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Abstract

Hantavirus pulmonary syndrome is an emerging disease of humans that is carried by wild rodents. 

Humans are usually exposed to the virus through geographically isolated outbreaks. The driving 

forces behind these outbreaks is poorly understood. Certainly, one key driver of the emergence of 

these viruses is the virus population dynamics within the rodent population. Two new 

mathematical models for hantavirus infection in rodents are formulated and studied. The new 

models include the dynamics of susceptible, exposed, infective, and recovered male and female 

rodents. The first model is a system of ordinary differential equations while the second model is a 

system of stochastic differential equations. These new models capture some of the realistic 

dynamics of the male/female rodent hantavirus interaction: higher seroprevalence in males and 

variability in seroprevalence levels.
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1. Introduction

Hantaviruses are rodent-borne zoonotic agents that, in humans, result in hemorrhagic fever 

with renal syndrome—HFRS (Europe and Asia) or hantavirus pulmonary syndrome—HPS 

(Americas) (Schmaljohn and Hjelle, 1997). HFRS was first recognized in 1951 when an 

outbreak occurred in military personnel involved in the Korean War (Lee and van der Groen, 

1989). HPS, identified in 1993 from an outbreak in New Mexico, is recognized as an 

emerging disease (Schmaljohn and Hjelle, 1997), and more recently, a biodefense agent. The 

case fatality rate for HPS in the United States is 37%, which stands as the highest mortality 

rate for any pathogen in the US (CDC MMWR, 2002). Human infection occurs primarily 

through the inhalation of aerosolized saliva and/or excreta of infected rodents (CDC 

MMWR, 2002). However, HFRS or HPS may also occur after individuals have been bitten 

by infected rodents (CDC MMWR, 2002). Thirty different hantavirus strains are recognized 

throughout the world; some of which are associated with HPS or HFRS (Mills et al., 1997; 
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Schmaljohn and Hjelle, 1997). Each hantavirus is generally associated with a primary rodent 

host within which substantial coevolutionary adaptations have probably occurred (Monroe et 

al., 1999; Plyusnin and Morzunov, 2001). Hantaviruses pathogenic to humans in the United 

States include Sin Nombre virus hosted by the deer mouse (Peromyscus maniculatus) (Mills 

et al., 1997), New York virus hosted by the white-footed mouse (Peromyscus leucopus) 

(Song et al., 1994), Black Creek Canal virus hosted by the cotton rat (Sigmodon hispidus) 

(Glass et al., 1998), and Bayou virus hosted by the rice rat (Oryzomys palustris) (Ksiazek et 

al., 1997; McIntyre, et al., 2005). There are many other hantaviruses associated with human 

disease. For example, Laguna Negra virus hosted by the vesper mouse (Calomys laucha) is 

present in western Paraguay (Yahnke et al., 2001; Chu et al., 2003). To increase our 

understanding of the spread of the disease in humans, it is necessary to understand the 

disease dynamics within the rodent population.

In this investigation, two new mathematical models for hantavirus infection in rodents are 

formulated. The models include the dynamics of susceptible, exposed, infective, and 

recovered male and female rodents. These new models extend some recent epidemic models 

that have been applied to hantavirus infection in rodents (Abramson and Kenkre, 2002; 

Abramson et al., 2003; Allen et al., 2003; Sauvage et al., 2003). The models of Abramson 

and Kenkre (2002) and Abramson et al., (2003) were applied to Sin Nombre virus in deer 

mice. Their models are reaction–diffusion systems of partial differential equations for 

susceptible and infected mice. Mice move randomly within a one-dimensional spatial 

habitat. Logistic growth is assumed with carrying capacity K. The carrying capacity is the 

driving force for the model dynamics. Traveling wave solutions and variability in population 

densities are studied as a function of the carrying capacity K. The model of Sauvage et al. 

(2003) was applied to Puumala virus infection in bank voles (Clethrionomys glareolus). 

Their model is a system of ordinary differential equations for rodents infected with 

hantavirus in two different habitats: optimal and suboptimal. The population is subdivided 

into susceptible and infected juveniles and adults. Logistic growth is assumed but the 

population dynamics are driven by an annual periodic birth function and a 3-year periodic 

carrying capacity. The model of Allen et al. (2003) was applied to an hantavirus infection 

(Black Creek Canal virus) and an arenavirus infection (Tamiami virus) in cotton rats 

(Sigmodontine hispidus). Their model is a system of differential equations with two states 

for infection with the two viruses. The two viruses differ in their modes of infection; the first 

virus is horizontally transmitted, whereas the second is primarily vertically transmitted. 

Conditions are determined for the two strains to coexist in the population.

The infection and persistence of hantavirus in its rodent host has little or no effect on 

survival (Glass et al., 1998). However, several studies, including our own, suggest there are 

distinct differences in males and females in the duration of shedding and viremia (Klein et 

al., 2001; Yahnke et al., 2001; Chu et al., 2003; McIntyre, et al., 2005). Further, males 

because of their biting and other aggressive behavior, generally have a higher prevalence of 

antibody to hantavirus in a rodent community (Childs, et al., 1994; Mills et al., 1997; Glass 

et al., 1998; Bernshtein, et al., 1999; Klein et al., 2001; Yahnke et al., 2001; McIntyre, et al., 

2005). The presence of antibody does not give insight into the levels of virus that are shed 

nor into the duration of the shedding (Klein et al., 2001). Unfortunately, these types of 

analyses are difficult in nature, although recently, McIntyre et al. (2005) have looked at the 
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RNA levels in male and female rodents infected with Bayou virus. It is clear that males are 

viremic but females are not. This suggests that the infectious period is longer for males than 

for females. As in most infectious diseases, there is a lag between exposure and infectivity, 

referred to as the incubation period. Because the life expectancy of rodents is relatively 

short, the incubation period cannot be neglected. Furthermore, infected rodents do not shed 

virus for their entire life. Once their infectious period ends, animals can be classified as 

recovered.

Our two new models are based in part on these recent models, however, they account for the 

differences in male and female seroprevalence and length of infectivity. The new features in 

our models are the inclusion of (i) males and females, (ii) an incubation or exposed class of 

individuals, (iii) and a recovered class of individuals (positive seroprevalence but not 

shedding the virus). The first model is a system of ordinary differential equations. The 

second model extends the first model to a system of stochastic differential equations (SDEs). 

Epidemic models that include an exposed class and a recovered class, in addition to 

susceptible and infective classes, are referred to as SEIR epidemic models. Unlike some of 

these recent models, we do not include spatial variation nor stages based on juveniles and 

adults.

In the next section, the male/female SEIR deterministic model is described. The basic 

reproduction number is computed for this model. For a special case of this model, the 

endemic equilibrium is computed. Then, in Section 3, a male/female SEIR stochastic model 

is formulated. Several numerical examples are presented in Section 4. The last section 

concludes with a summary.

2. SEIR deterministic model

The population is subdivided into males and females and further subdivided according to 

disease status: susceptible (S), exposed (E), infective (I), and recovered (R). Male rodents 

are denoted with a subscript m and females with a subscript f. For male rodents, the SEIR 

model takes the form

dSm
dt = B Nm, Nf

2 − Smd(N) − Sm βfIf + βmIm , (1)

dEm
dt = − Emd(N) + Sm βfIf + βmIm − δEm, (2)

dIm
dt = δEm − Imd(N) − γmIm, (3)

dRm
dt = γmIm − Rmd(N), (4)

and for female rodents,
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dSf
dt = B Nm, Nf

2 − Sfd(N) − Sf βfIf + βmfIm , (5)

dEf
dt = − Efd(N) + Sf βfIf + βmfIm − δEf, (6)

dIf
dt = δEf − Ifd(N) − γfIf, (7)

dRf
dt = γfIf − Rfd(N), (8)

where density of males is Nm = Sm + Em + Im + Rm, density of females is 

Nf = Sf + Ef + If + Rf, and total population density is N = Nm + Nf. The function B Nm, Nf
is the birth function. A harmonic birth function is assumed, one of the most commonly used 

birth functions,

B Nm, Nf =
2bNmNf
Nm + Nf

,

where b is the average litter size (Caswell, 2001; Iannelli et al., 2005). The maximal per 

capita birth rate occurs when the number of males equals the number of females.

In model (1)–(8), βf, βm, and βmf are the contact rates, which differ depending on whether 

contact is with an infective male. In particular, βf is the contact rate of an infective female 

with either a susceptible female or a susceptible male. The contact rate βm,f is an infective 

male with a susceptible female and the contact rate βm is an infective male with a 

susceptible male. These contact rates generally differ because of the males’ aggressive 

behavior. The quantity 1/δ is the average length of the incubation period which is the same 

for males and females. The quantities 1/γm and 1/γf are the average lengths of the infectious 

periods for males and females, respectively.

The parameters γm, γf, βf, βm, and βmf account for the differences in the epizoology between 

males and females. Fighting between males results in greater contacts and spread of 

hantavirus. Also, the infectious period in females is thought to be shorter than in males. 

Therefore, we make the following assumptions regarding the contact rates and the infectious 

periods,

βm ≥ βmf ≥ βf,
and 1/γm > 1/γf, that is,
γf > γm .
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The incubation period is the same for males and females (1/δ) as well as the density-

dependent death rate d(N) = a + cN, 0 < a < b/2, and 0 < c . A more general form for the 

density-dependent death rate can be assumed (e.g., Allen and Cormier, 1996; Mena-Lorca 

and Hethcote, 1992), but here we assume a simple linear form which leads to logistic growth 

of the population.

Differential equations for the densities of males, females, and total population can be found 

by summing the individual differential equations for the states. The male, female, and total 

population densities satisfy the following differential equations:

dNm
dt =

B Nm, Nf
2 − Nmd(N),

dNf
dt =

B Nm, Nf
2 − Nfd(N),

dN
dt = B Nm, Nf − Nd(N),

respectively. It can be shown that there exists a globally stable positive equilibrium for the 

total population densities (see the appendix). At this equilibrium, the number of males 

equals the number of females, Nm = K/2 = Nf, and the total population density is N = K, 

where K is referred to as the carrying capacity. The carrying capacity K is the solution of 

d(K) = b/2 or K = (b/(2 − a))/c. Therefore, every equilibrium for the full model (1)–(8), must 

have the property that

Sm + Em + Im + Rm = K/2 = Sf + Ef + If + Rf .

One particular equilibrium with this property is the disease-free equilibrium (DFE), where 

Sm = K/2 = Sf and Ej = Ij = Rj = 0, j = m, f. Whether the DFE is stable in the full model 

(1)–(8) is important for the control of the disease in the rodent population.

The stability of the DFE depends on the magnitude of the basic reproduction number. The 

basic reproduction number, ℛ0, is an important parameter in epidemiology. This parameter 

represents the number of secondary infections caused by one infective individual in an 

entirely susceptible population (Diekmann et al., 1990; Hethcote, 2000). When ℛ0 > 1, then 

the DFE is locally asymptotically stable and when ℛ0 > 1, the DFE is unstable and a disease 

outbreak is possible (van den Driessche and Watmough, 2002).

The method of Diekmann et al. (1990) and van den Driessche and Watmough (2002) can be 

used to calculate the basic reproduction number. First, the next generation matrix FV −1 is 

formed. Then, the spectral radius of the next generation matrix is calculated, ℛ0 = ρ(FV−1).

To form the next generation matrix, states are divided into infectious, (Em, Ef, Im, If), and 

noninfectious (Sm, Sf, Rm, Rf). Then, on the basis of the infectious states at the DFE, entries 

in the matrix F represent the rate at which new infections are created and the entries in 

matrix V−1 represent the average length of time spent in a particular state. For our model, F 
and V−1 are 4 × 4 matrices,
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F =

0 0 βmK/2 βfK/2
0 0 βmfK/2 βfK/2
0 0 0 0
0 0 0 0

,

and

V −1 =

1
b/2 + δ 0 0 0

0 1
b/2 + δ 0 0

δ
b/2 + γm (b/2 + δ) 0 1

b/2 + γm
0

0 δ
b/2 + γf (b/2 + δ) 0 1

b/2 + γf

.

The spectral radius ρ(FV−1) can be calculated,

ℛ0 = βmδK/4
b/2 + γm (b/2 + δ) + βfδK/4

b/2 + γf (b/2 + δ)

+ δK/4 βm b/2 + γf + βf b/2 + γm
2 − 4βf βm − βmf b/2 + γf b/2 + γm

b/2 + γm b/2 + γf (b/2 + δ) .
(9)

It is important to note that the basic reproduction number, defined in (9), is proportional to 

the carrying capacity K. As K increases ℛ0 also increases and so does ℛ0 and K is a 

consequence of the assumption of mass action transmission rate, a reasonable assumption 

for rodent populations.

In the special case, βmf = βm, males and females have similar dynamics. The basic 

reproduction number in this special case simplifies to

ℛ0 =
βmδK/2

b/2 + γm (b/2 + δ) +
βfδK/2

b/2 + γf (b/2 + δ) .

Notice that this latter expression for the basic reproduction number is the sum of two basic 

reproduction numbers, one for males and one for females. The endemic equilibrium is 

straightforward to calculate in this special case (Hethcote, 2000),

Sj = K
2ℛ0

,

Ej = (b/2)(K/2)
b/2 + δ 1 − 1

ℛ0
,

Ij = δ
b/2 + γj

Ej,

Rj =
γj

b/2 Ij,
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for j = m, f. Thus, at the endemic equilibrium, the fraction of rodents that are antibody 

positive (seroprevalence) equals the proportion of rodents that are either infective or 

recovered.

Im + If + Rm + Rf
K = δ

b/2 + δ 1 − 1
ℛ0

. (10)

An estimate for the magnitude of ℛ0 can be obtained from formula (10). As an example, we 

consider the rice rat (O. palustris), the rodent host for Bayou virus. Let the time unit be 2 

months which is the approximate gestation period (25 days) plus the time to reach sexual 

maturity (40–45 days) (Davis and Schmidley, 1994). The incubation period for Bayou virus 

in O. palustris is approximately 2–3 weeks, 1/δ ≈ 1/4 − 3/8 (Chu, personal communication). 

The litter size for O. palustris ranges from two to seven with an average litter size of four 

(with five to six litters per year), b ≈ 4 (Davis and Schmidley, 1994). Studies conducted in 

eastern Texas on the prevalence of Bayou virus in O. palustris indicate that the overall 

seroprevalence is about 16% of the population (McIntyre et al., 2005). Applying formula 

(10), the value of ℛ0 is approximately 1.32–1.39, very close to the thresh-old value of 1. 

When βm > βmf the value of ℛ0 is even smaller, as can be seen from formula (9).

When δ is large relative to b/2, the incubation period 1/δ is short and the exposed class E 
may be ignored. The model in this case simplifies to an SIR model. The equilibrium fraction 

in the SIR model corresponding to (10) satisfies

Im + If + Rm + Rf
K = 1 − 1

ℛ0
.

In this case, the factor δ/(b/2 + δ) in formula (10) is equal to 1.

The estimate for ℛ0 based on formula (10) assumes the proportion of seropositive males and 

females are equal. Our data suggest that this is not the case for New World hantaviruses. 

Thus, this estimate obtained from (10) provides only an upper bound for the ℛ0 given in (9). 

In the numerical simulations, we make the more realistic assumptions that βm > 
max{βmf,βf} and βmf = βf. Contacts between two males are generally aggressive encounters 

to defend territory and result in greater transmission of the disease than contacts between 

two males or a male and a female.

3. SEIR stochastic model

We formulate a stochastic differential equation (SDE) model based on the deterministic 

formulation (1)–(8). The stochastic model assumes there is variability due to births, deaths, 

and transitions between the states (a susceptible individual becomes exposed, then infective 

and recovered). We apply a method developed by Allen (1999) to derive a system of Ito 

SDEs. The variables for the males, Sm,..., Rm and the females, Sf,..., Rf, are continuous 

random variables whose values lie in [0,∞]. The DFE, where the exposed, infective, and 

Allen et al. Page 7

Bull Math Biol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recovered states are zero, Em = 0 = Ef, Im = 0 = If, and Rm = 0 = Rf, is an absorbing state for 

the stochastic model. When this state is reached the epidemic ends. However, depending on 

the parameters, the time to reach this state may be extremely long.

The derivation of the SDEs is based on the continuous-time Markov (chain formulation. The 

expected rate of change in the state variables, ΔX = ΔSm, ΔEm, …, ΔRf
T, where 

ΔSm = Sm(t + Δt) − S(t), etc., is given by the right-hand side of the SEIR deterministic 

model (1)–(8). However, the covariance for the rate of change in the state variables leads to a 

system of Itô SDEs (Allen, 1999; Allen, 2003; Kirupaharan and Allen, 2004). The Itô SDEs 

for the males take the form

dSm
dt =

B Nm, Nf
2 − Smd(N) − Sm βfIf + βmIm + ∑

j = 1

8
a1j

dW j
dt

dEm
dt = − Emd(N) + Sm βfIf + βmIm − δEm + ∑

j = 1

8
a2j

dW j
dt ,

dIm
dt = δEm − Imd(N) − γmIm + ∑

j = 1

8
a3j

dW j
dt ,

dRm
dt = γmIm − Rmd(N) + ∑

j = 1

8
a4j

dW j
dt ,

where Wj, j = 1,2,...,8, are eight independent Wiener processes. A similar set of SDEs apply 

to the female population.

The coefficients aij of the Wiener processes in the male/female SDE model are elements of 

the matrix A= (aij). Matrix A is an 8 × 8 matrix satisfying A = CV , the unique square root 

of the positive definite symmetric matrix CV. Matrix CV Δt is the approximate covariance 

matrix for the change in the states ΔX in time Δt.

To order Δt, CV

CV Δt = E ΔX[ΔX]T − E(ΔX) E(ΔX)T

≈ E ΔX[ΔX]T

= E

ΔSmΔSm ΔSmΔEm ⋯ ΔSmΔRf
ΔSmΔEm ΔEmΔEm ⋯ ΔEmΔRf

⋮ ⋮ ⋮ ⋮
ΔSmΔRf ΔEmΔRf ⋯ ΔRfΔRf
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where E is the expectation (see, e.g., Allen, 1999; Allen, 2003; Kirupaharan and Allen, 

2004). The preceding approximation holds because E(ΔX)[E(ΔX)T] is order (Δt)2. In 

particular, for our model, matrix CV is the positive definite symmetric matrix which takes 

the form,

CV =
Cm 0
0 Cf

.

Submatrices Cm and Cf are 4 × 4 tridiagonal matrices and 0 is a 4 × 4 zero matrix. 

Submatrix Cm is

B
2 + Sm d+βfIf + βmIm −Sm βfIf + βmIm 0 0

−Sm βfIf + βmIm Em(δ + d) + Sm βfIf + βmIm −δEm 0
0 −δEm δEm + Im γm + d −γmIm
0 0 −γmIm γmIm + Rmd

and submatrix Cf is

B
2 + Sf d+βfIf + βmfIm −Sf βfIf + βmIm 0 0

−Sf βfIf + βmIm Ef(δ + d) + Sf βfIf + βmfIm −δEf 0
0 −δEf δEf + If γf + d −γfIf
0 0 −γfIf γfIf + Rfd

,

where d ≡ d(N).

The system of Itô SDEs can be easily seen to be consistent with the ordinary differential 

equation model (1)–(8). Numerical methods applied to the Ito SDEs are generally more 

efficient than, for example, a continuous-time Markov chain model (Kloeden and Platen, 

1992; Kloeden et al., 1997; Allen and Allen, 2003). Stochastic sample paths of the system of 

Ito SDEs are presented in the next section and compared to the solution of the deterministic 

model.

4. Numerical examples

Three sets of figures illustrate the dynamics of the deterministic and the stochastic SEIR 

epidemic models. Parameter values are chosen in accordance with the epizoology of the rice 

rat (O. palustris) and Bayou virus. The basic time unit is chosen as 2 months, a time period 

approximately equal to the gestation period plus the time for rodents to become sexually 

mature. For a bimonthly time period, we choose δ = 4(1/δ = 2 weeks) and b = 4 (average 

litter size). Other parameter values are chosen in a realistic range, but estimates for them are 

not known. We assume that the contact rate for males is five times that for females 

βm = 5βf and βmf = βf; the infectious period for males is twice that for, females, 

1/γm = 2 1/γf ; and the carrying capacity is K = 1000 animals. The remaining parameter 

values are chosen so that a reasonable estimate is obtained for ℛ0.
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βm = 0.01, γm = 0.5, a = 0.01, and c = 1.99 × 10−3 .

With these parameter values, the basic reproduction number is ℛ0 = 1.38 (based on formula 

(9)). In the numerical simulations, the initial conditions are Sm(0) = 450 = Sf(0), Em(0) = 10 

= Im(0) = Rm(0), and Ef(0) = 5 = If(0) = Rf(0).

Because ℛ0 > 1, the DFE with Sm = 500 = Sf is not stable. However, there is a stable 

endemic equilibrium, as illustrated in the numerical simulations in Fig. 1. Solutions 

eventually level off at the endemic SEIR equilibrium, males: 357.1, 47.7, 76.2, 19.1, and 

females: 456.4, 14.5, 19.4, 9.7. It is clear that male seroprevalence is much greater than 

female seroprevalence. Seroprevalence at the endemic equilibrium is approximately 12.5%. 

Male seroprevalence is approximately 3.3 times greater than female seroprevalence.

One sample path of the stochastic SEIR epidemic model is graphed in Fig. 2. The parameter 

values are the same as in Fig. 1. Note that the stochastic variability allows for certain disease 

stages to reach very low levels but, because infection is maintained in the male population, 

the disease persists in the population.

In Fig. 3. 1000 sample paths are averaged. The average seroprevalence in the second year is 

10.4%. This level is lower than the deterministic model. The reason for this difference in the 

two models is that in the stochastic model, absorption may occur (the DFE is reached) or 

some of the random variables may be zero for a period of time in some of the sample paths 

(as in Fig. 2).

5. Conclusion

Hantavirus seroprevalence in wild rodent populations is relatively low, ranging from 5 to 

12% in C. laucha in Paraguay (Yahnke et al., 2001; Chu et al., 2003) and 16% in O. palustris 
in eastern Texas (McIntyre et al., 2005). Seroprevalence is generally much higher in males 

than in females, four times greater in male O. palustris in eastern Texas (McIntyre et al., 

2005) and approximately three times greater in male C. laucha in Paraguay (Chu et al., 

2003). Two new SEIR epidemic models have been developed to capture these realistic 

features of rodent–hantavirus dynamics. Their dynamics are illustrated in the numerical 

examples. In addition, the stochastic models capture the large variability in male and female 

seroprevalence that is seen in field data (Yahnke et al., 2001; Chu et al., 2003; McIntyre, et 

al., 2005).

It is clear from calculation of the basic reproduction number (9) that the carrying capacity K 
is an important parameter that affects disease outbreaks in rodent populations. The 

importance of the carrying capacity was also shown in the hantavirus models studied by 

Abramson and Kenkre (2002) Abramson et al. (2003) and Sauvage et al. (2003). The 

outbreak of Sin Nombre virus in 1993 that occurred in New Mexico was associated with 

increased densities of deer mice (CDC NCID, 2004). Densities increased from less than one 

deer mouse per hectare prior to 1991 to 20–30 per hectare during the spring of 1993 (CDC 

NCID, 2004). Environmental variations in space and time impact the carrying capacity and 
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ultimately rodent densities (Langlois et al., 2001). In future work, we plan to extend our 

male/female SEIR epidemic models to spatially explicit patch models.
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Appendix

The dynamics of the male/female system without infection can be completely analyzed. The 

male/female system satisfies

dNm
dt =

B Nm, Nf
2 − Nmd(N) = Nm

bNf
Nm + Nf

− a − c Nm + Nf ,

dNf
dt =

B Nm, Nf
2 − Nfd(N) = Nf

bNm
Nm + Nf

− a − c Nm + Nf ,

where N = Nm + Nf, Nm(0) > 0 and Nf(0) > 0. Solutions Nm(t) and Nf(t) are positive for all 

time. This system has a unique positive equilibrium given by Nm = K/2 = Nf, where 

K = (b/2 − a)/c > 0. We show that this equilibrium is globally symptotically stable.

Let u = Nm − Nf. Then

du
dt = − u(a − cN) .

It follows that limt ∞u(t) = 0 = limt ∞ Nm(t) − Nf(t)]. In addition, if u(0) ≥ 0(≤ 0), then 

u(t) ≥ 0( ≤ 0) for all time. Without loss of generality, assume u (0) ≥ 0. Let ϵ > 0 such that 

b/2 > cϵ + a. Choose T sufficiently large such that 0 ≤ u(t) < ϵ for t>T . Then for t > T,

dNm
dt ≤ Nm

b
2 + cϵ − a − 2cNm ,

and

dNf
dt ≤ Nf

b
2 − cϵ − a − 2cNf .

Thus,

b/2 − cϵ − a
2c ≤ liminf

t ∞
Nf(t) ≤ limsup

t ∞
Nm(t) ≤ b/2 − cϵ − a

2c .

Because ϵ is arbitrary, solutions Nm(t) and Nf(t) approach the unique positive equilibrium K/
2.
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Fig. 1. 
Solution to the deterministic SEIR epidemic as a function of time. An endemic equilibrium 

for males: 357.1, 47.7, 76.2, 19.1, and females: 456.4, 14.5, 19.4. 9.7, is reached. The total 

population size at equilibrium equals the carrying capacity K = 1000. Seroprevalence is 

12.5% at the endemic equilibrium.
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Fig. 2. 
One sample path of the stochastic SEIR epidemic model. The parameter values and initial 

conditions are the same as in Fig. 1.
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Fig. 3. 
An average of 1000 sample paths for the stochastic SEIR model. Compare this figure with 

Fig. 1. The average seroprevalence in year 2 is 10.4%.
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