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Abstract

Dopamine signals are widely thought to report reward prediction errors that drive learning in the 

basal ganglia. However, dopamine has also been implicated in a variety of probabilistic 

computations, such as encoding uncertainty and controlling exploration. These different facets of 

dopamine can be brought together under a common reinforcement learning framework. The key 

idea is that multiple sources of uncertainty impinge upon reinforcement learning computations: 

uncertainty about the state of the environment, the parameters of the value function, and the 

optimal action policy. Each of these sources plays a distinct role in the prefrontal/basal ganglia 

circuit for reinforcement learning, and are ultimately reflected in dopamine activity. The view that 

dopamine plays a central role in the encoding and updating of beliefs brings the classical 

prediction error theory into alignment with more recent theories of Bayesian reinforcement 

learning.

Introduction

The neuromodulator dopamine lives a double life. On the one hand, it is thought to convey 

the discrepancy between observed and expected reward, known as the reward prediction 
error (RPE), which serves as a learning signal for updating reward expectations in the 

striatum.1,2 On the other hand, it also appears to participate in a variety of probabilistic 

computations, including the encoding of uncertainty and the control of uncertainty-guided 

exploration. The purpose of this review is to bring together these different strands into a 

common reinforcement learning framework.

The key ingredients of reinforcement learning theories are (1) state, (2) value, and (3) policy. 

In reinforcement learning, values are computed based on the state of world that the animal 

currently occupies. A state is collectively defined by the animal’s location, time from certain 

events, what objects are present and so on. The value of a state is defined as the discounted 

sum of all future rewards starting from the state. A policy is the function that determines 

which actions are selected in each state. Our starting point is the recognition that animals 

face several different forms of uncertainty encompassing all of these ingredients – state, 

value and policy.
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First, animals commonly do not have full information about which state they are currently 

occupying. Rather, they receive sensory data that provides ambiguous information about the 

current state.3,4 For example, an animal might sense an odor plume to infer the hidden 

location of a food source. Because many different locations could be compatible with the 

odor plume to varying degrees, the normatively correct strategy is to compute the posterior 
probability distribution of the food location conditional on the odor information. This 

computation is stipulated by Bayes’ rule: P(location∣odor) is the product of the likelihood 

P(odor∣location) and the prior P(location).

Second, animals must learn a mapping from states to predictions about future rewards (the 

value function). For example, a foraging animal must learn how much cumulative food it 

can expect to collect by foraging in a particular patch. When the state space is large, an 

approximation of the value function is typically specified by a set of parameters (e.g., the 

value of a patch is approximated by a weighted sum of its features such as size and resource 

density). Because these parameters are unknown, the animal has uncertainty about them that 

is gradually resolved through experience of rewards in different states. Whereas standard 

models of learning, such as the temporal difference (TD) model, update point estimates of 

the parameters (i.e., a single set of parameter values), other models encode uncertainty about 

the parameters in the form of a probability distribution over parameters.5,6

Third, animals must compute a mapping from states to action probabilities (the policy). This 

mapping is typically mediated by learned values, such that actions tend to be selected that 

take the animal to rewarding states. However, since the optimal policy is unknown, animals 

must balance the need to exploit actions with known rewards against the need to explore 

actions that might potentially have better rewards (the exploration-exploitation dilemma). 

Intuitively, uncertainty should motivate exploration: an animal should gather information 

about actions in order to reduce uncertainty about their values. Two forms of uncertainty-

guided exploration have been the subject of recent studies.7-10 One approach is to add an 

‘uncertainty bonus’ to the learned values, such that actions are biased to explore unfamiliar 

actions (directed exploration). Another approach (random exploration) is to increase the 

stochasticity of the policy in proportion to uncertainty.

We argue that these three forms of uncertainty (associated with states, values, and policies) 

exert distinct effects on dopamine activity, by impinging on different stages of the 

information processing architecture for reinforcement learning (Fig 1). As we elaborate 

below, these effects can be formalized in terms of Bayesian reinforcement learning 

principles. The Bayesian framework significantly enriches the traditional RPE interpretation 

of dopamine, allowing it to accommodate a broader range of phenomena, and leading to new 

predictions that have recently been tested experimentally. The framework also delineates the 

computational functions of the medial prefrontal cortex and orbitofrontal cortex, and how 

they interact with the dopamine system. Finally, we discuss how this framework embraces a 

role for dopamine in the encoding of policy uncertainty and the control of exploration.
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State uncertainty

Consider the problem faced by a foraging animal in the African savannah (Fig 1): whether or 

not to forage in a particular patch of grass depends on whether the animal believes that a lion 

is hiding in the grass. Because its sensory data provide ambiguous information about the 

hidden state (lion vs. no lion), the normatively correct representation of uncertainty is the 

posterior distribution over the hidden state conditional on the sensory data, which can be 

computed using Bayes’ rule. There is abundant evidence that animals represent posterior 

distributions.11 From an RL perspective, the question is how the animal should use the 

posterior distribution to predict future rewards and ultimately select a reward-maximizing 

action.

An elegant solution to this problem is provided by the concept of a belief state.12,13 As 

mentioned above, the environmental state is a sufficient statistic for reward prediction: if the 

animal knows what state it is in, it can optimally predict future rewards without needing to 

store its state history in memory.14 This “memoryless” property of the RL problem is what 

enables efficient algorithms, such as dynamic programming (value iteration) and temporal 

difference (TD) learning (Box 1). When the state is hidden, the problem is no longer 

memoryless, because the optimal estimate of the state depends on the entire history of past 

observations. However, the agent need not store this entire history in episodic memory; the 

posterior distribution encodes all the available information for predicting future reward. The 

posterior can thus be regarded as a “state” in the sense that it is a sufficient statistic for 

reward prediction. We will henceforth refer to the posterior as the “belief state.”

The belief state plays the same role as other state representations in the standard RL 

machinery. Specifically, a value function maps the belief state to an estimate of cumulative 

future reward, which may be conditioned on action to support downstream decision 

computations. Importantly, this mapping may be learned via dopamine RPEs, and hence 

these signals should reflect the underlying belief state. We will unpack each step of this 

machinery as it applies to belief states. First, we describe how belief states are computed in 

the medial prefrontal cortex (mPFC). Second, we describe how the striatum encodes belief 

states using a set of basis functions, which are then mapped to values. The encoding step 

allows the striatum to selectively retain information about the belief state that is useful for 

predicting reward. Finally, we describe how midbrain dopamine neurons compute RPEs 

from the striatal value estimates.

Belief state representation.

When the state space is discrete (or suitably discretized), the belief state corresponds to a 

vector of probabilities (the probability of being in each state), which could be directly 

encoded by the firing rate of individual neurons or populations of neurons.17 One limitation 

of such a “labeled line” code is that the number of neurons required scales exponentially 

with the dimensionality of the state space. This limitation can be addressed by optimizing a 

parametric approximation of the exact posterior,18,19 or by approximately sampling from the 

posterior to construct a nonparametric approximation.20-23
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Several lines of evidence point to the mPFC as a candidate locus for belief state 

computation. Changes in mPFC activity track updating of the posterior distribution24-28, and 

damage to the mPFC is associated with aberrant belief formation, such as confabulation.29 

Changes in mPFC activity (“network resets”) are also associated with the onset of behavioral 

variability,30 consistent with the idea that the variance of the posterior distribution 

(representing the animal’s uncertainty) controls the randomness of the action policy, as 

discussed further below.8,30

Another line of evidence comes from reversal learning experiments, in which two or more 

reward contingencies alternate. Animals become progressively faster at adapting to these 

reversals (“rapid reacquisition”), in some cases requiring only a single trial to dramatically 

change their behavior,31-34 a phenomenon inconsistent with models of learning in which 

reward predictions are relearned after each reversal. As several authors have noted,31,35 

reversal learning is better modeled as a problem of hidden state inference: each reward 

contingency corresponds to a hidden state, and the animal normatively should combine 

ambiguous reward information with its prior over hidden states via Bayes’ rule. In addition, 

it must simultaneously estimate the parameters governing each state. As the animal becomes 

increasingly confident in its estimates of these parameters, it will be better able to identify 

reversals and hence switch more rapidly. Lesions of mPFC appear to leave rapid 

reacquisition intact, but increase the rate of reversal, consistent with either a reduced 

evidence threshold or an increased estimate of the reversal probability.36 A functional MRI 

study of reversal learning in humans37 found that mPFC activity is sensitive to hidden state 

inference.

Although we have focused on the mPFC, belief updating is likely to be distributed across 

many different regions, depending on the task, input modality, and other factors. It is 

currently unclear whether RL circuits receive preferential input from one or more belief-

encoding regions.

Value function approximation.

From the RL perspective, the goal of belief state computation is ultimately to support reward 

prediction and control. An exact representation of beliefs may be computationally wasteful 

if rewards can be predicted accurately from a lower-fidelity representation. Moreover, even 

if computational resources were not limited, an ideal agent would still need to restrict the 

space of value functions that map belief states to rewards, because more a complex class of 

value function is more likely to overfit the data. One standard way to accomplish this 

restriction is to approximate values as linear functions of a set of “basis functions” that are 

computed from the state representation. Although more complex nonlinear value function 

approximation is possible,38 most models of the basal ganglia assume a linear function 

approximation architecture.

Following an earlier proposal,12 we hypothesize that the striatum encodes the set of basis 

functions. These basis functions can be thought of neurally as cells that are tuned to 

particular regions of the belief state (the “belief points”). Presently, the existence of basis 

functions defined over belief states is still speculative (indeed, the nature of striatal basis 
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functions more generally is shrouded in mystery), but there are some suggestive pieces of 

evidence, primarily from tasks involving timing uncertainty.

Many tasks require animals to estimate elapsed time, and it is well-known that timing 

uncertainty increases with interval duration, a property known as scalar timing.39 

Pacemaker-accumulator models40 explain this phenomenon mechanistically: an accumulator 

noisily counts pulses emitted from a pacemaker, and these counts are compared to a 

reference retrieved from memory, corrupted by multiplicative noise. From a Bayesian 

perspective,41,42 the hidden state corresponds to elapsed time, the prior distribution 

corresponds to the reference memory (the set of likely interval durations), and the likelihood 

corresponds to the accumulator process (the evidence accrued for a particular interval). One 

implication of the scalar property is that the posterior distribution over elapsed time (the 

belief state) will be broader for longer intervals. If this belief state is represented by cortical 

inputs to the striatum using a labeled line code, then each cortical neuron is tuned to a 

particular hidden state (elapsed time) and its firing rate is proportional to the posterior 

probability of that hidden state. The width of the population is broader when timing 

uncertainty is greater43 (i.e., for longer intervals).

If we assume that striatal basis function neurons receive input from a sub-population of 

similarly tuned cortical belief state neurons, then the temporal profile of striatal activation 

will be more smeared out for longer intervals, due to the broader width of the cortical 

population code (Box 2). We could equivalently conceptualize the striatal neurons as tuned 

to elapsed time, with receptive fields that broaden for longer intervals. This is precisely the 

idea put forth by the microstimulus model,44-46 which has successfully explained a range of 

data on dopamine physiology and classical conditioning.

Approximately Gaussian-shaped temporal receptive fields have been reported in rodent47-50 

and primate51 striatum, whereas other studies have reported monotonic tuning (i.e., 

ramping).52 Consistent with a causal role for striatal time cells in downstream computations, 

the temporal specificity of both behavior53 and dopamine activity54 depends on the integrity 

of the striatum.

In sum, data from interval timing experiments is broadly consistent with a set of striatal 

basis functions defined over temporal belief states, but little is known about whether this 

generalizes to other kinds of state spaces, such as spatially55,56 or visually57,58 defined 

states.

Belief-dependent reward prediction errors in Pavlovian conditioning.

If value functions are computed from belief states, then RPEs should be modulated by belief. 

This hypothesis was originally put forth by theorists seeking to account for experimental 

deviations from the predictions of the standard TD model assuming a fully observable state.
12,13,59 For example, in one study60 monkeys were shown two boxes, one of which always 

contained food, and one of which never contained food. When the door to the food-

containing box opened, the firing rate of dopamine neurons increased, as expected from the 

standard TD model.2 However, the firing rate also increased when the door to the other (no-

food) box opened, contradicting the standard TD model, according to which only reward-
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predicting cues will elicit a positive RPE. A similar finding was reported in another study 

that explicitly manipulated the reward context, finding that dopamine responses generalize to 

unrewarded stimuli when they occurred in the same context as rewarded stimuli,61 and more 

recently it was found that this reward generalization can apply even to aversive stimuli.62 

One possible explanation is that the monkey was initially uncertain about which box was 

opening, and therefore its value estimate defined on the belief state would reflect a mixture 

of the two box-specific values, producing a positive RPE.2,59 This explanation also accounts 

for another feature of the data: a suppression of dopamine activity immediately after the 

burst in response to the no-food box opening. According to the belief state model, the value 

goes from positive to 0 once the state uncertainty is resolved, and hence the TD prediction 

error is negative.

More detailed predictions have been derived for Pavlovian conditioning tasks in which the 

presentation of a cue is followed by a reward after some delay (the interstimulus interval, or 

ISI). The delay between the reward and the onset of the next cue is the intertrial interval 

(ITI). Daw and colleagues13 modeled this task as consisting of separate ISI and ITI states, 

parametrized by a dwell-time distribution (determining how long each state is occupied), a 

transition distribution (determining which states are visited after the dwell-time has elapsed), 

and a reward distribution (determining how much reward is delivered in each state). 

Formally, this corresponds to a semi-Markov process (Box 2). If the reward is delivered 

stochastically, then the state becomes hidden, because the animal does not know whether the 

absence of reward signals an omission trial or a transition to the next ITI.

Under this model, a reward delivered earlier than expected will result in a positive prediction 

error, just as in the standard fully observable TD model. However, the models make different 

predictions about what will happen at the expected time of reward. The standard model 

predicts a negative RPE, because the expected reward has been omitted. In contrast, the 

belief state model predicts that the animal will infer a transition to the next ITI, and hence its 

reward expectation will go to 0. This prediction is consistent with empirical observations: no 

suppression of dopamine activity is observed at the expected time of reward.63

Recent studies have built on these findings, pursuing a more detailed empirical test of the 

model’s predictions (Fig 2A). When rewards are delivered deterministically, there is a 

monotonic decrease in the response of dopamine neurons to reward delivery as a function of 

ISI.64,65 Because there is no state uncertainty under deterministic reward delivery (the 

animal always knows that it is in the ISI until the reward is delivered), the belief state and 

standard TD models both correctly predict that reward expectation will grow as a function of 

ISI, and hence the RPE will decrease. When rewards are delivered stochastically (10% of 

rewards are omitted), the pattern changes radically: dopamine neurons respond more as a 

function of ISI. The belief state model, but not the standard TD model, predicts this finding 

as a consequence of the fact that as the ISI grows, the animal will become increasingly 

confident that a state transition has occurred, causing the reward expectation to go down and 

the RPE to go up. Several additional analyses also ruled out an alternative account based on 

subjective hazard functions.65,66
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Consistent with the hypothesized role for mPFC in state inference, the effect of state 

uncertainty on dopamine responses is disrupted by inactivation of mPFC.64,67 Specifically, 

the monotonic increase in dopamine response as a function of ISI in the 90% reward 

condition is flattened out under mPFC inactivation. Importantly, there is no effect of mPFC 

inactivation on the monotonic decrease in the 100% reward condition. Furthermore, the 

sensitivity of other dopamine responses to interval timing (e.g. a ‘dip’ during reward 

omission) remained intact. These results suggested that mPFC is specifically involved in 

belief-dependent RPEs when there is state uncertainty.

Another recent study tested the belief state model’s predictions using a novel variant of 

reversal learning (Fig 2B).68 Mice first alternated between two conditions distinguished only 

by the reward magnitude. On small reward blocks, animals received an odor cue and then 

shortly afterward a small water reward. Large reward blocks were identical (including the 

same odor cue), except that the water reward magnitude was 10 times larger. After training, 

mice exhibited anticipatory licking (a proxy for value) that scaled with reward magnitude. 

The small and large conditions continued in a test phase, but occasionally the mice would 

receive a block in which rewards were of an intermediate magnitude. On these intermediate 

blocks, the belief state model asserts that RPEs will be a non-monotonic function of reward 

magnitude. Intuitively, small intermediate rewards provide evidence that the mouse is in the 

small reward state, and because the mouse is receiving reward that is greater than expected 

in the small reward state, the RPE should be positive. As the intermediate reward increases, 

the RPE will increase correspondingly. However, when the intermediate reward reaches the 

midpoint between the small and large rewards, the mouse will switch to believing that it is 

more likely to be in the large reward state, at which point it is receiving less than expected, 

producing a large negative RPE. The size of this RPE will diminish as the intermediate 

reward continues to increase.

Dopamine responses conformed to this predicted “zig-zag” pattern. The same pattern was 

also reflected in anticipatory licking behavior: changes in lick rate from one trial to the next 

tracked the RPE, as we would expect from the learning equations, and these changes were 

non-monotonic functions of reward magnitude. Moreover, when the belief state model was 

fit to the dopamine response for each individual mouse, the same model could accurately 

predict mouse-specific variations in anticipatory licking (despite not being fit to the 

behavior). The standard TD model, in contrast, can only predict a monotonic pattern of 

dopamine responses (no zig-zag) when using a single hidden state for all blocks, and could 

not as accurately predict variations in anticipatory licking.

Belief-dependent reward prediction errors in perceptual decision making.

Another line of evidence for the belief-dependence of dopamine comes from perceptual 

decision making tasks. In the most extensively analyzed study, dopamine neurons were 

recorded while monkeys performed a random dot motion discrimination task.68,69 On each 

trial, the monkeys saw a set of moving dots, with some proportion of dots (the coherence) 

moving either left or right. The monkeys reported perceived direction by saccading to one of 

two targets. A key finding from this study was that the size of the stimulus-evoked dopamine 

correlated with coherence. This is predicted by the belief state model, because the RPE at 
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the time of stimulus onset should be equal to the value associated with the stimulus, and 

higher coherence predicts higher future reward.12 Concomitantly, the RPE at the time of 

reward delivery should be greater for low coherence, because the expected reward is lower 

on those trials, consistent with the empirical data. A recent re-analysis of these data further 

verified critical predictions of the belief state model.70 Conventional TD models reflect 

stimulus-reward associations as mentioned above, and predict that the stimulus-evoked 

response should not be modulated by the animal’s choice. In contrast, a belief-state TD 

model uses the inferred stimulus, which drives animal’s choice and, at the same time, 

modulates the animal’s confidence about receiving reward. Supporting the belief state TD 

model, their analysis showed that the dopamine response depends jointly on performance 

(correct vs. incorrect) as well as coherence (Fig 3).

Related results have been found using a vibrotactile detection task.71 Monkeys judged 

whether or not a weak vibrotactile stimulus occurred during an observation period. On hit 

trials (monkeys correctly detected the stimulus), the dopamine response to the stimulus 

increases monotonically with stimulus amplitude, which can be thought of as analogous to 

coherence in terms of its effect on the belief state. Furthermore, the dopamine response is 

higher on false alarm trials (monkeys incorrectly reported the stimulus when it did not 

occur) than on correct rejection trials (monkeys correctly reported that the stimulus did not 

occur). This indicates that dopamine responses reflect subjective beliefs about the stimulus 

rather than the objective stimulus, consistent with the belief state model.

Value uncertainty

In the models described above, a parameterized value function was defined over a belief 

state, and the parameters were estimated using RPEs. These models represent uncertainty 

about states, but not about the value function parameters. In principle, an agent can also have 

uncertainty about these parameters; technically, this would correspond to treating the 

parameters as part of the hidden state.74 One analytically tractable and neurally plausible 

special case is “Kalman temporal difference learning” (Box 3), which closely resembles the 

classical learning algorithm applied to phasic dopamine2 but has the additional advantage of 

dynamically tracking uncertainty. This allows the TD model to connect with the substantial 

literature indicating that animals use uncertainty to guide learning3,5 and to explain some 

puzzling properties of dopamine activity.75

Behavioral evidence for value uncertainty.

One of the classic pieces of evidence for error-driven learning comes from “blocking” 

experiments in which an animal first learns to associate a stimulus with reward (A+) and 

then the stimulus is paired with another stimulus (B) while continuing to be rewarded (AB

+). In the final phase, the animal is tested on the second stimulus without reward (B−). 

Despite the fact that B was reliably paired with reward, the test phase typically reveals a 

weak or absent conditioned response; evidently, the association between A and reward 

“blocks” learning about the association between B and reward.75,76 This indicates that 

correlation between a stimulus and reward is not a sufficient condition for learning. The 

Rescorla-Wagner model77 offered what came to be the most influential explanation of 
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blocking: learning is driven by prediction errors, and because A reliably predicts reward, 

there is no residual error to drive learning about B on the compound training trials. This 

explanation of blocking is inherited by TD learning, and is supported by the observation that 

the dopamine response to AB+ is suppressed in the blocking procedure.77,78 Moreover, 

blocking can be counteracted by optogenetic stimulation of dopamine neurons during 

compound training.79

Despite the elegance of this account, it fails to explain why reversing the order of A+ and 

AB+ phases also--albeit under more restrictive conditions--produces a blocking effect (so-

called backward blocking, to contrast it with the forward blocking effect described in the last 

paragraph).79-81 During AB+ training, there should be a positive prediction error to drive 

learning about B, since A has not yet been reliably paired with reward on its own. Somehow, 

training with A+ causes the B-reward association to be modified, a process that is not 

allowed under the Rescorla-Wagner model or the standard TD model; in these models, errors 

can only drive learning of present stimuli. An answer to this problem is provided by a 

Bayesian treatment of the TD model, known as Kalman TD learning5,82 (Box 3), which 

retains the successful elements of the standard TD model but also allows learning about 

absent stimuli. The key idea is that the reward expectation for the compound AB cannot 

exceed the sum of expectations for A and B individually. This means that there must be a 

negative covariance between the stimulus-specific expectations: when the expectation for A 

increases during A+ trials, the expectation for B must go down, thus producing backward 

blocking.83 Mechanistically, the negative covariance corresponds to inverting the sign of the 

learning rate for absent stimuli.

This idea has broad applicability beyond backward blocking. Many learning phenomena 

involve “retrospective revaluation” conditions in which training appears to alter the reward 

expectations for absent stimuli.84 For example, in the forward blocking paradigm, 

extinguishing A following compound training increases responding to B in the test phase.82 

Another application is to single cue learning: when a neutral stimulus is pre-exposed 

(presented repeatedly without reward), subsequent conditioning of that stimulus is retarded, 

a phenomenon known as latent inhibition.85 In the absence of reward, the standard TD 

model predicts no learning during the pre-exposure phase. The Kalman TD model, by 

contrast, incrementally reduces its value uncertainty during pre-exposure, becoming more 

confident that the stimulus predicts no reward. More training during the subsequent 

conditioning phase is required to overcome this belief.5 The model also explains why 

interposing a delay between pre-exposure and conditioning attenuates the latent inhibition 

effect.86 Under the assumption that values change gradually over time, the delay will inflate 

uncertainty about value, counteracting the effect of pre-exposure.

Reflections of value uncertainty in dopamine.

If the Bayesian interpretation of retrospective revaluation is correct, then we should expect 

to see this credit assignment process reflected in dopamine signals. A case in point comes 

from a study of sensory preconditioning.87 In the preconditioning phase, stimulus A is 

paired serially with stimulus B. Note that because no reward is delivered in this phase, the 

standard TD model does not predict any learning. The Kalman TD model, by contrast, will 
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learn a positive covariance between A and B, because the offset of A is associated with the 

onset of B.75 In the second phase, B is paired with reward, and finally in the third phase the 

response to A is probed. Behaviorally, rats show a conditioned response to A, despite the 

fact that A was never paired with reward. This is consistent with the Kalman TD model, 

which predicts that the positive covariance will drive generalization of reward expectation 

from B to A. The Kalman TD model also correctly predicts that dopamine neurons will 

reflect this generalization, responding to A more than to a control stimulus that underwent 

preconditioning but lacked a second-order association with reward.

Dopamine measurements, using slow microdialysis methods in aversive conditioning, has 

provided some support for the Bayesian interpretation of latent inhibition described above. 

The stimulus-evoked dopamine response during the conditioning phase is reduced following 

pre-exposure,88 consistent with the assumption that RPEs will propagate more slowly to the 

cue onset for the preexposed cue.75 More experiments are needed to confirm the generality 

of these findings.

Stimulus transformation in orbitofrontal cortex underlying value uncertainty.

As described in Box 3, the Kalman TD model can be implemented in a neural circuit that 

uses recurrent inhibition to project the “raw” state representation onto the posterior 

covariance matrix. This transformed representation can then be linearly mapped to reward 

predictions, and the posterior over the parameters of this mapping can be updated using 

dopamine RPEs. A candidate locus for this transformation process is the orbitofrontal 

cortex, which may have the appropriate network architecture,89,90 and has been implicated 

in state representation more broadly.91 Consistent with this hypothesis, neurons in the 

orbitofrontal cortex come to reflect the associative structure of sensory preconditioning,92 

and lesions of orbitofrontal cortex impairs the sensory preconditioning effect.91,93

Policy uncertainty

Ultimately, the brain’s RL system is designed not just to estimate values but to identify the 

optimal policy. In this section, we discuss several approaches to this problem and the 

putative role of dopamine.

Uncertainty-guided exploration.

Several studies have found evidence for an “uncertainty bonus” in human exploratory 

choice.8,9,96 Specifically, options associated with greater uncertainty receive a bonus that is 

added onto the option’s estimated payoff. When this bonus is larger, the policy will tend to 

be more exploratory. Uncertainty bonuses are one way of implementing an uncertainty-

directed exploration strategy. There is also evidence that humans increase the variability of 

choice in proportion to their uncertainty.8,97 A classic example of such “random 

exploration” is the payoff variability effect: choices are more variable when rewards are 

more variable.98,99

Recent studies have shown that these strategies can be simultaneously identified in human 

choice behavior,8 and can be manipulated orthogonally.100 Directed exploration is sensitive 

to the relative uncertainty between options. This is easiest to conceptualize when there are 
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two options that have the same average payoff but one is more variable. In this case, the 

relative uncertainty will be non-zero, and this will induce a preference for the more variable 

option. Thus, relative uncertainty can be manipulated by comparing conditions in which one 

option is risky (variable payoffs) and the other option is safe (deterministic payoffs), or vice 

versa. Random exploration is sensitive to total uncertainty across the options. In the two-

option case, this is greatest when both options are risky, compared to when both options are 

safe.

When the value difference between the options is varied, we can plot choice probability as a 

function of the value difference, and this provides a geometric interpretation of directed and 

random exploration (Fig. 4). Relative uncertainty changes the intercept (indifference point) 

of the choice probability function, whereas total uncertainty changes the slope of the choice 

probability function. By fitting psychometric functions to choice behavior using probit 

regression, we can extract directed and random exploration effects from the estimated 

coefficients.8,100

Using this method, a recent study showed that single nucleotide polymorphisms in two 

dopamine genes were differentially involved in directed and random exploration. Variation 

in COMT, which primarily controls prefrontal dopamine levels, was selectively associated 

with directed exploration, confirming the results of an earlier study.101 Variation in 

DARPP-32, which primarily controls striatal dopamine levels, was selectively associated 

with random exploration, consistent with prior biophysical modeling101,102 (although this 

modeling work did not directly simulate the effects of DARPP-32 variations).

Dopamine as precision under active inference.

The uncertainty-guided exploration strategies described are simple and effective heuristics 

for approximating the computationally intractable optimal solution to the exploration-

exploitation dilemma. A different line of theoretical work has attempted to derive principled 

heuristics from the free energy principle, which states that brain function is organized to 

reduce expected surprise. Applied to action selection, the imperative to reduce surprise leads 

to active inference: actions should be selected that fulfill the predictions of a generative 

model.7,19 At first glance, this seems to be in direct opposition to the principle that actions 

should be taken to gain information about the world (e.g., sensory predictions could be 

trivially fulfilled by sitting in a dark room), but critically the free energy principle assumes 

that the generative model also optimizes a probability distribution over motivational states, 

such as hunger, as well as more abstract hierarchies of goals.103 Hunger, according to this 

analysis, is “surprising” in the sense that it violates a prior belief that hunger states should be 

unlikely. When surprise is minimized over longer time horizons, active inference will select 

actions that not only reduce immediate hunger, but also actions that will prospectively 

reduce future hunger. In order to achieve this prospective reduction, it is necessary to collect 

information about external states of the world. This produces a form of “epistemic value” 

that acts a kind of uncertainty bonus driving actions towards unfamiliar states, much like the 

directed exploration strategy discussed above.

Active inference is a particular implementation of planning as inference, a family of 

algorithms that treat the policy as a latent variable which is inferred conditional on the 
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attainment of some goal state (e.g., maximizing cumulative reward).104 This framework 

leads to a new interpretation of dopamine’s role in reinforcement learning and decision 

making.19,103,105,106 Instead of reporting RPEs, active inference models assert that 

dopamine reports the estimated precision (inverse variance) of the inferred policy. The 

precision corresponds to the agent’s confidence that the policy it is currently following is 

optimal. At a neurobiological level, precision has been hypothesized to be implemented by 

gain modulation of neurons encoding the action policy, a function that is consistent with 

some prior computational models102 and experimental data.107,108 In effect, precision acts as 

an inverse temperature parameter, but now placed under control of a continuously updated 

generative model, which implies that the policy stochasticity will change as beliefs are 

updated (policies will be more deterministic when beliefs are more precise). This theory is 

closely related to, and in some sense rationalizes, the random exploration strategy described 

above. In addition, the theory can also rationalize directed exploration strategies: uncertainty 

bonuses correspond to epistemic terms in the free energy that motivate actions to reduce 

future uncertainty.7,102

Conclusions

Uncertainty plays a central role in modulating, and being modulated by, dopamine. A new 

generation of computational models have begun to formalize this interplay, accompanied by 

creative empirical tests of the theoretical predictions. We have shown how three different 

forms of uncertainty (associated with states, values and policies) affect the dopamine system 

in distinct, but computationally coherent, ways. State uncertainty affects the dopamine 

system via a probability distribution over states (the belief state), and values are defined as 

functions of the belief state. Value uncertainty affects the dopamine system via a probability 

distribution over the parameters of the value function. Finally, policy uncertainty affects the 

dopamine system via a probability distribution over the animal’s actions. Under some 

accounts, dopamine levels may directly encode the precision (inverse variance) of the policy, 

thereby controlling the exploration-exploitation trade-off.

It is important to note that these different forms of uncertainty do not directly impinge on 

dopamine neurons. Rather, they enter into different parts of the information processing 

architecture in different ways. State uncertainty enters at the level of inputs to the striatum 

(putatively from medial prefrontal cortex). Weight uncertainty enters at the level of striatal 

synapses. Policy uncertainty enters at the level of striatal outputs and possibly other areas.

We see several important future directions. First, our treatment of state uncertainty assumed 

that the state space is known but partially observable. However, in reality animals may also 

have uncertainty about the state space itself. This poses a structure learning problem for the 

brain. Although models have been developed to explain how structure learning might 

explain a range of reinforcement learning phenomena,109 we still lack a plausible 

neurobiological implementation. One speculative role for dopamine would be to drive 

structure learning through RPEs. Some theories posit that sufficiently large RPEs will not 

lead to updating values, but rather to updating the structural representation,110,111 but 

currently there is no direct evidence for such a role for dopamine.
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Second, we know very little about the hypothetical basis functions represented in the 

striatum. Although models for specific state spaces (e.g. temporally-defined states) have 

received some support,47 we still lack a general theory and adequate experimental tests. This 

question could be attacked using a combination of model-based and data-driven techniques, 

for example by parameterizing a flexible space of basis functions and then fitting an 

encoding model for this space to striatal ensemble activity.

Third, the belief state framework only addresses some of the problems facing the standard 

TD model. A number of experiments have documented dopamine responses to non-

rewarding stimuli that might be designated as “sensory prediction errors.” Some of these 

findings can be accommodated by broadening the conceptualization of error that dopamine 

encodes.112 This broadened perspective is not intrinsically opposed to the belief state 

framework, and future work could fruitfully bridge these perspectives. In particular, Gardner 

and colleagues112 have proposed that dopamine reports a generalized prediction error 

defined over a collection of predictive features known as the successor representation.113 

Each predictive feature encodes an expectation of how often a particular sensory cue will be 

encountered in the near future, and these expectations can be updated using a form of TD 

learning with generalized prediction errors defined over these features. Reward prediction 

errors are a special case of such generalized predictions errors applied to a value (cumulative 

reward) feature, and hence the framework is broadly compatible with the classical TD 

interpretation of dopamine as reporting reward prediction errors. The successor 

representation does not, however, encode uncertainty about the predictive features. The 

Kalman TD model can in principle capture such uncertainty by generalizing the notion of 

value uncertainty to other predictive features.

Fourth, the precision account of tonic dopamine seems ill-equipped to explain the role of 

tonic dopamine in cognitive and physical effort.114-116 One influential account of this role is 

the idea that tonic dopamine invigorates action through the encoding of average reward.117 It 

is an open question how to adequately reconcile the average reward and precision accounts.

In closing, we note that progress in our understanding of belief state computations has been 

driven largely by theory-driven experiments. The theories described here make strong 

predictions that are highly unlikely under alternative accounts. We see this approach as a 

paradigmatic example of how computational models can be put to work in the service of 

experimental research, and vice versa.

Glossary

Value function
the mapping from states to long-term expected future rewards (typically discounted to reflect 

a preference for sooner over later rewards)

Posterior probability distribution
the conditional probability of latent variables (e.g., hidden states) conditional on observed 

variables (e.g., sensory data)

Sufficient statistic
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a function of a data sample that completely summarizes the information contained in the 

data about the parameters of a probability distribution

Free energy principle
the hypothesis that the objective of brain function is to minimize expected (average) surprise

Active inference
the hypothesis that biological agents will take actions to reduce expected surprise
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Box 1: Temporal difference learning with belief states

Most reinforcement learning algorithms, including temporal difference (TD) learning,15 

assume that the environment can be described by a Markov decision process, consisting 

of:

• A state transition function, T(s’∣s,a), specifying the probability of 

transitioning from state s to state s’ after taking action a.

• A reward function, R(s), specifying the expected reward in state s.

This generative model of the environment obeys the Markov property: state transitions 

and rewards are independent of the agent’s history conditional on the current state.

When the state is hidden, the environment is typically modeled as a partially observable 
Markov decision process,15,16 which additionally includes an observation function, 

O(x,s), which specifies the probability of observing sensory data x in state s. Under 

partial observability, the environment is no longer Markovian in the sensory data: future 

observations are not independent of the agent’s history conditional on the current 

observation. However, the environment is Markovian in the posterior probability 

distribution over states, b(s), which can be computed from the sensory data using Bayes’ 

rule:

b(s) = P(s ∣ x) ∝ O(x, s) P(s),

where P(s) is the prior over states.

The TD algorithm can be applied directly to the belief state representation using standard 

linear function approximation:

V (b) = ∑
j

wjfj(b)

Δwj = α δ fj(b),

where fj(b) is a basis function (indexed by j) over belief states, wj is the coefficient 

associated with basis function j, α is a learning rate, and δ is the RPE:

δ = r + γV (b′) − V (b),

where r is the reward received in state s, and γ is a discount factor that exponentially 

down-weights future rewards. Although we have used linear function approximation for 

clarity, nonlinear approximations are also possible.

Gershman and Uchida Page 20

Nat Rev Neurosci. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2: A unifying view of state representation

The “standard” TD model applied to dopamine uses a complete serial compound (CSC) 

representation of time, which represents each stimulus as a collection of binary features, 

each of which is “on” after a specific delay following stimulus onset. Formally, fj(t) = 1 

exactly j time steps after the onset of the stimulus, where t indexes time. In essence, the 

CSC chops post-stimulus time into a collection of discrete bins and attaches a separate 

coefficient wj to each bin. Neurally, the CSC can be implemented using a set of stimulus- 

and temporally-tuned neurons. Though simple and widely used, the CSC has been 

criticized for making incorrect predictions.13,44,72,73

Two alternative representations have played an important role in recent theorizing. One 

alternative, based on a semi-Markov model, replaces the discrete time bins with a 

continuous representation of dwell time.13 For example, in a Pavlovian conditioning task, 

an animal enters into the interstimulus interval state when the conditioned stimulus 

appears, and this state may be occupied for a random dwell time. Although this state 

representation seems quite distinct from the CSC, one can use the CSC to construct a 

discrete-time Markov approximation of the semi-Markov dynamics,64 where the time 

bins correspond to “sub-states”; the key difference from the standard TD model is that the 

transition probabilities between sub-states are chosen to match the dwell time 

distribution, rather than proceeding ballistically after stimulus onset.

Another alternative replaces the uniform-width time bins with “microstimulus” basis 

functions whose width increases and amplitude decreases as a function of time.44,45,64 

The discrete-time Markov approximation of the semi-Markov model offers one way of 

deriving these basis functions. If the uncertainty about the sub-state grows as a function 

of time, then the belief state will become increasingly spread out across multiple sub-

states, exhibiting the same qualitative properties as microstimuli. A key difference is that 

the temporal profile of belief states depends on the task structure. The observation that 

time cells in the striatum (putative microstimulus-like basis functions) rescale under 

different fixed interval schedules suggests that the basis functions are adaptive.47
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Box 3: Kalman temporal difference learning

Here we present a simplified version of the Kalman TD model.47,75 The posterior over 

function approximation weights is Gaussian with mean w  and covariance matrix Σ. 

Similarly to the standard TD model (see Box 1), the Kalman TD model updates the mean 

using an RPE signal:

Δwj = αtδ̄,

where α = Σ · h is a vector of learning rates corresponding to the projection of “temporal 

difference features” h = x – γx' onto the posterior covariance matrix Σ. The RPE δ̄ = δ ∕ λ
is normalized by the marginal variance λ = h⊤ · α + σ2, where σ2 is the variance of the 

reward distribution. This hypothesized normalization is consistent with data indicating 

that uncertainty rescales RPEs.94 Greater unpredictability of rewards will increase λ and 

thus decrease the learning rate, while greater subjective uncertainty about the weights 

(encoded by α) will increase the learning rate, consistent with studies showing that high 

volatility of cue-reward associations leads to faster learning.95

The posterior covariance is updated according to:

ΔΣ = Σ + Q − (α ⋅ αT) ∕ λ .

This model can be equivalently implemented using a recurrent neural network that 

transforms the temporal difference features using linear attractor dynamics. These 

dynamics asymptotically decorrelate the feature space. The recurrent weights can be 

learned using a form of anti-Hebbian learning.
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Figure 1. Schematic of the neural architecture for reinforcement learning under state 
uncertainty.
Bayesian inference combines noisy sensory data with a prior over latent states to compute 

the posterior distribution, or belief state, hypothesized to be encoded in the medial prefrontal 

cortex (PFC). The belief state is mapped into a distributed state representation (basis 

functions) in the striatum, which is in turn mapped onto a value function. Dopamine drives 

updating of the value function parameters by reporting a reward prediction error (the 

difference between observed and expected reward, or value).
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Figure 2. Experimental evidence for reflections of state uncertainty in dopamine signals.
(A) Experimental tasks and results from 64. Mice observed an odor followed by a water 

reward. Odor A was associated with a variable odor-reward interval, whereas odors B and C 

were associated with fixed intervals. ISI: interstimulus interval between odor and reward. 

ITI: intertrial interval. The middle plots show the structure of the task as a probabilistic 

graphical mode. The bottom plots show the baseline-subtracted firing rates of 

optogenetically identified dopamine neurons in the ventral tegmental area. (B) Experimental 

task and results from 68. Mice observed an odor followed by a water reward whose 

magnitude varied across blocks. The middle plot shows the normalized calcium response 

from dopamine neurons in the ventral tegmental area measured using fiber photometry. The 

bottom plot shows anticipatory licking and the predicted values. Animals were trained using 

blocks of either small or big reward trials first. In rare trials (probe trials), animals received 

intermediate-size reward. The x-axis indicates the magnitudes of reward in the probe trials.
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Figure 3. Experimental evidence for uncertainty-dependent dopamine signals in a perceptual 
decision making task.
(A) Experimental task from 68,69. Monkeys observe randomly moving dots and then make a 

judgment about their direction. The proportion of coherently moving dots is manipulated 

across trials. (B) Predictions from the belief state model. At stimulus onset, reward 

prediction error (RPE) response increases as a function of coherence on correct trials, but 

decreases as a function of coherence on error trials. This pattern is inverted at feedback 

onset. (C) Recordings of dopamine neurons under the same condition as in (B), confirming 

the theoretical predictions.
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Figure 4. Two forms of uncertainty have distinct effects on exploratory choice, and are governed 
by distinct dopamine afferents.
(A) A two-armed bandit task in which each arm is either “safe” (deterministic) or “risky” 

(stochastic). (B) Schematic of how different trial types affect the probability of choosing the 

left option, plotted as a function of the estimated value difference between the options. The 

left plot illustrates the manipulation of relative uncertainty: when the left option is safe and 

the right option is risky, the choice probability function is shifted to the right, reflecting a 

change in choice bias (indifference point) caused by an uncertainty bonus for the risky 

option. This corresponds to a form of directed exploration, putatively controlled by 

prefrontal dopamine (DA) levels. Evidence suggests that the magnitude of the uncertainty 

bonus is controlled by prefrontal dopamine (DA) levels. The right plot illustrates the 

manipulation of total uncertainty: when the both options are safe, the choice probability 

function becomes steeper relative to when both options are risky, reflecting a reduction in 

choice stochasticity. This corresponds to a form of random exploration, putatively controlled 

by striatal DA levels.
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