradient 
problems presented in fully connected networks. 
To cope with this issue, all inputs of the previ-
ous layer at each batch are zero-scored, holding 

the mean activation close to 0 and the activation 
standard deviation close to 1.

–	 FC7: Fully connected layer (third hidden layer) that 
is linked to each neuron of OU9, holding hu neu-
rons for which the weight values are regularized 
through the parameters ( l1 , l2 ) using the Elastic 
Net regularization. According to  [38], Elastic Net 
is used for preventing over-fitting by penalizing a 
model having large weights, and can be used more 
naively, e.g., when little prior knowledge is available 
about the dataset. This layer uses a rectified linear 
unit ReLU as the activation function γ2(·) . The fol-
lowing parameter setting of FC7 is fixed:
•	 Number of neurons are fixed through an exhaus-

tive grid search within hu = [50, 100, . . . , 550].
•	 The learning rate is fixed at lr = exp(−3).
•	 The optimizer used is the Adam algorithm and 

the loss function used is the mean squared error 
(MSE).

•	 The regularization parameters l1 and l2 are tuned 
by a grid search around [0.001, 0.01, 0.1].

–	 OU9: Output layer having two or three neurons, 
each one representing either task label (left hand, 
right hand or foot). This layer is fully connected to 
FC7 and uses the softmax procedure as the activa-
tion function γ2(·).

Evaluating metrics of classifier performance. As a meas-
ure of performance, the classifier accuracy ac∈R[0, 1] is 
computed as follows:

where TP , TN , FP and FN are true-positives, true-nega-
tives, false-positives, and false-negatives, respectively.

Besides, the kappa value, κ∈R[0, 1] , is computed to 
evaluate the accuracy performance when removing the 
impact of random classification as follows [39]:

where pe = 0.5 for bi-label problems.
A cross-validation scheme is performed to evalu-

ate CNN-based classifier performance. Thus, the set of 
training trials per subject is randomly partitioned using 
a stratified tenfold cross-validation to generate the set 
of validation trials. This procedure is repeated ten times 
by shifting the test and training dataset.

4 � Results
Performed bi-class accuracy of extracted t-f planes. Ini-
tially, we discuss the classifier performance of the com-
puted PSD vectors of contribution, ρr,∆f  . In each one 

(7)ac =
TP + TN

TP + TN + FP + FN
,

(8)κ = (ac − pe)/(1− pe),

Fig. 1  The proposed CNN structure that is based on Wide&Deep 
neural network handling multiple inputs. The first layer (IN1) is 
the input, the second (CN2) and third layers (MP3) are hidden and 
accomplish the feature mapping generation, while the next block 
(ranging from the output of layer CT4 to the OU9 layer) comprises the 
classification stage
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of the tested scenarios for spectral bandwidths of inter-
est, parameter tuning is carried out to reach the maxi-
mum accuracy within the MI interval [3−5]  s. As seen 
in  Table  1, the use of only one rhythm ( µ or β ) is not 

sufficient to reach the best values of accuracy. Moreo-
ver, the β waveform drops to 80% . Their combination 
µ ∪ β barely helps the classifier rule. Thus, the last vali-
dating scenario (i.e., D) reaches the best performance 
on average across all subjects, meaning that the inclu-
sion of more detailed information of β sub-bands allows 
improving the accuracy of PSD vectors. Concerning 
the individual performance, the subjects A02T, A01T, 
A04T, and A05T achieve the lowest values, while A08T, 
A09T, and A03T accomplish the best results. Regarding 
the CWT-based contribution vectors, the bottom part 
of  Table  1 shows that the use of every spectral band-
width scenario allows enhancing the performed results, 
but without statistical difference between them when 
averaging across the subject set. Furthermore, the bi-
class accuracy of CWT-based vectors is comparable 
to that obtained by the best case of PSD-based extrac-
tion vectors, having a very similar ranking of individual 
performance.

In terms of the tuned CNN parameters, their values 
averaged across the subject set show that the training sce-
nario, achieving the best accuracy ( µ∪βlow∪βmed∪βhigh ), 
demands from the PSD-based vectors more hidden 
units hu than in the case of CWT planes. A similar situ-
ation holds in the scenario µ∪β that also performs high 
accuracy. When extracting the t-f vectors from a single 
rhythm ( µ or β ), the PDS-based representation demands 
less hidden units but achieves lower accuracy.

Figure  2 displays the dependency of CNN hidden 
units on the obtained bi-class accuracy. Compared 
to the best score achieved by the individually tuned 
value of hu , the deterioration in performance is notice-
able (nearly 5% ) when decreasing the number of units 
in every trained CNN model. At the same time, the 
computational burden can reduce, on average, about a 

Table 1  Performed bi-class accuracy within  the  MI 
segment using the whole electrode montage ( C=22)

The best figure achieved by each individual is marked in italics

Subject µ β µ ∪ β µ ∪ 3β

PSD

A08T 97.1 ± 3.5 84.9 ± 6.9 93.3 ± 3.9 96.8 ± 3.9

A09T 92.1 ± 4.8 89.0 ± 6.1 96.5 ± 4.3 96.6 ± 4.1

A03T 91.1 ± 5.6 77.5 ± 6.4 91.2 ± 6.5 91.3 ± 4.2

A06T 80.0 ± 6.9 81.6 ± 5.5 82.5 ± 6.1 86.7 ± 5.8

A07T 83.8 ± 8.7 78.9 ± 4.3 82.0 ± 4.9 85.1 ± 8.6

A05T 76.2 ± 5.2 79.0 ± 6.9 80.8 ± 6.6 84.0 ± 4.5

A04T 84.7 ±  6.2 79.3 ± 7.6 80.7 ± 7.5 83.7 ± 5.4

A01T 82.6 ± 3.4 80.5 ± 5.4 82.6 ± 5.6 83.5 ± 7.0

A02T 80.4 ± 6.8 77.8 ± 6.2 81.1 ± 5.3 82.5 ± 6.4

Average hu 200 350 350 300

Average ac 85.3 ± 5.7 80.9 ± 6.1 85.6 ± 5.6 87.8 ± 5.5

CWT​

A03T 96.4 ± 3.6 95.0 ± 4.6 95.0 ± 4.6 94.2 ± 2.9

A08T 96.3 ± 4.9 95.4 ± 5.1 94.0 ± 4.6 94.0 ± 5.6

A09T 94.0 ± 5.4 94.8 ± 5.6 94.8 ± 4.2 92.3 ± 5.9

A07T 85.7 ± 7.9 83.4 ± 6.8 86.4 ± 6.7 87.4 ±5.4

A06T 83.9 ± 5.6 84.1 ± 5.1 86.7 ± 7.2 86.7 ± 7.2

A04T 86.9 ± 7.7 84.6 ± 8.4 85.4 ± 7.3 85.3 ± 7.2

A01T 83.2 ± 6.7 82.5 ± 5.1 83.4 ± 5.5 82.5 ± 3.9

A05T 79.8 ± 6.3 76.8 ± 9.0 79.1 ± 4.8 82.2 ± 4.9

A02T 81.8 ± 7.2 84.0 ± 8.2 83.8 ± 6.5 81.7 ± 7.2

Average hu 350 400 250 250

Average ac 87.5 ± 6.1 86.7 ± 6.4 87.6 ± 5.7 87.4 ± 5.6
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Fig. 2  Dependence of CNN hidden units and the individual bi-class accuracy. Label “optimal” is the individually tuned CNN model
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quarter time. Moreover, the variations in accuracy by 
changing the amount of hu indicate a similar complex-
ity for both measured extraction approaches.

Interpretability of brain areas activated by MI tasks. 
Intending to give the interpretability of the extracted 
input t-f vectors, we represent the feature mapping 
graphically (topoplot) to highlight the spatial distribu-
tion of the assessed discriminative ability. Each topop-
lot depicts the proposed assessment Θ̃(ρr,∆f ) computed 
in  Eq. (6) in which we reconstruct the input feature 
image from the trained CNN weights to estimate the 
contribution of the electrodes, under the assumption 
that the higher the reconstructed weight, the more crit-
ical the discriminating strength between the electrodes. 
Of note, the interpolated values falling out of the elec-
trode space are assumed as meaningless. This situation 
may arise because the network initializes the weight set 
with random values, including the background pixels. 
Therefore, the variability and reduced signal-to-noise 
rate result in false augmentation of background locali-
ties, as subjects reach low discrimination ability.

The top row of  Fig.  3 displays the PSD-based spatial 
distribution reconstructed for the best training sce-
nario (D) within each time segment. As seen, the topop-
lots of A02T (the worst individual) present the spectral 
bandwidths contributing much alike with values mainly 

spread all over space, including places outside of the elec-
trode space. In addition, the contribution estimates are 
low and tend to be noisy. Another fact to mention is that 
brain activity notably increases within the last time seg-
ment, for which the MI activity is thought to have already 
vanished. By contrast, the best-achieving subject A08T 
has some relevant localities, which gather in places of 
either brain hemisphere and within the MI interval, fad-
ing at the time window [4−6] s.

In turn, the bottom row depicts the CWT-based 
topoplots assessed by the same training scenario (i.e., D), 
showing that the obtained spatial distribution of A02T 
still presents the spectral bandwidths that contribute 
similarly. However, several spatial clusters appear, and 
the amount of meaningless estimates decreases. Never-
theless, a notably enhanced topographic representation 
is performed by A08T, for which the CWT-based vec-
tors result in values adequately accommodated within 
the electrode space, regardless of the window time. Fur-
thermore, the contribution concentrates on the electrode 
neighborhoods clearly defined, changing over time. Thus, 
the µ rhythm shows that the sensorimotor electrodes 
contribute the most, being more evident their impor-
tance at the window [3−5] s, right at the MI period.

Figure 4 (left column) displays the topoplots individu-
ally computed for the CWT-based feature extraction 

Fig. 3  Reconstructed topographic maps for the bi-class experiment D including all bandwidths across the time domain in the best (A08T) and the 
worst (A02T) subjects, left and right column, respectively
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under the scenario C (i.e., µ∪β ), showing that the brain 
activity tends to gather over some electrodes in most of 
the subjects. Also, the brain activity between neighbor-
ing time windows changes smoothly, at least in subjects 
performing high accuracy (i.e., A03T and A08T). As the 
discrimination ability of individuals decreases, the topo-
graphic representations become more blurred, meaning 
that the learned weights are still severely affected by the 
variability captured by EEG data. This situation is more 
visible in A05T (performing the worst) with much learn-
ing weights out of the scalp area, evidencing that the 
CNN model is likely to be overtrained.

Performance of spatial dropping strategies. Two 
approaches are evaluated—(i) removing all electrodes out 
of the sensorimotor area before training and validation, 
and (ii) thresholding the electrode contribution after 
training and validation.

The first spatial dropping strategy is implemented by 
simply including all electrodes belonging to the motor 
cortex region (that is, C3,9,10,11,C4,14,15,16,17,18), fol-
lowing the spatial electrode distribution reported by [40]. 
Figure 4 (middle column) depicts the estimated topoplots 
of the two best and worst-performing subjects, showing 
that the brain activity gathers more prominently over 
some lateral sensorimotor electrodes in most of the sub-
jects. Moreover, the brain activity between neighbor-
ing time-windows changes smoothly with the highest 

contribution within the segments of MI ([2−4 ] and [3−5] 
s). In the first couple of subjects (A08T and A03T), the 
contribution of either rhythm ( µ or β ) differs. Besides, 
the number of learning values out of the scalp is consid-
erably smaller than in the previous case. Still, the topo-
graphic representations of the subjects with the worst 
accuracy (A02T and A05T) remain blurred.

Concerning the second dropping strategy, Fig. 4 (right 
column) represents the thresholded values, showing the 
presence of several electrodes with a relevant contri-
bution. Thus, the top pair of subjects holds the learned 
weights located on the lateral zones, having the highest 
contribution near the sensorimotor area with differenti-
ated behavior between µ and β rhythms. As expected, the 
central localities near the longitudinal fissure have zero-
valued weights. However, as the individual performance 
decreases, the number of relevant electrodes increases 
due to the increased variability. Moreover, the variance of 
the captured EEG data for the worst-performing subjects 
is so strong that they have a distorted topoplot with val-
ues out of the scalp. Still, these subjects present relevant 
electrodes, unlike the previous approaches achieved.

Table 2 summarizes the bi-class performance achieved 
by each evaluated CNN-based framework, showing that 
every subject reaches a performance above ∼ 75% . All 
achieved accuracy scores are competitive with other 
values performed by CNN-based approaches recently 

Fig. 4  Individual relevance weights performed by the tuned CWT feature extraction for the bi-class scenario C: Without spatial dropping (left 
column), spatial dropping by removing all sensorimotor electrodes out (middle column), spatial dropping by excluding nonrelevant electrodes 
(right column)
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presented for motor imagery classification (left and right 
hand). It is worth noting that the use of either spatial 
dropping strategy results in small degradation of classi-
fier accuracy or κ value.

Performance of three-class MI tasks. Further, we evalu-
ate the proposal in a more complicated classification 
scenario, conducting testing for the following three-
class discrimination framework of motor imagery tasks: 
left hand, right hand, and foot. Table  3 summarizes the 
classifier performance reported by two state-of-the-art 
approaches to the three-class discrimination, showing 
that the proposed approach provides very competitive 
outcomes (above 71%) and enhancing the accuracy of the 
low-performing subjects. One aspect to remark is that 
the values of multi-class accuracy and κ tend to fall, com-
pared to the bi-class scenario, partially because of the 
small database evaluated.

As in the binary classification task, we analyze the 
interpretability of brain areas activated by each MI task 
based on the reconstruction of the learned CNN weights. 

When assessed by the CWT-based feature extraction, 
Fig. 5 displays the reconstructed topoplots of scenario C, 
having a more distinct electrode contribution than in the 
bi-class case. If not using the spatial dropping, the dyad 
of the best-performing subjects shows an increase in 
neural activity within the motor imagery interval ( [3−5] 
s). However, this behavior is not evident in the worst-
performing pair. Moreover, subject A02T has a response 
postponed to the segment ( [4−6] s).

In the next case of sensorimotor dropping, the mid-
dle column shows that the better the accuracy, the 
more compact the electrode contribution. Thus, the 
method assesses the motor cortex’s regular contribu-
tion through the whole record, regardless of the evoked 
activity. This kind of scattered representation implies 
high intrasubject variability. Then, the spatial drop-
ping by excluding nonrelevant electrodes (right col-
umn) enhances the interpretation of the learned CNN 
weights, yielding a lower number of contributing elec-
trodes, but more meaningful.

Table 2  Bi-class accuracy of  evaluated CNN training strategies, using the  CWT-extracted vectors and  either  dropping 
strategy: CWT* with  sensorimotor electrodes and  CWT** with  thresholding. In all compared cases, both  sub-bands ( µ 
and β ) are included and the CNN parameters are tuned individually

Subjects [41] [42] CWT​ κ CWT* κ CWT** κ

A03T 88.2 91.7 95.0 ± 4.6 0.67 96.4 ± 4.8 0.92 95.0 ± 4.6 0.90

A09T 82.7 90.9 94.8 ± 4.2 0.68 93.1 ± 6.5 0.86 94.0 ± 6.3 0.88

A08T 91.8 92.3 94.0± 4.6 0.90 97.0±3.6 0.94 94.7 ± 4.9 0.89

A06T 65.7 78.5 86.7 ± 7.2 0.71 84.9 ± 9.0 0.69 86.7 ± 7.2 0.73

A07T 51.7 86.5 86.4 ± 6.7 0.58 81.9± 6.2 0.64 85.6 ± 9.3 0.71

A04T 53.9 80.4 85.4 ± 7.3 0.73 86.1 ± 7.5 0.72 87.6 ± 5.0 0.75

A02T 63.9 68.4 83.8 ± 6.5 0.73 80.3 ± 6.2 0.61 81.7 ± 4.8 0.63

A01T 79.4 87.8 83.4 ± 5.5 0.88 81.1 ± 5.0 0.62 83.2 ± 3.9 0.66

A05T 54.9 88.9 79.1 ± 4.8 0.90 78.3 ± 7.4 0.57 76.7 ± 6.9 0.53

Average 70.2 85.0 ± 7.4 87.6 ± 5.7 0.75 86.6 ± 6.2 0.73 87.4 ± 5.7 0.74

Table 3  Three-class accuracy of  evaluated CNN training strategies using the  CWT-extracted vectors for  the  considered 
strategies: without spatial dropping (CWT), spatial dropping by removing all sensorimotor electrodes out (CWT*), spatial 
dropping by excluding nonrelevant electrodes (CWT**)

Subjects [43] [44] CWT​ κ CWT* κ CWT** κ

A03T 86.1 76.7 83.6 ± 6.6 0.75 84.6 ± 8.3 0.76 82.0 ± 5.6 0.73

A07T 83.6 82.8 73.5 ± 9.5 0.59 73.9 ± 7.5 0.60 75.0 ± 7.4 0.63

A08T 63.1 78.2 73.0 ± 9.0 0.59 76.0 ± 9.5 0.64 75.1 ± 10.4 0.63

A01T 80.8 84.1 73.0 ± 6.6 0.59 73.4 ± 6.1 0.60 75.7 ± 5.5 0.63

A09T 54.3 75.2 72.2 ± 5.6 0.58 69.4 ± 5.7 0.58 73.0 ± 7.6 0.60

A04T 54.0 62.4 69.7 ± 5.4 0.47 69.7 ± 6.9 0.47 69.9 ± 5.6 0.47

A06T 51.3 51.8 68.3 ± 6.7 0.49 68.8 ± 8.5 0.52 68.4 ± 6.8 0.52

A02T 71.2 57.7 65.0 ± 5.5 0.44 58.9 ± 6.5 0.46 62.4 ± 8.8 0.46

A05T 52.2 48.1 59.1 ± 4.2 0.37 58.5 ± 5.6 0.36 57.5 ± 6.0 0.34

Average 66.2 68.5 70.8 ± 6.5 0.54 70.3 ± 7.0 0.55 71.2 ± 7.0 0.56
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Lastly, we evaluate the significance of learning CNN 
weights in terms of the disagreement of performing the 
individual accuracy, using the considered dropping strat-
egies: spatial dropping by weighing only all sensorimotor 
electrodes (CWT*) and spatial dropping by excluding 
nonrelevant electrodes (CWT**). To this, we conduct the 
paired Welch’s t-test, employing the scores achieved on 
the cross-validation folds and holding a significant level 
of a p-value< 0.05 . In this case, the non-rejection of the 
null hypothesis (identical average scores) is the desired 
behavior to prove that our relevance approaches (CWT* 
and CWT**) do not differ from CWT (without spatial 
dropping). Table  2 shows that only a couple of subjects 
(namely, A08T with p = 0.159 and A07T with p = 0.133 ) 
that are underlined are close to p < 0.15 . In turn, Table 3 
presents a confident difference in performance for sub-
ject A02T (underlined subject) with a p = 0.039 . This 
result may be explained since A02T reports a low-per-
formance with high variability along the folds. Hence, the 
sensorimotor region is not sufficient to code discriminant 
information about this subject.

5 � Discussion and concluding remarks
We present an approach using CNN models to improve 
the interpretability of spatial contribution in discrimi-
nating between MI tasks, preserving an adequate clas-
sification accuracy. The results obtained for BCI Dataset 
2a prove that the proposed deep learning framework 

allows improving accuracy along with revealing the elec-
trodes with higher spatial relevance. Nevertheless, the 
following aspects are to be regarded in the framework 
implementation:

Feature extraction of t-f vectors. For each estimated 
source, the t-f sets are extracted within each time win-
dow, generating an image containing temporal, spec-
tral, and spatial information. Intending to deal with the 
nonstationary EEG nature, we evaluate the extraction of 
t-f patterns from the FFT-based periodogram and con-
tinuous wavelet transform. Then, all extracted t-f feature 
patterns are further interpolated to obtain the spatial dis-
tribution of activated brain areas through topographic 
maps. We obtain that both approaches are similar in 
terms of providing classifier performance and the com-
plexity of implementing CNN models. Besides, we evalu-
ate four combining scenarios of µ and β rhythms, which 
differently influence the achieved accuracy. In the case of 
PSD estimates, only the inclusion of detailed information 
from three β sub-bands together with µ waveform pro-
vides the best system accuracy. By contrast, the CWT-
based feature set gives high accuracy scores regardless of 
the evaluated sub-band combination. This result may be 
explained by the fact that CWT is more suitable for the 
decomposition of nonstationary data.

Nonetheless, the CWT-based vectors are preferable 
for interpretation purposes because the learned weights 
gather around electrode neighborhoods, forming more 

Fig. 5  Relevance weights computed for representative individuals (best-performing A03T and A08T and worst-performing A02T and A05T) in 
terms of performed three-class accuracy for scenario C: without spatial dropping (left column), spatial dropping by weighing only all sensorimotor 
electrodes (middle column), spatial dropping by excluding nonrelevant electrodes (right column)
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clearly defined spatialities with relevant neural activity. 
Moreover, the CWT-based weights smoothly change 
over time following the implemented MI paradigm tim-
ing. One more aspect of highlighting is that the learned 
weights are less sensitive to the overtraining effect.

Spatial interpretability of activated MI responses. 
Another aspect to remark is the dropout algorithm that 
CNN models include. Their high number of parameters 
makes them particularly prone to over-fitting, demand-
ing the use of regularization methods. In addition, neu-
ral network training or inference can involve randomly 
modifying parameters  [45]. To cope with this issue, the 
spatial dropout algorithm can withdraw an entire feature 
map across a channel since adjacent pixels are highly cor-
related to the dropped pixels [46, 47].

Relying on the fact that the interpretation of evoked 
brain zones can be performed by preserving spatial 
information in input multi-spectral images, we evaluate 
two spatial dropping strategies to promote discarding of 
irrelevant image details: including just the sensorimotor 
electrodes, and thresholding of the electrode contribu-
tion. Although the number learned values out the scalp 
decreases considerably in the former strategy, the topo-
graphic representations of subjects having low accuracy 
are still blurred, hindering the interpretation of analyzed 
brain activity. The use of full-set EEG electrodes has 
been already reported as difficult to achieve in practi-
cal MI applications, suggesting that the performance of 
CNN models can improve with fewer electrodes, which 
cover the motor cortex and sensorimotor cortex [48]. The 
obtained results show that the thresholding strategy is 
desirable since the highest contribution clusters over the 
sensorimotor area with differentiated behavior between µ 
and β bands. However, the high EEG data variability cap-
tured by the worst-performing subjects may still produce 
distorted topoplots with values out of the scalp, making 
difficult their understanding.

Evaluated CNN architecture for MI discrimination. 
The first design consideration is the number of convolu-
tional layers, together with the type of end classifier. In 
MI tasks, 70% of CNN models use a rectified linear unit 
(ReLU) as the layer’s activation function, while the vast 
majority of classifier fully connected layers employ a 
softmax activation function [49]. The proposed network 
relies on the Wide&Deep architecture for handling multi-
ple inputs to learn deep patterns under simple rules. With 
the purpose of increasing the neurophysiological reliabil-
ity of feature interpretation, the Classifier Block includes 
batch normalization applied to the convolutional outputs 
before and after the fully connected layer FC7, improv-
ing the performance on unseen examples  [50]. We also 
use the Elastic Net regularization technique through the 

parameters ( l1 , l2 ) for preventing over-fitting by penaliz-
ing a model with large weights.

Spatial dropping of multi-class settings. The spa-
tial dropping algorithm is evaluated in two labeled sce-
narios of MI tasks: bi-class and three-class, resulting in 
meaningful topographic representations and perform-
ing values of accuracy very competitive with the results 
reported by similar CNN-based architectures. However, 
the achieved values of multi-class accuracy and κ tend 
to fall, compared to the bi-class scenario. This behavior 
can be partially explained by the small database evaluated 
and the reduced set of scalp electrodes.

However, some restrictions are to be mentioned: the 
first limitation to enhance the performance of the evalu-
ated CNN architecture is the small size of the examined 
dataset that holds just nine subjects with very differ-
ent variability [51]. As a result, the deterioration in per-
formance is noticeable (nearly 5% ) when decreasing the 
number of units in each individual trained CNN model. 
Moreover, the small data issue restricts the application of 
robust approaches in deep learning like augmentation or 
transfer learning, causing over-fitting. Another concern 
is the adequate sampling of the potential scalp field for 
the topographic analysis that requires a large number of 
electrodes [52].

As future work, to enhance the impact of tested Deep 
Learning models, we plan to employ datasets that hold 
more labeled MI tasks, fusing CNNs with different char-
acteristics and architectures is also to be considered to 
learn more complex relationships between spatial pat-
terns and extracted t-f representations, making the 
learned CNN weights more accessible to interpret [53, 
54].
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