Skip to main content
. 2020 Aug 21;8:922. doi: 10.3389/fbioe.2020.00922

TABLE 3.

Main types of nanostructured delivery systems used in bone regeneration, with their respective advantages and disadvantages.

Advantages Disadvantages References
Inorganic nanostructured delivery systems
Ceramics (e.g., HA, TCP) Intrinsic osteoconductivity
Surface functionalization
Widely available
Unfavorable biodegradability profile
Low yield of payload loading
Matsumoto et al., 2004; Dong et al., 2007; Habraken et al., 2007; LeGeros, 2008; Yuan et al., 2010; Xie et al., 2010; Bose and Tarafder, 2012; Jeon et al., 2012; Fielding and Bose, 2013; Fan et al., 2014; Wen et al., 2017
Metallic or metalloid oxides (e.g., silica) Tailorable mesoporous structure
Surface functionalization with and/or encapsulation of bioactive molecules
Modifiable architecture and topography
Optimization of cell adhesion and proliferation
Cytotoxicity at certain particle sizes and/or concentrations Oh et al., 2005; Raja et al., 2005; Magrez et al., 2009; Lai et al., 2011; Lallana et al., 2012; Portan et al., 2012; Tang et al., 2012; Setyawati et al., 2013; Shadjou and Hasanzadeh, 2015; Zhou et al., 2015; Cui et al., 2018; Tang et al., 2014; Hu et al., 2012; Huang et al., 2014; Kwon et al., 2017; Liu et al., 2017
Organic nanostructured delivery systems
Synthetic polymers (e.g., PLA, PLGA) Widely available
Overall favorable biocompatibility
Many modifiable properties: e.g., L/G ratio, molecular weight.
Modifiable with cross-linkers or surface functionalization
Low yield of payload loading
Burst release
Difficulty in accomplishing sustained release
Certain polymers have cytotoxic degradation products
Alcantar et al., 2000; Habraken et al., 2007; Lü et al., 2009; Puppi et al., 2010; Anderson and Shive, 2012; Makadia and Siegel, 2011; Jacob et al., 2018
Natural polymers (e.g., gelatin, chitosan) Widely available
Favorable biocompatibility and biodegradability
Biomimetic properties
Modifiable with cross-linkers or surface functionalization
Low yield of payload loading
Rapid degradation in vivo
Burst release
Difficulty in accomplishing sustained release
Friess, 1998; Aframian et al., 2002; Malafaya et al., 2007; Niu et al., 2009; He et al., 2011; Vo et al., 2012; Farokhi et al., 2014; Amjadian et al., 2016; Cai et al., 2016; Ding et al., 2016; Shen et al., 2016; Jacob et al., 2018; Oliveira et al., 2019
Composite nanostructured delivery systems
Composites High loading efficiency
Highly tunable release kinetics
Sustained release
Optimization of unique properties of each material
Generally require more complex syntheses Li et al., 2006; Liu et al., 2009; Niu et al., 2009; Reves et al., 2011; Fan et al., 2012; Singh et al., 2015; Minardi et al., 2015b; Kim B.-S. et al., 2018; Wang et al., 2018; Zhang Q. et al., 2018; Minardi et al., 2020