Skip to main content
. 2020 Aug 14;20(16):4551. doi: 10.3390/s20164551

Table 1.

Details of 2D-CNN Architecture.

Serial Layer Type Activations Weights/Offset Bias/Scale Learnables
1 Image Input 81 × 128 × 1 - - 0
2 Convolution 81 × 128 × 1 3 × 3 × 1 × 8 1 × 1 × 8 80
3 Batch Normalization 81 × 128 × 1 1 × 1 × 8 1 × 1 × 8 16
4 ReLU 81 × 128 × 1 - - 0
5 Ma × Pooling 41 × 64 × 8 - - 0
6 Convolution 41 × 64 × 16 3 × 3 × 8 × 16 1 × 1 × 16 1168
7 Batch Normalization 41 × 64 × 16 1 × 1 × 16 1 × 1 × 16 32
8 ReLU 41 × 64 × 16 - - 0
9 Ma × Pooling 21 × 32 × 16 - - 0
10 Convolution 21 × 32 × 16 3 × 3 × 16 × 16 1 × 1 × 16 2320
11 Batch Normalization 21 × 32 × 16 1 × 1 × 16 1 × 1 × 16 32
12 ReLU 21 × 32 × 16 - - 0
13 Fully Connected 1 × 1 × 4 4 × 10,752 4 × 1 43,012
14 Softma× 1 × 1 × 4 - - 0
15 Classification Output - - - 0