TABLE 3.
Advantages | Disadvantages | References | |
Inorganic nanostructured delivery systems | |||
Ceramics (e.g., HA, TCP) | Intrinsic osteoconductivity Surface functionalization Widely available |
Unfavorable biodegradability profile Low yield of payload loading |
Matsumoto et al., 2004; Dong et al., 2007; Habraken et al., 2007; LeGeros, 2008; Yuan et al., 2010; Xie et al., 2010; Bose and Tarafder, 2012; Jeon et al., 2012; Fielding and Bose, 2013; Fan et al., 2014; Wen et al., 2017 |
Metallic or metalloid oxides (e.g., silica) | Tailorable mesoporous structure Surface functionalization with and/or encapsulation of bioactive molecules Modifiable architecture and topography Optimization of cell adhesion and proliferation |
Cytotoxicity at certain particle sizes and/or concentrations | Oh et al., 2005; Raja et al., 2005; Magrez et al., 2009; Lai et al., 2011; Lallana et al., 2012; Portan et al., 2012; Tang et al., 2012; Setyawati et al., 2013; Shadjou and Hasanzadeh, 2015; Zhou et al., 2015; Cui et al., 2018; Tang et al., 2014; Hu et al., 2012; Huang et al., 2014; Kwon et al., 2017; Liu et al., 2017 |
Organic nanostructured delivery systems | |||
Synthetic polymers (e.g., PLA, PLGA) | Widely available Overall favorable biocompatibility Many modifiable properties: e.g., L/G ratio, molecular weight. Modifiable with cross-linkers or surface functionalization |
Low yield of payload loading Burst release Difficulty in accomplishing sustained release Certain polymers have cytotoxic degradation products |
Alcantar et al., 2000; Habraken et al., 2007; Lü et al., 2009; Puppi et al., 2010; Anderson and Shive, 2012; Makadia and Siegel, 2011; Jacob et al., 2018 |
Natural polymers (e.g., gelatin, chitosan) | Widely available Favorable biocompatibility and biodegradability Biomimetic properties Modifiable with cross-linkers or surface functionalization |
Low yield of payload loading Rapid degradation in vivo Burst release Difficulty in accomplishing sustained release |
Friess, 1998; Aframian et al., 2002; Malafaya et al., 2007; Niu et al., 2009; He et al., 2011; Vo et al., 2012; Farokhi et al., 2014; Amjadian et al., 2016; Cai et al., 2016; Ding et al., 2016; Shen et al., 2016; Jacob et al., 2018; Oliveira et al., 2019 |
Composite nanostructured delivery systems | |||
Composites | High loading efficiency Highly tunable release kinetics Sustained release Optimization of unique properties of each material |
Generally require more complex syntheses | Li et al., 2006; Liu et al., 2009; Niu et al., 2009; Reves et al., 2011; Fan et al., 2012; Singh et al., 2015; Minardi et al., 2015b; Kim B.-S. et al., 2018; Wang et al., 2018; Zhang Q. et al., 2018; Minardi et al., 2020 |