Table 1.
Layer | Convolutional Kernel Size | Convolutional Kernel Number | Step Size | Filling | Feature Map Size |
---|---|---|---|---|---|
Conv1_1 | 3 × 3 | 64 | 1 | 1 | 300 × 300 |
Conv1_2 | 3 × 3 | 64 | 1 | 1 | 300 × 300 |
Maxpool1 | 2 × 2 | 1 | 2 | 0 | 150 × 150 |
Conv2_1 | 3 × 3 | 128 | 1 | 1 | 150 × 150 |
Conv2_2 | 3 × 3 | 128 | 1 | 1 | 150 × 150 |
Maxpool2 | 2 × 2 | 1 | 2 | 0 | 75 × 75 |
Conv3_1 | 3 × 3 | 256 | 1 | 1 | 75 × 75 |
Conv3_2 | 3 × 3 | 256 | 1 | 1 | 75 × 75 |
Conv3_3 | 3 × 3 | 256 | 1 | 1 | 75 × 75 |
Maxpool3 | 2 × 2 | 1 | 2 | 0 | 38 × 38 |
Conv4_1 | 3 × 3 | 512 | 1 | 1 | 38 × 38 |
Conv4_2 | 3 × 3 | 512 | 1 | 1 | 38 × 38 |
Conv4_3 | 3 × 3 | 512 | 1 | 1 | 38 × 38 |
Maxpool4 | 2 × 2 | 1 | 2 | 0 | 19 × 19 |
Conv5_1 | 3 × 3 | 512 | 1 | 1 | 19 × 19 |
Conv5_2 | 3 × 3 | 512 | 1 | 1 | 19 × 19 |
Conv5_3 | 3 × 3 | 512 | 1 | 1 | 19 × 19 |
Maxpool5 | 3 × 3 | 1 | 1 | 1 | 19 × 19 |
Conv6 | 3 × 3 | 1024 | 1 | 1 | 19 × 19 |
Conv7 | 1 × 1 | 1024 | 1 | 0 | 19 × 19 |
Conv8_1 | 1 × 1 | 256 | 1 | 0 | 19 × 19 |
Conv8_2 | 3 × 3 | 512 | 2 | 1 | 10 × 10 |
Conv9_1 | 1 × 1 | 128 | 1 | 0 | 10 × 10 |
Conv9_2 | 3 × 3 | 256 | 2 | 1 | 5 × 5 |
Conv10_1 | 1 × 1 | 128 | 1 | 0 | 5 × 5 |
Conv10_2 | 3 × 3 | 256 | 1 | 0 | 3 × 3 |
Conv11_1 | 1 × 1 | 128 | 1 | 0 | 3 × 3 |
Conv11_2 | 3 × 3 | 256 | 1 | 0 | 1 × 1 |