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a b s t r a c t

This paper investigates the scaling of the surface roughness of coronavirus, including the SARS-nCoV
based on fractal and spectral analyses of their published electron microscopy images. The box-counting
fractal dimensions obtained are subjected to ANOVA tests for statistical significance. Results show that
the SARS-nCoV particles could not statistically be resolved by their shape on the basis of the fractal
dimension values, but they could be distinguished from the earlier SARS-CoV particles. MANOVA test
results require interaction of factors used for classifying virions into different types. The topological
entropies, a measure of randomness in a system, measured for the images of varying size show
correlation with the fractal dimensions. Spectral analyses of our data show a departure from power-law
self-similarity, suggesting an apparent scaling of surface roughness over a band of maximum an order
of magnitude. The spectral crossover that corresponds to characteristic length scale may represent
average viral size. Our results may be useful in inferring the nature of surface-contact between the
viral and human cell, causing infection and also in providing clues for new drugs, although it is too
early to say. In addition, limitations of this study, including possible ways to avoid the bias in scaling
exponents due to the use of different techniques are discussed.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

An accurate characterization of surface roughness has gained
arge interest in the study of nonlinear, complex natural phe-
omena in many applications of physical [1,2] and biological
ciences [3–5]. Protein surfaces show self-similar scaling in a
ertain range in radius, as measured from fractal analysis of their
-D structures [5]. The variations in fractal dimension (FD), D

explaining the surface irregularity could be related to molec-
ular interactions of structural features [4], and thus can help
in deciphering the underlying surface interaction patterns [3].
While there are many qualitative and subjective methods for
analyzing the complexity of surface roughness, fractal geometry is
the quantitative and robust measure of describing it [6]. The FD-
based techniques provide useful information in analyzing natural
structures by means of their space filling properties in many
applications in biology [4].

The degree of roughness varies with scale. Surface roughness
data can be analyzed in time and frequency domain for estimating
the scaling exponents [7,8], the parameters that describe the dy-
namics of the underlying process at multiple spatial and temporal
scales. This work investigates the morphological complexity of
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virions from fractal scaling of the surface roughness of the novel
corona virus SARS-nCoV (hereafter referred to as nCoV), within
the scope of biophysics.

The 2019 nCoV outbreak causes human respiratory disease
namely COVID-19, presenting a severe global health threat. The
nCoV is more readily transmitted from human to human than the
earlier reported CoV, spreading the infection to the whole world.

After this outbreak, there have been several studies on non-
linear epidemiological models of COVID-19 spreading based on
analysis of epidemiological data in mainland China and other
countries [9–19]. A power-law scaling feature of COVID-19 spread
is found in networks of cities in different parts of the world [9].
Optimal control theory-based epidemic model (Susceptible, Quar-
antined, Exposed, Infected, Asymptomatic, and Recovered indi-
viduals, SQEIAR) [10] is proposed for eradication of infection by
following quarantine and treatment policies in China and Spain
for different types of disease (COVID-19, Ebola, and Influenza).
However, little is known about the roughness structure of the
virus surface including its shape, structure, protein distribution,
and nature of contact causing infection. Here, we claim to in-
vestigate these properties as they provide clues to understanding
how virus enters human cells, providing ways to design drugs or
vaccines to combat the virus [20].

Viruses have a variety of shapes and structures. They are
classified into four groups based on shape: filamentous, isomet-
ric (or icosahedral), enveloped, and head and tail. A complete
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virus particle (virion) consists of a nucleic acid (RNA or DNA)
surrounded by a coating, referred to as an envelope. The shape
of a viral coat has implications on how a virus infects a host. The
protein distribution on the envelope provides clues for drugs [17].
Thus both the viral elements (envelope and proteins) together
describe a complex system with mesoscopic properties [3].

Fractal geometry, because of its scale invariance property over
many orders of magnitude, can describe complex geometry of
structures [4,6]. Fractal scaling of proteins’ surfaces has been
supported both theoretically and experimentally [3,5,21] after the
landmark work of Lewis & Rees [4]. Determination and interpre-
tation of fractal dimension associated with the complexity of viral
surface could provide information on nature of contact causing
the infection, and provide clues in developing new vaccines or at
least antiviral strategies that are seemingly unknown for nCoV.
Hence, from a utilitarian angle with the emergence of the pan-
demic, we made a first attempt to study the complex geometry
associated with the surface roughness based on the systematic
analysis of the electron microscope images of nCoV.

2. Data & fractal and spectral analyses

We analyzed electron microscopy images (both color and
gray-scale) of 55 virions of the novel nCoV and earlier CoV of
varying shapes and S-protein (spike) distributions from published
studies [22,23]. Our analysis is based on calculation of fractal
(box-counting) dimension, radially averaged power spectra (ra-
dial spectra for short), and entropy of the images processed using
the following approach.

The RGB color images are converted to gray-scale images to
be segmented (binarized) by thresholding, allowing most of the
detailed features of the virions to be preserved. The entropy-
based thresholding algorithm of Kapur [24] obtains the optimal
threshold values by maximizing the sum of entropies for object
(gray-scale value higher than threshold, set as white) and back-
ground (gray-scale value lower than threshold, set as black) of the
image. Finally a binary image, created by assigning each pixel to
1 or 0 in reference to the label of pixels, is subjected to fractal
analyses.

We estimated fractal dimension using the box-counting
method. The method is based on overlaying an image A ∈ R2

with a grid of squares of size r and counting the number of
squares, N(r) necessary to cover the object in the thresholded
image. The number of boxes of size r needed to cover a fractal
object follows a power-law N(r) ∝ r−D, where D is the box-
counting fractal dimension obtained from the linear portion of
the log[N(r)] versus log[r] plot. The algorithm is applied to binary
mages obtained after segmentation of original color/gray scale
mages with a threshold.

Next, we calculated radial spectra of the thresholded images.
ere the power spectrum is averaged over all possible directions.
t provides a convenient means of representing the information of
-D spectra in 1-D. The spectra present a multi-scale characteris-
ic of the images, with the frequency as a proxy for scale variable.
inally, we computed the entropy of the images to characterize
he texture and studied their relation with fractal dimensions
btained.

.1. Topological entropy and fractal dimension

The generalized Shannon (Renyi) entropy quantifies the ran-
omness in information distribution in a system, which is defined
or order q ≥ 1 as, Sq(X) =

1
1−q logb

∑m
i pqi where X is a discrete

random variable, pi is the probability of the event {X = xi}, and
b is base of logarithm [25]. The cases q = 0 and 1 correspond
o topological and Shannon entropy, respectively. Topological
entropy as a function of the size of the support of X can be defined
as S0(r) = ln

∑m(r)
i=1 p0i = lnm which depends only on the number

of events m with the probability pi > 0 [26]. S0(r) and D can
be related as S0(r) = D ln r . The more generalized relation for
different order q, and base of logarithm b is Sq(r) = Dq logb r [27].

Figs. 1 and 2 show examples of data analysis applied to the
representative images of nCoV and CoV, respectively. The nCoV
shown here has four virions (marked as 1–4) of different shape
and size visually. The CoV has twelve virions classified according
to the envelope shape (rounded, slightly oval, and elongated)
and nature of spike distributions (evenly distributed, clustered
at opposite ends, clustered at one end, and depletion of spikes).
All the nCoV particles analyzed here are characterized by spiked
envelopes. As presented in the following section, we systemat-
ically compared the shapes of the nCoV images with those of
the CoV images of Fig. 2 to find in which category of those
mentioned in Fig. 2 all the nCoV images analyzed are framed
and then compared them with that category. Once all the nCoV
images are classified into the 12 categories of CoV presented in
Fig. 2, the results are compared from a media analysis, ANOVA
for their statistical significance. The 1st row of plots shows the
2-D gray-scale binary images obtained after pre-processing the
original color images. The 2nd and 3rd rows show the fractal and
spectral analyses results, respectively.

3. Results

The D values for the 12 CoV particles of different shapes
and spike distributions lie in the range 1.31–1.58 (2nd row,
Figs. 2a–2c). The corresponding power spectra show linear decay
in log–log domain at low wavelengths over a maximum of one
order of magnitude (∼1–10 units of wavelength) (3rd row, Fig. 1).
The D values for the 43 nCoV particles analyzed of different
shapes lie in the range 1.34–1.85. The D estimates obtained are
subjected to the ANOVA tests for statistical significance of the
results, described as follows.

3.1. Analysis of variance (ANOVA) test results

The D estimates, expressed as mean ± S.D., were subjected
to ANOVA test, a statistical test exhibiting whether or not the
means of several groups are equal and assessing the statistical
significance of results obtained. The ANOVA box plot represents
the size of the F-statistic and the p-value. The p-value is com-
pared to significance level (say, 0.05 at 95% confidence level) to
assess the null hypothesis that the means of different groups are
equal. Thus, the lower the p-values than the significance level and
the higher the F-statistic, statistically significant are the results.
Large differences in the center lines of the boxes correspond to
large F-statistic and small p-values. 1-way ANOVA is done to test
if the mean in each group is same; 2-way ANOVA is to test (i) if
the mean in each group is same, and (ii) if there is any interaction
among different factors. We systematically conducted the ANOVA
tests to the D estimates for the following cases (Fig. 3(a–c)):
1-way ANOVA tests (i) between the three groups of CoV by
envelope shape (rounded, slightly oval, and elongated) to see
whether their means are equal, (ii) between the four groups
of CoV by spike distribution (evenly distributed, clustered at
opposite ends, clustered at one end, and spike depleted) to see
whether their means are equal, (iii) same as (i) but for nCoV,
(iv) between similar groups by shape of CoV, and 2-way/multiple
ANOVA (MANOVA) test for examining the relation between the
D values and the interaction of two factors (shape and spike
distribution) for nCoV. The results show the following major
features. (1) For CoV, the elongated virions are statistically dis-
tinguished from other two (rounded and slightly oval), while
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the others are not distinguished from each other (p = 0.0011);
the virions are not statistically distinguished from each other
based on their spike distribution (p = 0.8862). Because we could
not differentiate the virions by their spike distribution, hereafter
‘group’ in virus is referred to by their shape. (2) For nCoV, all
three groups are not statistically distinguished based on their
D values (p = 0.1297), and their confidence intervals overlap
(Fig. 3(b)). (3) CoV and nCoV are statistically distinguished by
shape, except the rounded ones characterized by high and low
p values with respect to (wrt) the significance level for rounded,
and slightly oval and elongated shapes, respectively (prounded =

0.3831, pslightly oval = 0.0065, and pelongated = 0.0003): nCoV par-
ticles are characterized by statistically higher D values than CoV
ones (Fig. 3(c)). (4) The D-based classification rather depends on
the shape*spike (shape can be any one of three groups: rounded,
slightly oval and elongated, spike means whether the spike pro-
teins are distributed evenly/uniformly, U or not, NU) interaction
instead of on the individual factors (pshape∗spike = 0.0915, pshape=
.4067, and pspike = 0.5558). This simple classification (U vs NU)
n spike distribution, instead of the original classification into
our types shown in Fig. 2, was considered in 2-way ANOVA
est based on (i) our observations of nCoV particles, and (ii) the
esults obtained from the 1-way ANOVA test that the nature of
pike distribution could not be resolved based on the D values, as
entioned above. MANOVA test for this interaction shows that no
roups have means significantly different from Group-1 (Shape
1, Spike = U), as found from the overlapped 95% confidence

ntervals for different groups (Fig. 3(a)). Overall, the two types
f corona viruses presented here are statistically distinguished
ased on the D values for two groups (slightly oval and elon-
ated), and the classification of nCoV particles into different types
epends on the interaction of shape and their spike distribution
evenly distributed or not), as evidenced from small p-value for
he shape*spike interaction (0.0915), and relatively large p-values
for shape (0.4067) and spike (0.5558) obtained separately (see the
MANOVA Table in Fig. 3(a)).

. Discussion

.1. Explaining viral features based on fractal analyses

Our D values obtained with the nCoV data analyses are in
he range 1.34–1.85, differing from the Euclidean dimension of
.0, suggesting a considerable degree of surface complexity. This
omplexity can be interpreted in terms of the nature of surface
ontact/binding/infected-site between the viral and host cells,
nd thus in terms of the patterns of surface interactions [3]. A
ough (smooth) site may indicate a potentially stronger (weaker)
nteraction between protein and the binding molecule [4]. The
orders of binary images show irregularity in the image shape;
he D values suggest how their complex shapes deviate from
lassic geometric figures.
It is worth mentioning that in few cases the quality of fit is

elatively poor in an intermediate scale (see 4th column, Fig. 2a
s an example). This could be attributed to several factors such
s experimental/measurement noise resulting from the use of
ifferent electron microscopy techniques, and the extracellular
ackground (part of the region of interest, ROI, of the image
utside the viral surface border), implying the D values in this
ange are likely overestimated. It was found that a small change
n ROI of the image outside the viral surface slightly improves
he quality of fit, but their overall effect is not statistically signif-
cant, at least true for the images we analyzed (see Figs. A.1–A.2,
ppendix). The effect of the use of different techniques on D

estimation cannot be excluded, with a caution in interpretation,
however.
Here we discuss the implications of the ANOVA test results
presented in the last section. Morphological diversity of nCoV
particles is not statistically significant (D falling in a narrow over-
lapping range within error limits, Fig. 3(a)), in accordance with
ANOVA test results (#2, Section 3.1). These observations strongly
suggest the D value as one of the intrinsic properties of virion,
although its measurement could be influenced by factors such as
the methods used, finiteness in data, etc., to be discussed later.
The slightly oval and elongated shapes of both the virus types
(nCoV and CoV) could statistically be resolved (#3). The classifica-
tion seems more complex with the shape*spike interaction than
without interaction of the features (#4).

Topological entropy was measured from the images of varying
size and then they were compared with the D values obtained.
Entropy shows an increasing trend with fractal dimension for the
nCoV particles of different type by shape (Fig. 4), in agreement
with theory. It is worth mentioning that the bias in D could
produce results similar to those shown in Fig. 4 for different
virus shapes. We investigated the influence of small change in
ROI of the images analyzed on the D values obtained and on
the results shown in Fig. 4 (see Figs. A.2–A.3, Appendix). On
comparing the changed results with the original ones, we hardly
found any noticeable influence (Fig. A.3(a–c), Appendix). We also
found from the MANOVA analysis that small changes in ROI
produce fractal analysis results that are not significantly different
from the original results (Fig. A.2, Appendix). However, the effect
of the use of different techniques for taking the images on the
measured D values cannot be excluded, so care must be taken
when interpreting the D values and their relations to entropy for
different virus shapes.

Fractal analysis of binary images depends on the threshold
values used for image segmentation. The D estimates used for
discrimination of tissue structures at the multiscale level were
found to be independent of the threshold selected [28]. Our
threshold values, obtained with an automated version of the
Kapur’s algorithm [24] for image segmentation, lie in the range
0.3–0.65 for the D estimates obtained. We expect their influence,
at least with the current technique, on fractal scaling is mini-
mal [29]. In addition, we investigated the dependence of the D
values on threshold for small changes in ROI of the images. We
found their dependency is again not influenced significantly with
small changes in ROI (see Fig. A.3(d), Appendix), in agreement
with the findings of an earlier study on the automatic selection
of threshold for image segmentation [29].

4.2. Evaluating nature of scaling based on spectral analyses

The radial spectra are analyzed to describe the complex-
ity of texture at different scales that contain information of
fine (small scale) and coarse (large scale) structures as well as
the morphology of the virions. We qualitatively analyzed them
to evaluate the nature of scaling. For nCoV, a cross-over at
∼5-10 units of wavelength, depending on the virion classification,
separates the low-wavelength (high-frequency) regime from the
high-wavelength (low-frequency) one (3rd row, Fig. 1). The cross-
over, a measure for characteristic length scale, may represent the
average size of virion. A linear spectral decay at low wavelengths
is observed over less than an order of wavelength with a slow
decay, although it is difficult to visualize them from the figures
shown (3rd row, Fig. 1).

CoV exhibits spectral properties almost similar to those of
nCoV, with a few exceptions mentioned as follows. The for-
mer (3rd rows, Figs. 2a–2c) shows a relatively faster spectral
decay at low wavelengths than the latter (3rd row, Fig. 1). A
spectral decay of opposite nature is observed between them at
high wavelengths, however. Because scaling analyses generally
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Fig. 1. (Bottom) A representative electron microscopy image of nCoV [22] with four virions, marked as 1–4, is shown with the spikes protruding from their envelopes.
(1st row) Binary maps (thresholded images) of the virions 1–4. (2nd row) Log–log plot of box size versus number of boxes. The slope of the fitted straight line
gives the D value, expressed as mean ± standard deviation (SD). (3rd row) Radially averaged spectra for each image shown as a function of wavelength. Note the
units of variables used are arbitrary.

Fig. 2a. (Bottom) Classification of the CoV particles according to a classification scheme based on envelope-shape and spike distribution [29]. Remaining features
shown are same as Fig. 1 but for the virions of the first row of classification shown at the bottom figure.
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Fig. 2b. Same as Fig. 2a but for the virions of the second row of classification shown at the bottom of Fig. 2a.
Fig. 2c. Same as Fig. 2b but for the virions of the third row of classification shown at the bottom of Fig. 2b.
look for linearity in high-frequency spectral decay in log–log
domain, we are hardly interested in the nature of low-frequency
spectra. For the spike-less virions, the transition between the
two regimes is not clear, however. Their low-wavelength spectral
decay is relatively faster than others, suggesting the significance
of the spike-distribution on the observed spectral decay. Overall
analyses suggest that a power-law self-similar scaling over few
orders of magnitude is clearly missing, with an apparent scaling
at low wavelengths over a maximum of one order of magnitude
corresponding to the linearity in log–log domain.

Images taken with different electron microscopy techniques
are characterized by different bandwidth limits, lateral resolution
limits, and maximum analysis size, which may subsequently bias
the results. Thus, the spectra defined over the whole frequency
range cannot be reliably measured. The resulting low-frequency
noise may explain why the linear trend in the observed spectra
is distorted in the intermediate to large wavelength range (3rd
rows, Figs. 1–2). Thus, the spectra in this range may not represent
true morphological variations of the virions. There are ways one
can standardize them to avoid the resulting bias [30]. The first
one, mostly experiment-based, involves combining results from
various techniques and multiple measurements of the images per
technique. The other one (numerical-based) involves analysis of
the synthetic spectra for the computer-generated surfaces created
under the assumptions of the random process model of surface
roughness [31]. The influence of noise on the measured power
spectral density (PSD) can be tested by adding white noise into
the synthetic viral surface characterized by a well-defined PSD.
The fact that white noise gives constant power spectrum can
be used to detect it [30]. Comparison of the synthetic with the
measured spectra enables us to calculate the upper limits on
wavelength that can reliably be measured.

In any case, the spectra presented here are still useful, which
enable the calculation of upper and lower bounds on wavelength.
The lower bound on wavelength is related to resolution of the in-
strument (pixel size) and the upper bound to the ROI of the image
analyzed [30]. The spectra shown here can also be extrapolated
to learn about a surface beyond the limits of the measurement

technique.
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Fig. 3. ANOVA results for testing the statistical significance of the fractal analysis results. (a) MANOVA 95% confidence interval (error) plot for the fractal dimensions
obtained with the shape*spike interaction of the nCoV particles and the corresponding MANOVA table shown on right. (b) ANOVA box plot of the D values for three
roups of nCoV. The red line indicates the median, the blue box extends between the first and third quartiles, and the black dashed lines (whiskers) extend between
he minimum and maximum values excluding outliers (red points). (c) ANOVA box and error plots for testing the statistical significance between the means of the
oV and nCoV particles for rounded, slightly oval and elongated shapes.. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)
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The spectral scaling suggests that the viral surface rough-
ess features are prevalent over a limited small-scale (short-
avelength) range. Surface properties such as the contact area
hus increasingly depend on the accuracy of these short-
avelength measurements/information. So care must be taken
hen measuring and analyzing the spectra at a wider scale range.
The limitation of this study is that our data are limited and

onsequently subtleties like the exact nature of spike distribution
ould not be resolved. Another source of error could be the
se of technique, such as the binary box-counting method for
etermining D, where the intensity information is lost and all
he viral features are not contrasted from the background pixels.
lso, image segmentation may cause some loss of information for
stimating the D values [32]. The advantage here is the use of
utomated entropy-based thresholding for image segmentation
hereby avoiding/having minimal influence of threshold on the
values. In any case, attending all these aspects, including the
ays to standardize the images to avoid any bias of the results,
s already presented, is beyond the scope of this short communi-
ation, but is the scope of future studies with the availability of
larger dataset to tightly constrain our current findings. By then
he results can be considered as first order, but still useful for bet-
er understanding of nCoV in the framework of basic virology and
linical practice. Finally, the scope of this study can be extended



S. Padhy and V.P. Dimri / Physica D 414 (2020) 132704 7
Fig. 4. Dependence of entropy on fractal dimension for the nCoV particles of
different shape.

to investigate some important dynamic features of nCoV, such
as (i) changes in envelope-shape at different stages of infection
where structural changes are expected to occur, and (ii) virion
size that depends on the interactions between all its components.
It is possible with the availability of high-quality data from both
the low angle X-ray and light scattering experiments.

5. Conclusions

We assessed the complexity of surface roughness of nCoV
particles. ANOVA results show that the nCoV particles of dif-
ferent shapes (rounded, slightly oval, and elongated) could not
be statistically resolved with their D values falling on a narrow
overlapping range. The latter two groups (slightly oval and elon-
gated) of nCoV could, however, be distinguished from the earlier
counterpart (CoV). The interaction of shape and spike distribu-
tion plays a major role for the classification to be statistically
significant. Topological entropy describing the randomness of
information in the images correlates with the D values. The effect
of the use of different techniques for taking the images on the D
estimation cannot be excluded, so care is required to accurately
interpret the results for different virus shapes. Our data support
apparent scaling (weakly self-affine) of viral surface roughness
over a narrow band, with a maximum of one order of wavelength.
Studies of this type have important implications on structure
of virion, a key element in developing drugs, and on nature of
contact causing infection with the organ. Detailed investigations
of a large dataset at different scales, however, are essential to
further constrain the nature of scaling, as a scope of future study.
By then our results are treated as first order, providing clues to
fight against COVID-19 with a hope for new vaccine.
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Appendix

In this Appendix, we describe in detail the effects of some
of the image features during processing including the effect of
threshold for image segmentation on the results obtained to-
wards their accuracy and robustness.

A.1. Influence of ROI of the image on the results obtained

Influence of ROI on the estimates of fractal dimension and its statis-
tical significance

We manually checked the fractal analysis results for each of
the images analyzed for the best fit in the intermediate scale
for accurate estimation of the D values with minimal bias. Of all
the 55 images analyzed, we found for the 14 images the quality
of fit over this range is relatively poor. In order to investigate
how the ROI of the images influences the fit and hence the D
estimates, we re-analyzed those 14 images by adjusting the ROI
such that it includes the details of the viral features plus small
contribution from the extracellular background. Results showed
that a small change in the ROI in reference to the original one
improves the quality of fit. Fig. A.1 shows an example of fractal
analysis applied to one of the CoV particle images (shown in
4th column, Fig. 2a) with two different ROIs (115 x 115 pixels
and 125 x 125 pixels): a small increase in ROI slightly improves
the quality of fit. The D values of both the datasets (original
dataset of the 55 D values, and the same data set except with
the 14 D values revised after introducing the change in ROI) are
then subjected to the ANOVA and MANOVA analyses for testing
the statistical significance of the changes induced by the ROI.
On comparing the MANOVA test results for both the data sets
(Fig. 3 for the original data set and Fig. A.2 for the changed data

Fig. A.1. (1st row) Binary maps of a CoV particle with varying ROIs: (left panel)
115 × 115 pixels, and (right panel) 125 × 125 pixels. The corresponding log–
log plots of box size versus number of boxes (2nd row). The slope of the
fitted straight line gives the D value, expressed as mean ± SD. Note a slight
improvement in the fit with a change in ROI, as seen from the plot shown in
right. The units of variables used are arbitrary.

https://www.niaid.nih.gov/news-events/news-releases
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Fig. A.2. Same as Fig. 3 of the main text but after introducing the change in ROI into the original dataset used (image shown in 4th column, Fig. 2a of the main
text) in Fig. 3. See text for details.
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set), we found the nature of dependence of viral features for
classifying the nCoV particles is similar to that presented earlier,
i.e., our primary results. This is evidenced from the similar esti-
mates of the p-values: relatively large p-values for the shape and
spike obtained separately, and small p-value for their interaction
(pshape∗spike = 0.0915, pshapeM = 0.4067, pspike = 0.5558,
ee MANOVA Table in Fig. 3 of the main text; pshape∗spike =

.0882, pshape = 0.4177, pspike = 0.3099, MANOVA Table in
ig. A.2). This comparison suggests that the influence of the ROI
n the primary results presented is not statistically significant.
imilar conclusions emerge from both the data sets when they
re interpreted in terms of the relative changes in D values
btained.
nfluence of the ROI on the dependence of entropy on fractal dimen-
ion

In order to test the influence of the ROI on the entropy and
ts dependence on fractal dimension, we compared the esti-
ates of fractal dimension and entropy for both the data sets

Fig. A.3(a–c)). We hardly find any noticeable influence of the ROI
n the dependence of entropy on fractal dimension obtained for
ifferent virus shapes of the nCoV particles.

.2. Dependence of fractal dimension on threshold for image seg-
entation

We examined the dependence of fractal dimension on thresh-
ld obtained for both the data sets using an automated version
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Fig. A.3. Influence of small changes in ROI of the images analyzed on the
results obtained and their relationship. (a–c) Dependence of entropy on fractal
dimension for the nCoV particles of different shape. (d) Dependence of the fractal
imension on threshold values. The estimates obtained using the original dataset
black circles) and the dataset with the changes in ROI included (red crosses)
re plotted to the same scale for comparison.

29] of the Kapur’s algorithm [24] for image segmentation. The
hreshold values lie in the range 0.3–0.65. The dependence of
ractal dimension on threshold is again not significantly influ-
nced by a small change in ROI of the images analyzed (Fig. A.3
d)), in agreement with the findings of a previous study using
he automated procedure of selecting the threshold for image
egmentation [29].
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