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Abstract

PARAFAC2 has demonstrated success in modeling irregular tensors, where the tensor dimensions 

vary across one of the modes. An example scenario is modeling treatments across a set of patients 

with the varying number of medical encounters over time. Despite recent improvements on 

unconstrained PARAFAC2, its model factors are usually dense and sensitive to noise which limits 

their interpretability. As a result, the following open challenges remain: a) various modeling 

constraints, such as temporal smoothness, sparsity and non-negativity, are needed to be imposed 

for interpretable temporal modeling and b) a scalable approach is required to support those 

constraints efficiently for large datasets.

To tackle these challenges, we propose a COnstrained PARAFAC2 (COPA) method, which 

carefully incorporates optimization constraints such as temporal smoothness, sparsity, and non-

negativity in the resulting factors. To efficiently support all those constraints, COPA adopts a 

hybrid optimization framework using alternating optimization and alternating direction method of 

multiplier (AO-ADMM). As evaluated on large electronic health record (EHR) datasets with 

hundreds of thousands of patients, COPA achieves significant speedups (up to 36× faster) over 

prior PARAFAC2 approaches that only attempt to handle a subset of the constraints that COPA 

enables. Overall, our method outperforms all the baselines attempting to handle a subset of the 

constraints in terms of speed, while achieving the same level of accuracy.
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Through a case study on temporal phenotyping of medically complex children, we demonstrate 

how the constraints imposed by COPA reveal concise phenotypes and meaningful temporal 

profiles of patients. The clinical interpretation of both the phenotypes and the temporal profiles 

was confirmed by a medical expert.
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1 INTRODUCTION

Tensor factorization encompasses a set of powerful analytic methods that have been 

successfully applied in many application domains: social network analysis [2, 18], urban 

planning [3], and health analytics [14, 15, 21, 22, 27]. Despite the recent progression on 

modeling the time through regular tensor factorization approaches [3, 19], there are some 

cases where modeling the time mode is intrinsically difficult for the regular tensor 

factorization methods, due to its irregularity. A concrete example of such irregularity is 

electronic health record (EHR). EHR datasets consist of K patients where patient k is 

represented using a matrix Xk and for each patient, J medical features are recorded. Patient k 
can have Ik hospital visits over time, which can be of different size across patients as shown 

in Figure 1.

In this case, clinical visits are the irregular time points which vary across patients. In 

particular, the time irregularity lies in 1) the variable number of hospital visits, 2) the varying 

disease states for different patients, and 3) the varying time gaps between consecutive 

hospital visits. To handle such irregular tensors, the state-of-the-art tensor model is 

PARAFAC2 [11], which naturally handles variable size along one of its modes (e.g., time 

mode). Despite the wide range of PARAFAC2 applications (e.g., natural language 

processing [8], chemical processing [28], and social sciences [12]) its computational 

requirements have limited its usage for small and dense datasets [17]. Even if recently, a 

scalable PARAFAC2 fitting algorithm was proposed for large, sparse data [22], it cannot 

incorporate meaningful constraints on the model factors such as: a) sparsity, which 

facilitates model inspection and understanding and b) smoothness, which is meaningful to 

impose when temporal evolution is modeled as a mode of the input tensor.

To tackle the above challenges, we propose the COnstrained PARAFAC2 method (COPA), 

which introduces various useful constraints in PARAFAC2 modeling. In particular, 

generalized temporal smoothness constraints are integrated in order to: a) properly model 

temporally-evolving phenomena (e.g., evolving disease states), and b) adaptively deal with 

uneven spacing along the temporal dimension (e.g., when the time duration between 

consecutive hospital visits may range from 1 day to several years). Also, COPA introduces 

sparsity into the latent factors, a crucial property enhancing interpretability for sparse input 

data, such as the EHR.

A key property of our approach is that those constraints are introduced in a computationally 

efficient manner. To do so, COPA adopts a hybrid optimization framework using alternating 
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optimization and alternating direction method of multipliers. This enables our approach to 

achieve significant speedups (up to 36×) over baselines supporting only a specific constraint 

each, while achieving the same level of accuracy. Through both quantitative (e.g., the 

percentage of sparsity) and qualitative evaluations from a clinical expert, we demonstrate the 

meaningfulness of the constrained output factors for the task of temporal phenotyping via 

EHRs. In summary, we list our main contributions below:

• Constrained PARAFAC2: We propose COPA, a method equipping the 

PARAFAC2 modeling with a variety of meaningful constraints such as 

smoothness, sparsity, and non-negativity.

• Scalable PARAFAC2: While COPA incorporates a wide range of constraints, it 

is faster and more scalable than baselines supporting only a subset of those 

constraints.

• COPA for temporal phenotyping: We apply COPA for temporal phenotyping 

of a medically complex population; a medical expert confirmed the clinical 

meaningfulness of the extracted phenotypes and temporal patient profiles.

Table 1 summarizes the contributions in the context of existing works.

2 BACKGROUND

In this Section, we provide the necessary background for tensor operations. Then, we briefly 

illustrate the related work including: the classical method for PARAFAC2 and AO-ADMM 

framework for constrained tensor factorization. Table 2 summarizes the notations used 

throughout the paper.

The mode or order is the number of dimensions of a tensor. A slice refers to a matrix derived 

from the tensor where fixing all modes but two. Matricization converts the tensor into a 

matrix representation without altering its values. The mode-n matricization of 

Y ∈ ℝI1 × … . × IN is denoted as Y (n) ∈ ℝIn × I1…In − 1In + 1…IN. Matricized-Tensor-Times-

Khatri-Rao-Product[4] (MTTKRP) is a multiplication which a naive construction of that for 

large and sparse tensors needs computational cost and enormous memory and is the typical 

bottleneck in most tensor factorization problems. The popular CP decomposition [7] also 

known as PARAFAC factorizes a tensor into a sum of R rank-one tensors. CP decomposition 

method factorizes tensor Y ∈ ℝK × J × I into ∑r = 1
R ar ∘ br ∘ cr where R is the number of 

target-ranks or components and ar ∈ ℝK, br ∈ ℝJ, and cr ∈ ℝI are column matrices and ∘ 

indicates the outer product. Here A = a1, …aR , B = b1, …bR , and C = c1, …cR  are factor 

matrices.

Original PARAFAC2 model

As proposed in [11], the PARAFAC2 model decomposes each slice of the input Xk ∈ ℝIk × J

as Xk ≈ UkSkV T , where Uk ∈ ℝIk × R, Sk ∈ ℝR × R is a diagonal matrix, and V ∈ ℝJ × R. 

Uniqueness is an important property in factorization models which ensures that the pursued 

solution is not an arbitrarily rotated version of the actual latent factors. In order to enforce 
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uniqueness, Harshman [11] imposed the constraint Uk
T Uk = Φ ∀k. This is equivalent to 

each Uk being decomposed as Uk = QK H, where Qk ∈ ℝIk × R, Qk
T Qk = I ∈ ℝR × R and 

H ∈ ℝR × R. Note that Qk has orthonormal columns and H is invariant regardless of k. 

Therefore, the decomposition of Uk implicitly enforces the constraint as 

Uk
T Uk = HT Qk

T QkH = HT H = Φ. Given the above modeling, the standard algorithm [17] to 

fit PARAFAC2 for dense input data tackles the following optimization problem:

minimize
Uk , Sk , V

, ∑
k = 1

K 1
2 Xk − UkSkV T

F
2

(1)

subject to Uk = QKH, Qk
T Qk = I, and Sk is diagonal. The solution follows an Alternating 

Least Squares (ALS) approach to update the modes. First, orthogonal matrices {Qk } are 

solved by fixing H,{Sk }, V and posing each Qk as an individual Orthogonal Procrustes 

Problem [24]:

minimize
Qk

1
2 Xk − QkHSkV T

F
2

(2)

Computing the singular value decomposition (SVD) of H SkV T Xk
T = PkΣkZk

T  yields the 

optimal Qk = PkZk
T . With {Qk } fixed, the remaining factors can be solved as:

minimize
H, Sk , V

1
2 ∑

k = 1

K
Qk

TXk − HSkV T
F
2

(3)

The above is equivalent to the CP decomposition of tensor Y ∈ ℝR × J × K with slices 

Y k = Qk
T Xk. A single iteration of the CP-ALS provides an update for H,{Sk }, V [17]. The 

algorithm iterates between the two steps (Equations 2 and 3) until convergence is reached.

AO-ADMM

Recently, a hybrid algorithmic framework, AO-ADMM [16], was proposed for constrained 

CP factorization based on alternating optimization (AO) and the alternating direction method 

of multipliers (ADMM). Under this approach, each factor matrix is updated iteratively using 

ADMM while the other factors are fixed. A variety of constraints can be placed on the factor 

matrices, which can be readily accommodated by ADMM.

3 PROPOSED METHOD: CONSTRAINED PARAFAC2 FRAMEWORK

A generalized constrained PARAFAC2 approach is appealing from several perspectives 

including the ability to encode prior knowledge, improved interpretability, and more robust 

and reliable results. We propose COPA, a scalable and generalized constrained PARAFAC2 

model, to impose a variety of constraints on the factors. Our algorithm leverages AO-

ADMM style iterative updates for some of the factor matrices and introduces several 
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PARAFAC2-specific techniques to improve computational efficiency. Our framework has 

the following benefits:

• Multiple constraints can be introduced simultaneously.

• The ability to handle large data as solving the constraints involves the application 

of several element-wise operations.

• Generalized temporal smoothness constraint that effectively deals with uneven 

spacing along the temporal (irregular) dimension (gaps from a day to several 

years for two consecutive clinical visits).

In this section, we first illustrate the general framework for formulating and solving the 

constrained PARAFAC2 problem. We then discuss several special constraints that are useful 

for the application of phenotyping including sparsity on the V, smoothness on the Uk, and 

non-negativity on the Sk factor matrices in more detail.

3.1 General Framework for COPA

The constrained PARAFAC2 decomposition can be formulated using generalized constraints 

on H, Sk, and V, in the form of c(H), c(Sk), and c(V) as:

minimize
Uk , Sk , V

∑
k = 1

K 1
2 Xk − UkSkV T F

2 + c(H) + ∑
k = 1

K
c Sk + c(V )

subject to Uk = QKH, Qk
T Qk = I, and Sk is diagonal. To solve for those constraints, we 

introduce auxiliary variables for H, Sk, and V (denoted as H, Sk, and V ). Thus, the 

optimization problem has the following form:

minimize
Uk , Sk , V

∑
k = 1

K 1
2 Xk − UkSkV T

F
2 + c(H) + ∑

k = 1

K
c Sk + c(V )

subject to            Uk = QkH, Qk
TQk = I, Sk = Sk for all k = 1, …, K

H = H, V = V

(4)

We can re-write the objective function as the minimization of 

tr Xk
T Xk − 2tr Xk

T QkH SkV T + tr V  SkHT Qk
T QkH SkV T  in terms of Qk. The first term is 

constant and since Qk has orthonormal columns QkT Qk = I , the third term is also constant. 

By rearranging the terms we have tr Xk
T QkH SkV T = tr XkV  SkHT Qk

T . Thus, the 

objective function regarding to Qk is equivalent to:

minimize
Qk

1
2 XkV  SkHT − Qk F

2

subject to     Qk
TQk = I

(5)

Thus, the optimal Qk has the closed form solution Qk = BkCk
T  where Bk ∈ RIk × R and 

Ck ∈ RR × R are the right and left singular vectors of Xk V Sk HT [10, 24]. This promotes the 
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solution’s uniqueness, since orthogonality is essential for uniqueness in the unconstrained 

case.

Given fixed {Qk }, we next find the solution for H, {Sk }, V as follows:

minimize
H, Sk , V

1
2 ∑

k = 1

K
Qk

TXk − H Sk V T
F
2 + c(H) + ∑

k = 1

K
c Sk + c(V )

 subject to    Sk = Sk       for all k = 1, …, K
H = H, V = V

(6)

This is equivalent to performing a CP decomposition of tensor Y ∈ ℝR × J × K with slices 

Y k = Qk
T Xk [17]. Thus, the objective is of the form:

minimize
H, W , V

1
2 Y − [H; V ; W ]

F

2
+ c(H) + c(V ) + c(W )

H = H, V = V , W = W
(7)

We use the AO-ADMM approach [16] to compute H, V, and W, where Sk = diag(W (k, :)) 

and W ∈ ℝK × R. Each factor matrix update is converted to a constrained matrix 

factorization problem by performing the mode-n matricization of Y(n) in Equation 7. As the 

updates for H,W, and V take on similar forms, we will illustrate the steps for updating W. 

Thus, the equivalent objective for W using the 3rd mode matricization of Y Y (3) ∈ ℝK × RJ

is:

minimize
W T

1
2 Y (3)

T − (V ⊙ H)W T
F
2 + c(W )

subject to     W T = W
(8)

The application of ADMM yields the following update rules:

W T ≔ HT H * V T V + ρI −1 Y (3)(V ⊙ H) + ρ W + DW T T

W ≔ argmin
W

c(W ) + ρ
2 W − W T + DW T F

2

DW T ≔ DW T + W − W T

where DW T  is a dual variable and ρ is a step size regarding to WT factor matrix. The 

auxiliary variable (W ) update is known as the proximity operator [20]. Parikh and Boyd 

show that for a wide variety of constraints, the update can be computed using several 

element-wise operations. In Section 3.3, we discuss the element-wise operations for three of 

the constraints we consider.
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3.2 Implementation Optimization

In this section, we will provide several steps to accelerate the convergence of our algorithm. 

First, our algorithm needs to decompose Y, therefore, MTTKRP will be a bottleneck for 

sparse input. Thus COPA uses the fast MTTKRP proposed in SPARTan [22]. Second, (HT H 
*VT V)+ ρI is a symmetric positive definite matrix, therefore instead of calculating the 

expensive inverse computation, we can calculate the Cholesky decomposition of it (LLT) 

where L is a lower triangular matrix and then apply the inverse on L (lines 14,16 in 

algorithm 1). Third, Y(3)(V ʘ H) remains a constant and is unaffected by updates to W or W . 

Thus, we can cache it and avoid unnecessary re-computations of this value. Fourth, based on 

the AO-ADMM results and our own preliminary experiments, our algorithm sets 

ρ =
HT H + V T V F

2

R  for fast convergence of W.

Algorithm 1 lists the pseudocode for solving the generalized constrained PARAFAC2 model. 

Adapting AO-ADMM to solve H, W, and V in PARAFAC2 has two benefits: (1) a wide 

variety of constraints can be incorporated efficiently with iterative updates computed using 

element-wise operations and (2) computational savings gained by caching the MTTKRP 

multiplication and using the Cholesky decomposition to calculate the inverse.

3.3 Examples of useful constraints

Next, we describe several special constraints which are useful for many applications and 

derive the updates rules for those constraints.

3.3.1 Smoothness on Uk : For longitudinal data such as EHRs, imposing latent 

components that change smoothly over time may be desirable to improve interpretability and 

robustness (less fitting to noise). Motivated by previous work [12, 26], we incorporate 

temporal smoothness to the factor matrices Uk by approximating them as a linear 

combination of several smooth functions. In particular, we use M-spline, a non-negative 

spline function which can be efficiently computed through a recursive formula [23]. For 

each subject k, a set of M-spline basis functions Mk ∈ ℝIk × l  are created where l is the 

number of basis functions. Thus, Uk is an unknown linear combination of the smooth basis 

functions Uk = MkWk, where Wk is the unknown weight matrix.

The temporal smoothness constrained solution is equivalent to performing the PARAFAC2 

algorithm on a projected Xk′ = Ck
T Xk, where Ck is obtained from the SVD of 

Mk = Ck, Ok, Pk
T . We provide proof of the equivalence by analyzing the update of Qk for 

the newly projected data Xk′  :

minimize
Qk

Ck
T Xk − QkH SkV T

F
2
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Algorithm 1

COPA

Input: Xk ∈ ℝIk × J
 for k=1,…,K and target rank R

Output: Uk ∈ ℝIk × R
, Sk ∈ ℝR × R for k = 1,…, K, V ∈ ℝJ × R

1: Initialize H, V, {Sk} for k=1,…,K

2: while convergence criterion is not met do

3:  for k=1,…,K do

4:   Bk, Dk, Ck
T

=truncated SVD of XkV  SkHT

5:   Qk = BkCk
T

6:   Y k = Qk
T Xk

7:   W(k, :) = diag(Sk)

8:  end for

9:  Z1 = H, Z2 = W,Z3 = V

10:  for n=1,…,3 do

11:   G = *i ≠ n Zi
T Zi

12:   F = Y(n)(ʘi≠nZi) //calculated based on [22]

13:   ρ = trace (G)/R

14:   L =Cholesky(G + ρI)

15:   while convergence criterion is not met do

16:    Zn
T = LT −1L−1 F + ρ Zn + DZn

T

17:    Zn: = arg minZnc Zn + ρ
2 Zn − Zn

T + DZn F
2

18:    DZn ≔ DZn + Zn − Zn
T

19:   end while

20:  end for

21: end while

22: H = Z1, W = Z2, V = Z3

23: for k=1,…,K do

24:  Uk = QkH

25:  Sk = diag(W(k, :))

26: end for

This can be re-written as the minimization of 

tr Xk
T CkCk

T Xk − 2tr Xk
T CkQkH SkV T + tr V SkHT Qk

T QkH SkV T . Since Ck and Qk have 

orthonormal columns the first and third terms are constants. Also tr(AT) = tr(A) and tr(ABC) 

= tr(CAB) = tr(BCA), thus the update is equivalent to:
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max
Qk

   tr Ck
TXkV  SkHTQk

T = tr Xk′ V  SkHTQk
T

min
Qk

    Xk′ V  Sk
H − Qk F

2 (10)

This is similar to equation 5 (only difference is Xk′ , a projection of Xk) which can be solved 

using the constrained quadratic problem [10]. Thus, solving for H, Sk, and V remains the 

same. The only difference is that after convergence, Uk is constructed as Ck Qk H.

In some domains, there may be uneven time gaps between the observations. For example, in 

our motivating application, patients may not regularly visit a healthcare provider but when 

they do, the visits are closely clustered together. To adaptively handle time-varying gaps, we 

alter the basis functions to account for uneven gaps. Under the assumption of small and 

equidistant gaps (Helwig’s approach), the basis functions are created directly on the visits. 

Instead, we define a set of M-spline functions for each patient in the interval [t1, tn], where t1 

and tn are the first and last hospital visits. These spline functions (with day-resolution) are 

then transformed to their visit-resolution. Thus, given the number and position of the knots 

([β1.βm]), which can be estimated using the metric introduced in Helwig’s work [12], we 

create the ith basis function of patient k with degree d using the following recursive formula:

mik, d(t) =
t − βi

βi + d − βi
mik, d − 1(t) +

βi + d + 1 − t
βi + d + 1 − βi + 1

mi + 1k, d − 1(t)

where t denotes the hospital visit day and βi is the ith knot. Hence, we can reconstruct the 

basis functions as mik,0(t) is 1 if t ∈ [βi, βi+1] and zero otherwise. Figure 2 shows the two 

types of basis functions related to a patient with sickle cell anemia.

3.3.2 Sparsity on V : Sparsity constraints have wide applicability to many different 

domains and have been exploited for several purposes including improved interpretability, 

reduced model complexity, and increased robustness. For the purpose of EHR-phenotyping, 

we impose sparsity on factor matrix V, to obtain sparse phenotype definitions. While several 

sparsity inducing constraints can be introduced, we focus on the l0 and l1 norms, two 

popular regularization techniques. The l0 regularization norm, also known as hard 

thresholding, is a non-convex optimization problem that caps the number of non-zero values 

in a matrix. The l0 regularization norm, or the soft thresholding metric, is often used as a 

convex relaxation of the l0 norm. The objective function with respect to V for the sparsity 

(l0 norm) constrained PARAFAC2 is as follows:

minimize
V

1
2‖Y − [H; V ; W ]‖F

2 + λ‖V ‖0,  s.t. V = V (11)

where λ is a regularization parameter which needs to be tuned. The proximity operator for 

the l0 regularization, V , uses the hard-thresholding operator which zeros out entries below a 

specific value. Thus, the update rules for V are as follows:
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V T ≔ HT H * W T W + ρI −1 Y (2)(W ⊙ H) + ρ V + DV T T

V  : = arg min 
V

λ‖V ‖0 + ρ
2 V − V T − DV T F

2 =
0 V 2 ≤ 2λ

ρ = μ

V V 2 ≥ 2λ
ρ = μ

DV T ≔ DV T + V − V T

The update rule corresponding to the l1 regularization, V , is the soft-thresholding operator:

V  : = arg min 
V

λ‖V ‖1 + ρ
2 V − V T − DV T F

2 = max 0, V T + DV T − (λ/ρ)

Note that imposing factor sparsity boils down to using element-wise thresholding operations, 

as can be observed above. Thus, imposing sparsity is scalable even for large datasets.

3.3.3 Non-negativity on Sk : COPA is able to impose non-negativity constraint to 

factor matrices H, Sk, and V. Because the updating rules for these three factor matrices are 

same we just show the update rules for factor matrix Sk for simplicity (Sk = diag(W (k, :))):

W T ≔ HT H * V T V + ρI −1 Y (3)(V ⊙ H) + ρ W + DW T T

W ≔ max 0, W T − DW T

DW T ≔ DW T + W − W T

Note that our update rule for W  only involves zeroing out the negative values and is an 

element-wise operation. The alternating least squares framework proposed by [6] and 

employed by SPARTan [22] can also achieve non-negativity through non-negative least 

squares algorithms but that is a more expensive operation than our scheme.

4 EXPERIMENTAL RESULTS

In this section, we first provide the description of the real datasets. Then we give an 

overview of baseline methods and evaluation metrics. After that, we present the quantitative 

experiments. Finally, we show the success of our algorithm in discovering temporal 
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signature of patients and phenotypes on a subset of medically complex patients from a real 

data set.

4.1 Setup

4.1.1 Data Set Description.

Children’s Healthcare of Atlanta (CHOA):  This dataset contains the EHRs of 247,885 

pediatric patients with at least 3 hospital visits. For each patient, we utilize the International 

Classification of Diseases (ICD9) codes [25] and medication categories from their records, 

as well as the provided age of the patient (in days) at the visit time. To improve 

interpretability and clinical meaningfulness, ICD9 codes are mapped into broader Clinical 

Classification Software (CCS) [1] categories. Each patient slice Xk records the clinical 

observations and the medical features. The resulting tensor is 247,885 patients by 1388 

features by maximum 857 observations.

Centers for Medicare and Medicaid (CMS):1: CMS released the Data Entrepreneurs 

Synthetic Public Use File (DE-SynPUF), a realistic set of claims data that also protects the 

Medicare beneficiaries’ protected health information. The dataset is based on 5% of the 

Medicare beneficiaries during the period between 2008 and 2010. Similar to CHOA, we 

extracted ICD9 diagnosis codes and summarized them into CCS categories. The resulting 

number of patients are 843,162 with 284 features and the maximum number of observations 

for a patient are 1500.

Table 3 provides the summary statistics of real datasets.

4.1.2 Baseline Approaches.—In this section, we briefly introduce the baseline that we 

compare our proposed method.

• SPARTan [22]2 is a recently-proposed methodology for fitting PARAFAC2 on 

large and sparse data. The algorithm reduces the execution time and memory 

footprint of the bottleneck MTTKRP operation. Each step of SPARTan updates 

the model factors in the same way as the classic PARAFAC2 model [17], but is 

faster and more memory efficient for large and sparse data. In the experiments, 

SPARTan has non-negativity constraints on H, Sk, and V factor matrices.

• Helwig [12] incorporates smoothness into PARAFAC2 model by constructing a 

library of smooth functions for every subject and apply smoothness based on 

linear combination of library functions. We implemented this algorithm in 

MATLAB.

4.1.3 Evaluation Metrics.—We use FIT [6] to evaluate the quality of the reconstruction 

based on the model’s factors:

1https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.html
2The MATLAB code is available at https://github.com/kperros/SPARTan
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FIT = 1 −
∑k = 1

K Xk − UkSkV T 2

∑k = 1
K Xk 2

The range of FIT is between [−∞, 1] and values near 1 indicate the method can capture the 

data perfectly. We also use SPARSITY metric to evaluate the factor matrix V which is as 

follows:

SPARSITY = nz(V )
size(V )

where nz(V) is the number of zero elements in V and size(V) is the number of elements in 

V. Values near 1 implies the sparsest solution.

4.1.4 Implementation details.—COPA is implemented in MATLAB and includes 

functionalities from the Tensor Toolbox [5]. To enable reproducibility and broaden the usage 

of the PARAFAC2 model, our implementation is publicly available at: https://github.com/

aafshar/COPA. All the approaches (including the baselines) are evaluated on MatlabR2017b. 

We also implemented the smooth and functional PARAFAC2 model [12], as the original 

approach was only available in R [13]. This ensures a fair comparison with our algorithm.

4.1.5 Hardware.—The experiments were all conducted on a server running Ubuntu 

14.04 with 250 GB of RAM and four Intel E5–4620 v4 CPU’s with a maximum clock 

frequency of 2.10GHz. Each processor contains 10 cores. Each core can exploit 2 threads 

with hyper-threading enabled.

4.1.6 Parallelism.—We utilize the capabilities of Parallel Computing Toolbox of Matlab 

by activating parallel pool for all methods. For CHOA dataset, we used 20 workers whereas 

for CMS we used 30 workers because of more number of non-zero values.

4.2 Quantitative Assessment of Constraints

To understand how different constraints affect the reconstruction error, we perform an 

experiment using each of the constraints introduced in Section 3.3. We run each method for 

5 different random initializations and provide the average and standard deviation of FIT as 

shown in Figure 3. This Figure illustrates the impact of each constraint on the FIT values 

across both datasets for two different target ranks (R={15,40}). In all versions of COPA, Sk 

factor matrix is non-negative. Also, we apply smoothness on Uk and l0 regularization norm 

on V separately and also simultaneously. From Figure 3, we observe that different versions 

of COPA can produce a comparable value of FIT even with both smoothness on Uk and 

sparsity on V. The number of smooth basis functions are selected based on the cross-

validation metric introduced in [26] and the l0 regularization parameter (μ) is selected via 

grid search by finding a good trade off between FIT and SPARSITY metric. The optimal 

values of each parameter for the two different data sets and target ranks are reported in table 

4.
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We next quantitatively evaluate the effects of sparsity (average and standard deviation of the 

sparsity metric) by applying l0 regularization norm on the factor matrix V for COPA and 

compare it with SPARTan for 5 different random initializations, as provided in Table 5. For 

both the CHOA and CMS datasets, COPA achieves more than a 98% sparsity level. The 

improved sparsity of the resulting factors is especially prominent in the CMS dataset, with a 

400% improvement over SPARTan. Sparsity can improve the interpretability and potentially 

the clinical meaningfulness of phenotypes via more succinct patient characterizations. The 

quantitative effectiveness is further supported by the qualitative endorsement of a clinical 

expert (see Section 4.4).

4.3 Scalability and FIT-TIME

First, we evaluate and compare the total running time of all versions of COPA and SPARTan 

on the real datasets. We run each method 5 times and report averages and standard 

deviations. As shown in Figure 4, the average of total running time of COPA with non-

negativity constraints imposed on H, {Sk },V is faster (up to 1.57×) than SPARTan with the 

same set of constraints for two data sets and different target ranks. In order to provide more 

precise comparison we apply paired t-tests on the two sets of running time, one from 

SPARTan and the other from a version of COPA under the null hypothesis that the running 

times are not significantly different between the two methods. We present the p-values return 

from the t-tests in Table 6. The p-values for COPA with non-negativity constraint and 

sparsity constraint are small which suggest that the version of COPA is significantly better 

than the SPARTan (rejecting the null hypothesis). Also we provide the speedups (running 

time of SPARTan divide by running time of COPA) in Table 6. Moreover, the average 

running times of Smooth COPA are just slightly slower than SPARTan, which does not 

support such smooth constraints. Next, we compare the best convergence (Time in seconds 

versus FIT) out of 5 different random initializations of the proposed COPA approach against 

SPARTan. For both methods, we add non-negativity constraints to H, { Sk }, V and compare 

the convergence rates on both real-world datasets for two different target ranks (R = {15, 

40}). Figures 5 and 6 illustrates the results on the CHOA and CMS datasets respectively. 

COPA converges faster than SPARTan in all cases. While both COPA and SPARTan avoid 

direct construction of the sparse tensor Y, the computational gains can be attributed to the 

efficiency of the non-negative proximity operator, an element-wise operation that zeros out 

the negative values in COPA whereas SPARTan performs expensive NN-Least Square 

operation. Moreover, caching the MTTKRP operation and the Cholesky decomposition of 

the Gram matrix help COPA to reduce the number of computations.

In addition, we assessed the scalability of incorporating temporal smoothness onto Uk and 

compare it with Helwig’s approach [12] as SPARTan does not have the smoothness 

constraint. Figure 7 provides a comparison of iteration time for Smooth COPA and the 

approach in [12] across two different target ranks. First, we remark that our method is more 

scalable and faster than the baseline. For R = 30, COPA is 27× and 36× faster on CHOA and 

CMS respectively. Moreover, for R = 40, not only was COPA 32× faster on CHOA, but the 

execution failed using the approach in [12] on CMS because of the excessive amount of 

memory required. In contrast, COPA successfully finished each iteration with an average of 

224.21 seconds.
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4.4 Case Study: CHOA Phenotype Discovery

4.4.1 Model interpretation: Phenotyping is the process of extracting a set of 

meaningful medical features from raw and noisy EHRs. We define the following model 

interpretations regarding to our target case study:

• Each column of factor matrix V represents a phenotype and each row indicates a 

medical feature. Therefore an entry V (i, j) represents the membership of medical 

feature i to the jth phenotype.

• The rth column of Uk ∈ ℝIk × R indicates the evolution of phenotype r for all Ik 

clinical visits for patient k.

• The diagonal Sk provides the importance membership of R phenotypes for the 

patient k. By sorting the values diag(Sk) we can identify the most important 

phenotypes for patient k.

4.4.2 Case Study Setup: For this case study, we incorporate smoothness on Uk, non-

negativity on Sk, and sparsity on V simultaneously to extract phenotypes from a subset of 

medically complex patients from CHOA dataset. These are the patients with high utilization, 

multiple specialty visits and high severity. A total of 4602 patients are selected with 810 

distinct medical features. For this experiment, we set the number of basis functions to 7 (as 

shown in figure 2), μ = 49, and R = 4.

4.4.3 Findings: We demonstrate the effectiveness of COPA for extracting phenotypes. 

Also we show how COPA is able to describe the evolution of phenotypes for patients by 

considering the gap between every pair of clinical visits. Figure 8 displays the evolution of 

phenotypes (temporal pattern) relating to two patients discovered by COPA, Helwig, and 

SPARTan. The phenotype that is chosen has the highest weight for each patient (largest 

value in the diagonal Sk matrix) and the loadings on the medical features are similar across 

all three methods. The first row in figure 8 is from a patient who has sickle cell anemia. 

There is a large gap between the 19th and 20th visits (742 days or ~ 2 years) with a 

significant increase in the occurrence of medications/diagnosis in the patient’s EHR record. 

COPA models this difference and yields phenotype loadings that capture this drastic change. 

On the other hand, the factor resulting from Helwig’s approach assumes the visits are close 

in time and produce the same magnitude for the next visit. The second row in figure 8 

reflects the temporal signature for a patient with Leukemia. In the patient’s EHRs, the first 

visit occurred on day 121 without any sign of Leukemia. The subsequent visit (368 days 

later) reflects a change in the patient’s status with a large number of diagnosis and 

medications. COPA encapsulates this phenomenon, while the Helwig factor suggests the 

presence of Leukemia at the first visit which is not present. Although SPARTan produces 

temporally-evolving phenotypes, it treats time as a categorical feature. Thus, there are 

sudden spikes in the temporal pattern which hinders interpretability and clinical 

meaningfulness.

Next, we present the phenotypes discovered by COPA in table 7. It is important to note that 

no additional post-processing was performed on these results. These four phenotypes have 
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been endorsed by a clinical expert as clinically meaningful. Moreover, the expert has 

provided the labels to reflect the associated medical concept. As the phenotypes discovered 

by SPARTan and Helwig are too dense and require significant post-processing, they are not 

displayed in this paper.

5 RELATED WORK

SPARTan was proposed for PARAFAC2 modeling on large and sparse data [22]. A 

specialized Matricized-Tensor-Times-Khatri-Rao-Product (MTTKRP) was designed to 

efficiently decompose the tensor Y Y k = Qk
T Xk  both in terms of speed and memory. 

Experimental results demonstrate the scalability of this approach for large and sparse 

datasets. However, the target model and the fitting algorithm do not enable imposing 

constraints such as smoothness and sparsity, which would enhance the interpretability of the 

model results.

A small number of works have introduced constraints (other than non-negativity) for the 

PARAFAC2 model.Helwig [12] imposed both functional and structural constraints. 

Smoothness (functional constraint) was incorporated by extending the use of basis functions 

introduced for CP [26]. Structural information (variable loadings) were formulated using 

Lagrange multipliers [9] by modifying the CP-ALS algorithm. Unfortunately, Helwig’s 

algorithm suffers the same computational and memory bottlenecks as the classical algorithm 

designed for dense data [17]. Moreover, the formulation does not allow for easy extensions 

of other types of constraints (e.g., sparsity).

Other works that tackle the problem of computational phenotyping through constrained 

tensor factorization (e.g., [15, 27]) cannot handle irregular tensor input (as summarized in 

Table 1); thus they are limited to aggregating events across time, which may lose temporal 

patterns providing useful insights.

6 CONCLUSION

Interpretable and meaningful tensor factorization models are desirable. One way to improve 

the interpretability of tensor factorization approaches is by introducing constraints such as 

sparsity, non-negativity, and smoothness. However, existing constrained tensor factorization 

methods are not well-suited for an irregular tensor. While PARAFAC2 is a suitable model 

for such data, there is no general and scalable framework for imposing constraints in 

PARAFAC2.

Therefore, in this paper we propose, COPA, a constrained PARAFAC2 framework for large 

and sparse data. Our framework is able to impose constraints simultaneously by applying 

element-wise operations. Our motivating application is extracting temporal patterns and 

phenotypes from noisy and raw EHRs. By incorporating smoothness and sparsity, we 

produce meaningful phenotypes and patient temporal signatures that are confirmed by a 

clinical expert.
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CCS CONCEPTS

• Information systems → Data mining;
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Figure 1: 
An illustration of the constraints imposed by COPA on PARAFAC2 model factors, targeting 

temporal phenotyping via EHR data.
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Figure 2: 
7 Basis functions for a patient with sickle cell anemia. Figure 2a shows the basis functions 

that COPA used for incorporating the smoothness that considers the gap between two visits 

while figure 2b related to basis functions for Helwig which divide the range [0,80] based on 

a equal distance.
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Figure 3: 
Comparison of FIT for different approaches with various constraints on two target ranks R = 

15 and R = 40 on real world datasets. Overall, COPA achieves comparable fit to SPARTan 

while supporting more constraints. The missing purple bar in the forth column is out of 

memory failure for Helwig method.
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Figure 4: 
The Total Running Time comparison (average and standard deviation) in seconds for 

different versions of COPA and SPARTan for 5 different random initializations. Note that 

even with smooth constraint COPA performs just slightly slower than SPARTan, which does 

not support such smooth constraints.
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Figure 5: 
The best Convergence of COPA and SPARTan out of 5 different random initializations with 

non-negativity constraint on H, { Sk }, and V on CHOA data set for different target ranks 

(two cases considered: R={15,40}).
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Figure 6: 
The best convergence of COPA and SPARTan out of 5 different random initializations with 

non-negativity constraint on H, {Sk}, and V on CMS data with K=843,162, J=284 and 

maximum number of observations are 1500. Algorithms tested on different target ranks (two 

cases considered: R={15,40}).
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Figure 7: 
Time in seconds for one iteration (as an average of 5 different random initializations) for 

different values of R. The left figure is the comparison on CHOA and the right figure shows 

the comparison on CMS. For R=40 COPA achieves 32× over the Helwig approach on 

CHOA while for CMS dataset, execution in Helwig failed due to the excessive amount of 

memory request and COPA finished an iteration with the average of 224.21 seconds.
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Figure 8: 
The temporal patterns extracted for two patients by COPA, Helwig, and SPARTan. The first 

row is associated with a patient who has sickle cell anemia while the second row is for a 

patient with Leukemia.
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Table 2:

Symbols and notations used throughout the paper.

Symbol Definition

* Element-wise Multiplication

ʘ Khatri Rao Product

∘ Outer Product

c(Y) A constraint on factor matrix Y

Y Auxiliary variable for factor matrix Y

Y, Y, y Tensor, matrix, vector

Y(n) Mode-n Matricization of Y
Y(i, :) Spans the entire i-th row of Y

Xk kth frontal slice of tensor X
diag(y) Diagonal matrix with vector y on diagonal

diag(Y) Extract the diagonal of matrix Y
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Table 3:

Summary statistics of real datasets that we used in the experiments. K denotes the number of patients, J is the 

number of medical features and Ik denotes the number of clinical visits for kth patient.

Dataset K J max(Ik) #non-zero elements

CHOA 247.885 1388 857 11 Million

CMS 843,162 284 1500 84 Million
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Table 4:

Values of parameters (l, μ) for different data sets and various target ranks for COPA.

CHOA CMS

Algorithm R=15 R=40 R=15 R=40

# basis functions (l) 33 81 106 253

μ 23 25 8 9
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Table 5:

The average and standard deviation of sparsity metric (fraction of zero elements divided by the matrix size) 

comparison for the factor matrix V on CHOA and CMS using two different target ranks for 5 different random 

initializations.

CHOA CMS

Algorithm R=15 R=40 R=15 R=40

COPA 0.9886±0.0035 0.9897±0.0027 0.9950±0.0001 0.9963±0.0002

SPARTan [22] 0.7127 ±0.0161 0.8127±0.0029 0.1028±0.0032 0.2164±0.0236
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Table 6:

Speedups (running time of SPARTan divided by running time of COPA for various constraint configurations) 

and corresponding p-values. COPA is faster (up to 2.5×) on the majority of constraint configurations as 

compared to the baseline SPARTan approach which can only handle non-negativity constraints.

Non-neg COPA Smooth COPA Sparse COPA Smooth & Sparse COPA

CHOA, R=15
Speed up 1.21 1.08 1.57 1.31

p-value 0.163 0.371 0.005 0.048

CHOA, R=40
Speed up 1.38 1.29 2.31 1.69

p-value 0.01 0.032 0.0005 0.002

CMS, R=15
Speed up 1.21 0.84 1.82 1.36

p-value 0.125 1.956 0.002 0.018

CMS, R=40
Speed up 1.57 0.87 2.51 0.99

p-value 0.00005 1.986 0.000004 1.08

Proc ACM Int Conf Inf Knowl Manag. Author manuscript; available in PMC 2020 September 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Afshar et al. Page 33

Table 7:

Phenotypes discovered by COPA. The red color corresponds to diagnosis and blue color corresponds to 

medication. The meaningfulness of phenotypes endorsed by a medical expert. No additional post-processing 

was performed on these results.

Leukemias

Leukemias

Immunity disorders

Deficiency and other anemia

HEPARIN AND RELATED PREPARATIONS

Maintenance chemotherapy; radiotherapy

ANTIEMETIC/ANTIVERTIGO AGENTS

SODIUM/SALINE PREPARATIONS

TOPICAL LOCAL ANESTHETICS

GENERAL ANESTHETICS INJECTABLE

ANTINEOPLASTIC - ANTIMETABOLITES

ANTIHISTAMINES - 1ST GENERATION

ANALGESIC/ANTIPYRETICS NON-SALICYLATE

ANALGESICS NARCOTIC ANESTHETIC ADJUNCT AGENTS

ABSORBABLE SULFONAMIDE ANTIBACTERIAL AGENTS

GLUCOCORTICOIDS

Neurological Disorders

Other nervous system disorders

Epilepsy; convulsions

Paralysis

Other connective tissue disease

Developmental disorders

Rehabilitation care; and adjustment of devices

ANTICONVULSANTS

Congenital anomalies

Other perinatal conditions

Cardiac and circulatory congenital anomalies

Short gestation; low birth weight

Other congenital anomalies

Fluid and electrolyte disorders

LOOP DIURETICS

IV FAT EMULSIONS

Sickle Cell Anemia

Sickle cell anemia

Other gastrointestinal disorders

Other nutritional; endocrine; and metabolic disorders

Other lower respiratory disease

Asthma
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Allergic reactions

Esophageal disorders

Respiratory failure; insufficiency; arrest (adult)

Other upper respiratory disease

BETA-ADRENERGIC AGENTS

ANALGESICS NARCOTICS

NSAIDS, CYCLOOXYGENASE INHIBITOR - TYPE

ANALGESIC/ANTIPYRETICS NON-SALICYLATE

POTASSIUM REPLACEMENT

SODIUM/SALINE PREPARATIONS

GENERAL INHALATION AGENTS

LAXATIVES AND CATHARTICS

IV SOLUTIONS: DEXTROSE-SALINE

ANTIEMETIC/ANTIVERTIGO AGENTS

SEDATIVE-HYPNOTICS NON-BARBITURATE

GLUCOCORTICOIDS, ORALLY INHALED

FOLIC ACID PREPARATIONS

ANALGESICS NARCOTIC ANESTHETIC ADJUNCT AGENTS
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