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a b s t r a c t 

The COVID-19 pandemic is an emerging respiratory infectious disease, also known as coronavirus 2019. It 

appears in November 2019 in Hubei province (in China), and more specifically in the city of Wuhan, then 

spreads in the whole world. As the number of cases increases with unprecedented speed, many parts of 

the world are facing a shortage of resources and testing. Faced with this problem, physicians, scientists 

and engineers, including specialists in Artificial Intelligence (AI), have encouraged the development of a 

Deep Learning model to help healthcare professionals to detect COVID-19 from chest X-ray images and 

to determine the severity of the infection in a very short time, with low cost. In this paper, we propose 

CVDNet, a Deep Convolutional Neural Network (CNN) model to classify COVID-19 infection from normal 

and other pneumonia cases using chest X-ray images. The proposed architecture is based on the residual 

neural network and it is constructed by using two parallel levels with different kernel sizes to capture 

local and global features of the inputs. This model is trained on a dataset publically available containing 

a combination of 219 COVID-19, 1341 normal and 1345 viral pneumonia chest x-ray images. The experi- 

mental results reveal that our CVDNet. These results represent a promising classification performance on 

a small dataset which can be further achieve better results with more training data. Overall, our CVDNet 

model can be an interesting tool to help radiologists in the diagnosis and early detection of COVID-19 

cases. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The COVID-19 pandemic is an emerging respiratory infectious

isease caused by severe acute respiratory syndrome coronavirus

 (SARS-CoV-2). It was first identified in the city of Wuhan in

ovember 2019, following the emergence of a group of patients

ith viral pneumonia. During the first months of 2020, COVID-

9 spread worldwide through human-to-human transmission [2] .

owever, The COVID-19 can be responsible for several respiratory

nd digestive diseases in several mammals. In humans, these in-

ections can be: Asymptomatic; Responsible for benign pathologies

uch as a cold or flu syndromes; Responsible for respiratory com-

lications such as pneumonia in immunocompromised patients or

nfants; Responsible for severe respiratory syndrome, leading to

pidemics. This virus is transmitted by: Airway; In contact with

ecretion and in contact with contaminated objects. As Covid-19 is

preading with unprecedented speed around the world, the health-

are system of many countries has caused overload and although
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efinitive genetic testing for the disease is notoriously rare in many

arts of the world. X-rays [1,3] , in particular, are widely used to

etect COVID-19 without dedicated test kits since almost all hos-

itals have X-ray imaging devices. The advantage of having X-rays

ith the scanner is that in some cases the disease can be detected

n its preliminary stages, even if the screening is still negative and

ts drawbacks is that an x-ray analysis requires an expert in ra-

iology, and it takes a long time; which is precious when people

re sick around the world. Therefore, it is necessary to develop an

utomated analysis system to detect if there are anomalies in the

cans in order to save time for healthcare professionals. With the

dvent of data science and deep learning or machine learning al-

orithms, we are now able to access large amounts of data, col-

ected from different sources of information, to detect Coronavirus

rom computed tomography, monitoring of the epidemic, analy-

is of epidemiological data, and even clinical trials in record time.

echnology and artificial intelligence (AI) can significantly speed up

he processing of the data needed to obtain the information, re-

ponses and recommendations to manage and combat the Covid-

9 pandemic, with better than expected accuracy. Additionally, AI

pproaches can be useful in eliminating disadvantages such as in-

https://doi.org/10.1016/j.chaos.2020.110245
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110245&domain=pdf
mailto:Chaimaeouchicha@gmail.com
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sufficient number of available RT-PCR test kits, test costs, and wait-

ing time of test results. 

A number of artificial intelligence systems based on deep learn-

ing, in particular convolutional neural networks have been pro-

posed and the results have been very promising in terms of ac-

curacy in the detection of patients infected with COVID-19 using

chest x-ray images. The reason for this success is that deep convo-

lutional neural networks are not based on extracting features man-

ually, but these algorithms automatically learn features from the

data itself [4] . Deep CNN has been successfully applied in many

problems such as classification of skin cancer [5] , arrhythmia de-

tection [6] , classification of brain diseases [7] , detection of breast

cancer [8] , fundus image segmentation [9] , detection of pulmonary

pneumonia X-ray images [10] and lung segmentation [11] . Thanks

to the success of deep learning, the Canadian startup DarwinAI

[12] believes that it has developed a tool that could help doctors

make crucial decisions. DarwinAI has looked into this and won-

dered if AI could have a role to play in the fight against the Covid-

19. The answer may well prove to be positive. 

In this study, we review state-of-the-art models designed to

identify COVID-19 infection and we propose a deep CNN model,

namely CVDNet as an advanced tool to help radiologists to auto-

matically detect COVID-19 infection using chest x-ray images and

thus delay the rapid spread of this virus. 

The proposed model is based on the residual neural network

and it is constructed by using multi parallel levels with different

kernel sizes to detect local and global features and by connecting

the residuals to other levels to share information. The CVDNet is

trained on 2905 chest x-ray images that is open source and pub-

lically available to classify COVID-19 cases from normal and viral

pneumonia cases. Moreover, the results found from the proposed

technique are compared to other studies reported in the literature.

The contributions of the paper are summarized as follows: 

• Building deep convolutional neural network model to accu-

rately detect patients with COVID-19 in a very short time in

order to assist in the early diagnosis. 
• Performing an empirical analysis of our deep model in order

to classify COVID-19 disease using a chest x-ray since it is less

costly than other imaging modalities. 
• Evaluating the performance of our model compared to other

existing models. 
• Helping researchers continue to develop artificial intelligence

techniques to fight the COVID-19 epidemic. 

The rest of this paper is systematized as follows.

Section 2 presents the literature review on recent develop-

ments in AI systems based on deep convolutional neural network

for the detection of COVID-19. Section 3 details the design of the

proposed architecture CVDNet. Section 4 describes the data set

used in this study. Also, provides experimental setup and discusses

the performance of our model. Section 5 draws conclusions and

discusses some future directions. 

2. Releted work 

Motivated by the need for rapid interpretation of x-ray im-

ages, many scientists have proposed deep learning models espe-

cially convolutional neural networks to detect cases infected with

COVID-19 from chest x-ray imaging. Wang et al. [12] introduced

COVID-Net, a deep CNN designed for the detection of patients with

Covid-19 from chest X-ray images that is an open source publically

available. The dataset consists of chest radiography images that

contain four classes including COVID-19 infection, Pneumonia Viral,

Pneumonia bacterial and normal (non-COVID19 infection). COVID-

Net achieved an overall accuracy of 83.5% for these 4-classes and

an overall accuracy of 92.4% in classifying COVID-19, normal and
on-COVID pneumonia cases. Hemdan et al. [13] introduced a deep

earning; called COVIDX-Net to aid radiologists to automatically

etect COVID-19 in chest x-ray images. This framework is based

n seven deep architectures namely MobileNetV2, VGG19, Incep-

ionV3, DenseNet201, InceptionResNetV2, ResNetV2 and Xception.

urthermore, it is validated on 50 X-ray images comprising 25

ases with COVID-19 and 25 cases without any infections. This

tudy reveals that The VGG19 and DenseNet models have similar

erformance of automated COVID-19 detection with f1-scores of

.91 and 0.89 for COVID-19 and normal, respectively, and the In-

eptionV3 model produce a poor classification performance with

1-scores of 0.00 for COVID-19 cases and 0.67 for normal cases.

umar et al. [14] proposed a system based on deep Convolutional

etwork that is developed for the detection of COVID-19 using

-ray images. This model is trained on a dataset collected from

itHub, Kaggle and Open-I repository and achieved an accuracy of

5.38% for detecting COVID-19. Ozturk et al. [15] presented a deep

NN based on DarkNet model, namely DarkCovidNet for automatic

OVID-19 identification using chest X-ray images. The DarkCovid-

et model is proposed to provide accurate diagnostics for multi-

lass classification (COVID vs. Normal vs. Pneumonia) and binary

lassification (COVID vs. Normal). This model is achieved a classi-

cation accuracy of 87.02% for multi-class cases and 98.08% for bi-

ary classes. Ioannis et al. [16] trained different pre- trained deep

earning models on two datasets. The first is a collection of 1427

-ray images including 504 images of normal cases, 700 images

ith confirmed bacterial pneumonia and 224 images with con-

rmed Covid-19 cases. The second is a dataset including 504 im-

ges of normal cases, 714 images with confirmed viral pneumo-

ia and bacterial and 224 images with confirmed Covid-19 cases.

heir model achieved an accuracy of 98.75% and 93.48% for two

nd three classes. Khan et al. [17] introduced CoroNet, a convolu-

ion neural network to detect COVID-19 using X-ray and CT scans.

his model is based on Xception architecture and pre-trained on

mageNet dataset. The experimental results show that the pre-

rained network provides an overall accuracy of 89.6% and 95% for

 classes (pneumonia viral vs. COVID-19 vs. Pneumonia bacterial

s. normal) and 3 classes (normal vs. COVID-19 vs. Pneumonia).Xu

t al. [18] established an early screening model to differentiate

OVID-19 from Influenza-A viral pneumonia and healthy cases us-

ng 618 pulmonary CT samples (i.e., 175 healthy persons, 224 pa-

ients with Influenza-A, and 219 patients with COVID-19). This

odel achieves a total accuracy of 86.7%. S. Wang et al. [19] pro-

osed a deep CNN model to classify COVID-19 from viral pneu-

onia using 99 Chest CT images (i.e., 55 viral pneumonia and 44

OVID-19). The results of testing dataset show an overall accuracy

f 73.1%, along with a sensitivity of 74.0% and a specificity of 67.0%.

. Li et al. [20] trained A ResNet50 model (COVNet) to distinguish

OVID-19 from pneumonia and non-pneumonia using 4356 chest

T images (i.e., 1735 pneumonia, 1325 non-pneumonia and 1296

OVID-19). The results show that the COVNet model provides a

pecificity of 96%, a sensitivity of 90%, and AUC of 0.96 in classify-

ng COVID-19. Y. Song et al. [21] introduced a system based deep

earning, called DeepPneumonia to identify patients with COVID-19

rom healthy people and bacterial pneumonia patients using Chest

T images. This model achieves an overall accuracy of 86.0% for

COVID-19 vs. bacterial pneumonia) classification and an overall ac-

uracy of 94.0% for (COVID-19 vs. healthy) classification. B. Ghoshal

t al. [22] trained a Bayesian Deep Learning classifier using trans-

er learning method to estimate model uncertainty using COVID-19

-Ray images. 

The results show that Bayesian inference improves detection ac-

uracy of the standard VGG16 model from 85.7% to 92.9%. Zhang

t al. [23] developed a deep model to identify COVID-19 infection

rom X-ray images. This model is trained on a dataset comprising

-ray images from 1008 non-COVID-19 pneumonia patients and 70
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OVID-19 patients and achieved sensitivity of 96.0% and specificity

f 70.7% along with an AUC of 95.2%. 

. The proposed CVDNet model 

In this section, we present a novel deep learning based on CNN

rchitecture, CVDNet, to detect COVID-19 infection from normal

nd other pneumonia cases using chest X-ray images. We first for-

alize the operations carried out by the network. Next, we give a

etailed description of the proposed CVDNet and the training pro-

ess used. 

.1. Formalization 

We consider the problem of supervised learning with given

ataset of N S training samples D = { X, � } . 
Let X = { x 1 , x 2 , ..., x Ns } be the set of input chest x-ray data and

 = { t 1 , t 2 , ..., t Ns } be the set of corresponding ground truth labels,

ith x i ∈ [0 , 1 , 2 , ..., L − 1] H×W ×C , an image with H, W, L and C de-

ote height, width, grayscale values and the number of channels

espectively; and t i ∈ {0, 1, 2} where 0 refers to COVID-19, 1 refers

o normal cases and 2 refers to viral pneumonia cases. The pur-

ose of supervised learning is to build a classifier f w : X → Y , pa-

ameterized by a weight w . The output space Y can be different

rom the label space � , in which case a function g : Y → � is used

o get the final prediction. More formally, the aim is to minimize

he prediction error rate on the training set, which quantifies the

ifference between f w ( x ) and its ground truth label. The training

rocess would be an iterative process consists of finding a set of

arameters w , which minimizes the following average loss func-

ion on the training set 

 (w, X ) = 

1 

N s 

N s ∑ 

i =1 

l( f w ( x i ) , t i ) (1)

here y i = f w ( x i ) denotes the output of the decision f w which pre-

icts the class y i of example x i and l( y i , t i ) : Y × � → � 

+ represents

 loss function of predicted label y i and ground truth label t i . We

ut l at the loss of cross entropy, l = − ∑ 

i 

t i log y i 

.2. Network structure of CVDNet 

In the previous works summarized in Table 1 , we can see that

umar [14] suggested a deep CNN that achieves the highest ac-

uracy (95.38%). Inspired by this work which mainly focuses on

he ResNet [24] , we propose to improve this network in order to

ore accurately distinguish COVID-19 cases from normal and vi-

al pneumonia cases using chest x-ray images. ResNet introduced

he concept of Residual Network and used skip-connections which

gnore the formation of a few layers and connects directly to the

utput. The idea behind this residual network is that the input x

asses through a series layers which we denote by F ( x ). This result

s then added to the original input x: H(x ) = F (x ) + x . 

The proposed designed CNN, CVDNet, as shown in Fig. 1 con-

ists of two parallel columns. The two columns have the same

tructures except for the sizes of filters. In the following, we intro-

uce the proposed model in detail and we explain its main compo-

ents such as convolutional layers, Activation unit, pooling, batch

ormalization, fully connected layers and the proposed block. 

a) Convolutional layer 

Convolution is a fundamental operation for convolutional neural

networks which allow extracting specific information char-

acterizing the input. It is a mathematical operation which

consists in applying a succession of filters on a set of regions
of convolution of the input by a sliding window in order to

produce as output a set of feature map. 

Let x l−1 
i 

∈ � 

M l ×Q l and x l 
i 
∈ � 

H l ×W l be the input and output of the

i th feature map in the l th . Let x 0 ∈ � 

H × W be the 2D input

image and let w 

l 
i j 

∈ � 

K l ×K l be the kernel in the l th layer link-

ing i th input map to j th output map. To obtain x l 
j 

each x l−1 
i 

is

convoluted with the corresponding kernel w 

l 
i j 

, and the results

are added with the bias b l 
j 
. Finally a non linear function ϕ(.)

is applied. Mathematically, the output of convolutional layer

can be given as 

x l j = f 

( ∑ 

i ∈ M j 

x l−1 
i 

∗ w 

l 
i j + b l j 

) 

(2) 

Where ∗ is the convolution operation and M j = {i | i th in the

(l − 1) th layer map linked to j th map in the l th layer} 

a) Activation function 

After each convolution, the convolutional neural network ap-

lies a transformation to the convoluted function, in order to intro-

uce non-linearity into the model. The ReLU function has become

ery popular in recent years as an activation function because it

ffers good performance during learning; It improves gradient con-

ergence and it is less expensive in computation. The ReLU func-

ion is interpreted by the formula: ϕ(x ) = max (0 , x ) . If the input is

egative the output is 0 and if it is negative then the output is x.

he output value x i 
( k ) of a neuron i of layer k in a ReLU layer is

xpressed as: 

 i 
(k ) = ϕ( x i 

(k −1) ) = max ( x i 
(k −1) , 0) (3)

a) Pooling layer 

The pooling layer consists in gradually reducing the sizes of the

characteristic cards obtained during the layers of convolu-

tion while keeping the most relevant information. Thanks

to this layer, the quantity of parameters and computation

in the network are reduced, and this will allow controlling

over-fitting. The pooling operation is characterized by a win-

dow of size h p × h p which moves with s p stride on each fea-

ture map. It is often approached by two main approaches: 

a Max-pooling: consists of returning the maximum local value

at the level of each pooling window 

Avg-pooling: calculates the average of the local values of

each pooling window. 

b a) Batch normalization layer 

Batch normalization (BN) is a technique that greatly improves

onvergence during training. It consists in normalizing on average

nd in variance the outputs of the layers of the network. 

Given a mini batch B = { x 1 , x 2 , ..., x m 

} of size m, the normal-

zed values ( ̂  x 1 , ̂  x 2 , ..., ̂  x m 

) and their linear transformations ( y 1 , y 2 ,

.., y m 

). The Batch normalization BN γ , β is referred to the transform

N γ , β : x 1 , x 2 , ..., x m 

→ y 1 , y 2 , ..., y m 

and it is computed as: 

B = 

1 

m 

m ∑ 

i =1 

x i 

2 
B = 

1 

m 

m ∑ 

i =1 

( x i − μB ) 
2 

ˆ 
 i = 

x i − μB √ 

σ 2 
B 

+ ε 

 i = γ . ̂  x i + β ≡ B N γ ,β ( x i ) (4)
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Table 1 

Representative works for Chest x-ray images based on the detection of COVID-19 infection. 

Literature Models Dataset Performance 

L. Wang et al. [12] COVID-Net pre-trained with 

ImageNet 

5941 chest x-ray images across 2839 patient 

(1203 normal + 45 COVID19 + 660 non-COVID 

viral pneumonia + 931 bacterial pneumonia) 

Accuracy of 92.4% for 2-classes and 83.5% for 

4-classes 

Hemdan et al. [13] COVIDX-Net : based on 

DenseNet201, Inception v3, 

VGG19, MobileNet v2, Xception, 

InceptionResNet v2 and ResNet v2 

50 X-ray images comprising 25 cases with 

COVID-19 and 25 cases without any infections 

F1-scores of 0.89 for normal and 0.91 for 

COVID-19 

P. Kumar et al. [14] Deep features from 

Resnet50 + SVM classifier 

Dataset collected from GitHub and Kaggle 

comprising 25 cases with COVID-19 and 25 cases 

without any infections 

Accuracy of 95.38% 

Ozturk et al. [15] DarkCovidNet X-ray images comprising 125 with COVID-19, 500 

normal and 500 Pneumonia cases 

Accuracy of 87.02% for 3-class cases 

Ioannis et al. [16] VGG-19 1427 X-ray images including 504 images of 

normal cases, 700 images with confirmed 

bacterial pneumonia and 224 images with 

confirmed Covid-19 cases. 

Accuracy of 93.48% for three classes. 

Khan et al. [17] CoroNet Images collected from Kaggle repository, 

comprising 290 COVID-19, 1203 normal, 931 viral 

Pneumonia and 660 bacterial Pneumonia chest 

x-ray images. 

Accuracy of 89.6% and 95% for 4 and 3 classes, 

respectively. 

X. Xu et al. [18] ResNet + Location Attention 618 pulmonary CT samples (i.e., 175 healthy 

persons, 224 patients with Influenza-A, and 219 

patients with COVID-19) 

Accuracy of 86.7% 

S. Wang et al. [19] M-Inception 99 Chest CT images (i.e., 55 viral pneumonia and 

44 COVID-19) 

Accuracy of 73.1%, along with a sensitivity of 

74.0% and a specificity of 67.0% 

L. Li et al. [20] COVNet 4356 chest CT images (i.e., 1735 pneumonia, 1325 

non-pneumonia and 1296 COVID-19). 

Specificity of 96%, sensitivity of 90%, and AUC of 

0.96 

Y. Song et al. [21] DeepPneumonia Chest CT scans of 275 patients (88 patients 

infected with COVID-19, 101 patients infected 

with bacterial pneumonia, and 86 healthy) 

Accuracy of 86.0% for (COVID-19 vs. bacterial 

pneumonia) classification and 94.0% for 

(COVID-19 vs. healthy) classification 

B. Ghoshal et al. 

[22] . 

Dropweights based Bayesian 

Convolutional Neural Networks 

5941 chest x-ray images across four classes 

(Bacterial Pneumonia: 2786, Normal: 1583, 

COVID-19: 68 and non-COVID-19 Viral 

Pneumonia: 1504). 

Accuracy of 92,90% 

J. Zhang et al. [23] Deep CNN based on Backbone 

network 

X-ray images from 1008 non-COVID-19 

pneumonia patients and 70 COVID-19 patients 

Sensitivity of 96.0% and specificity of 70.7% along 

with an AUC of 95.2%. 
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T  
where μB and σ 2 
B are mini-batch mean and variance, respectively,

β and γ are parameters learnable via backpropagation and ɛ is a

small positive number to avoid division by zero. 

a) Fully connected layers 

In this layer, the neurons are connected with each of the neu-

rons of the volume corresponding to its input, i.e. with each of the

neurons of the previous layer. This layer outputs a vector of K di-

mensions, where K represents the number of classes that the net-

work will be able to predict. This vector contains the classification

probabilities for each class of an image. The fully-connected (FC)

layer determines the link between the position of features in the

image and a class. Indeed, the entry being the result of the previ-

ous layer, it corresponds to a feature map: the high values indicate

the location of this feature in the image. 

Let l (k −1) ∈ � 

m 

(k −1) ×1 
and l (k ) ∈ � 

m 

(k ) ×1 
be two consecutive lay-

ers and let w 

(k ) ∈ � 

m 

(k −1) ×m 

(k ) 
be the weight matrix connecting

them; where m 

(k) is the number of neurones in layet k. The output

of a FC layer, x ( k ) , is expressed as 

o (k ) = ϕ (k ) ( x 
(k −1) ) = σ ( ( x (k −1) ) T w 

(k ) + b (k ) ) 

The final fully connected layer is forwarding to a softmax func-

tion, which determines the class probabilities given the input im-

ages. The softmax function is defined as. 

sof t max (z) j = 

e z j 

K ∑ 

k =1 

e z k 

; j = 1 , ..., K 
here z = [ z 1 , z 2 , ..., z K ] is the input vector to the softmax func-

ion, the output of soft max ( z ) j in a range between 0 and 1 and
K ∑ 

j=1 

sof t max (z) j = 1 

In chest x-ray images infected by COVID-19, Ground-glass opac-

ties are observed, which are considered as the typical early fea-

ures of COVID-19 infection. In chest x-ray images infected by

OVID-19, Ground-glass opacities are observed, which is consid-

red as the typical early features of COVID-19 infection. These

eatures are often found in different location including in a sub-

leural and peripheral as well as they come in different sizes,

hapes and quantities. For large size of Ground-glass opacities fea-

ures, if using a small filter, the resulting of feature maps have few

ixel containing small objet. Therefore, it does not capture holistic

nformation. This leads to poor classification accuracy. Meanwhile,

or small size of Ground-glass opacities features, if using a large fil-

er, the receptive fields are too large. Thus, most of the information

aptured is irrelevant. This leads to poor classification accuracy due

o loss of details. Consequently, we need to use a small filter for

xtracting local features, and a large filter for detecting global fea-

ures. However, the sizes of the features of the input image are

npredictable and random which is not practical to construct a fil-

er size for each scale of objects. To overcome this problem, we

ropose to design a structure to capture multi-scale features i.e.,

e applied to the input two parallel convolutions with large and

mall filters; each level detects a scale of features. Using these two

lters in parallel is more suitable for extracting different scales of

eatures than a single scale filter. 

For the convolution, we use the concept of residual technique.

he excellent performance of Residual network has been proven
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edical imaging tasks, which can solve the vanishing gradient

roblem. By connecting the residuals from the previous layers, this

an also help to compensate the loss of details for local features or

o obtain more holistic information for global features. However,

o detect more details and more holistic information, we propose

o merge the multi-scale features via residuals connections and we

ropose to link residual information not only at the same level but

lso at other levels. The merge of different scales of features makes

t possible to identify several scales of objects. 

The output of the proposed block which consists of connecting

 residual with all the other levels as shown in Fig. 2 is defined

s: 

 i = F i ( x i ) + 

L ∑ 

i =1 

x i , i ∈ { 1 , 2 , ..., L } 

here L is the total parallel levels, i is the i th level, o i is the output

f the i th level, x 1 , x 2 , ..., x L are the inputs of the block and F 1 ( x 1 ),

 2 ( x 2 ), ..., F L ( x L ) are their corresponding outputs, respectively. 

In this study, we use only two parallel levels by applying large

nd small filters to extract global and local features. 

Based on the proposed block, we design CVDNet to classify

OVID-19 infection from normal and other pneumonia cases. The

roposed CVDNet model took as input chest x-ray images. Initially,

he images went through a preprocessing step which consists in

ropping and resizing it. Indeed, the images are resized because

everal letters, medical symbols and art craft are made on them as

ell as they are cropped because they come from different sources

nd consequently their sizes vary. Therefore, the size of the in-

ut images is changed to 256-by-256-by-1. After this step, the im-

ges are processed by two parallel convolutional layer having a

ize of 5 × 5 and 13 ×13 with a stride of one respectively, to pro-

uce 16 feature maps for each of them, followed by the batch nor-

alization and ReLU layers (conv1 and conv2). The uses of conv1

nd conv2 change the images dimension from 1 × 256 × 256

o16 × 251 × 251 and from 1 × 256 × 256 to 16 × 244 × 244, re-

pectively. Features generated by conv1 and conv2 are forwarding

o 2 × 2 max pooling layer (MP1 and MP2) with a stride of two

o sub-sample the input images by reducing their dimensionality

nd therefore to provide a spatial invariance and to reduce the

uantity of parameters and computation in the network. The di-

ensions of the resulting images after MP1 and MP2 layers will

e reduced to 16 × 126 × 126 and 16 × 122 × 122. Moreover, the

utput of features maps is forwarding to block 1 (see Fig. 2), which

ontains two parallel convolutional layers with a size of 5 × 5 and

3 ×13. The output of each convolutional layer is added to the out-

ut of MP1 and MP2 in the same dimension. The output images

imension of this block is 16 × 126 × 126. In this block, it has no

ooling layer and after each convolutional layer we normalize each

atch and we apply ReLU activation function. The output of block

 passes through 5 × 5 convolutional layer and 13 × 13 convolu-

ional layer with a stride of 1 to generate 32 feature maps for each

f them, followed by BN and ReLU function (conv3 and conv4).

he uses of conv3 and conv4 change the images dimension from

6 × 126 × 126 to 32 × 122 × 122 and from 16 × 126 × 126

o 32 × 114 × 114, respectively. Features generated by conv3 and

onv4 are forwarding to 2 × 2 max pooling layer (MP3 and MP4).

he dimensions of the resulting images after MP3 and MP4 layers

ill be reduced to 32 × 61 × 61 and 32 × 57 × 57. The max pool-

ng layer are forwarded to block 2 which is the same as the block

 except it produced 64 feature maps for each convolutional layer.

ext came again 5 × 5 and 13 × 13 parallel convolutional layers

ith a stride of 1, followed by 2 × 2 max pooling with a stride

f 2. After this layer, block 3 is applied which is the same as the

lock 1 and block 2 except it produced 64 feature maps for each

onvolutional layer. The output of block 3 passes through 5 × 5
onvolutional layer and 13 × 13 convolutional layer with a stride

f 1 to generate 128 feature maps for each of them, followed by

N, ReLU function (conv7 and conv8) and max pooling (MP7 and

P8). The output of feature maps from the two parallel layers is

hen concatenated and passes through 1 × 1 convolutional layer

conv9) with a stride of 1in order to decrease the number of filters

rom 256 to 64, so the output will be reduced from 256 × 12 × 12

o 64 × 12 × 12. After this, a max pooling (MP9) is applied to

educe images dimension from 64 × 12 × 12 to 64 × 6 × 6. Fi-

ally the network had three fully connected layers; the first one

as 768 feature maps each of size 1 × 1. Each of the 768 is con-

ected to all the 2304 nodes (64 × 6 × 6) in the previous layer.

he second one has 512 units is connected to all the 768 nodes

nd finally, there is a fully connected softmax output layer with 3

ossible values. The highest value determined the predicted class.

n total, the network has 5317,667 parameters. Table 2 summarizes

he configuration of the proposed CVDNet architecture for COVID-

9 dataset. 

.3. Training phase 

The proposed network was trained end-to-end with the adap-

ive moment estimation (Adam) optimizer [25] to minimize the

ross-entropy loss function presented in ( Eq. (1) ). Adam is one of

he most widely used and effective methods for gradient descent

ptimization. This method is based on the gradient descent with

mall batches and his idea is to adapt the learning rate from an

stimate of the first and second moment of the gradient. The es-

imation of the first and second moment requires the updating of

wo additional variables for each parameter of the network. This

ype of method has the advantage of being relatively robust and

akes it possible to automatically adapt the learning rate during

earning for each weight. Mathematically, Adam optimizer can be

efined as: 

 = 

1 

N s 
∇ w 

N s ∑ 

i =1 

l( f w ( x i ) , t i ) 

 t = β1 . m t−1 + (1 − β1 ) . g t 

 t = β2 . v t−1 + (1 − β2 ) .g 
2 
t 

ˆ 
 t = 

m t 

1 − βt 
1 

ˆ 
 t = 

v t 
1 − βt 

2 

 t = w t−1 − α. 
ˆ m t √ 

ˆ v t + ε 

here g t is the gradient at time t, m t and v t are the first moment

the mean) and the second moment (non-centered variance) of the

radient, ˆ m t and 

ˆ v t is m t and v t after deviation correction respec-

ively, the hyper-parameters β1 and β2 are used to perform execu-

ion means on the moments m t and v t respectively, w t is the model

arameter value at time t, w t−1 is the model parameter value of

he previous moment, ɛ is a precision parameter and α is learning

ate. 

In practice, we set β1 , β2 , ɛ and α to 0.9, 0.999, 10 −8 and

.0 0 01. Furthermore, we initialize randomly all the hyper param-

ters and all weights by normal distribution with mean of 0 and

tandard deviation of 0.01, as well as all biases as 0. 
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Input

X-ray images

Conv1 Conv2

Conv3 Conv4

Conv5 Conv6

Conv7 Conv8

Conv9

13×13 conv+BN+ReLU, 165×5 conv+BN+ReLU, 16

Max Pooling (MP1) Max Pooling (MP2)

5×5 conv+BN+ReLU, 16 13×13 conv+BN+ReLU, 16

13×13 conv+BN+ReLU, 325×5 conv+BN+ReLU, 32

Max Pooling (MP3) Max Pooling (MP4)

5×5 conv+BN+ReLU, 32 13×13 conv+BN+ReLU, 32

13×13 conv+BN+ReLU, 645×5 conv+BN+ReLU, 64

Max Pooling (MP5) Max Pooling (MP6)

5×5 conv+BN+ReLU, 64 13×13 conv+BN+ReLU, 64

13×13 conv+BN+ReLU, 1285×5 conv+BN+ReLU, 128

Max Pooling (MP7) Max Pooling (MP8)

Concatenate layer, 256

Max Pooling (MP9)

1×1 conv+BN+ReLU, 64

FC1+ReLU, 768

FC1+ReLU, 512

FC1+So�max, 3

Fig. 1. The structure of the proposed CVDNet model. 
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Table 2 

The configuration of the proposed CVDNet architecture for COVID-19 dataset. 

Layers Filters size Output shape (depth × height × width) 

Input image – 1 × 256 × 256 

Conv1 5 × 5, stride = 1 16 × 251 × 251 

MP 1 2 × 2, stride = 2 16 × 126 × 126 

Conv2 13 × 13, stride = 1 16 × 244 × 244 

MP 2 2 × 2, stride = 2 16 × 122 × 122 

Block 1 [ 
(5 × 5) 

(13 × 13) 
] , stride = 1 16 × 126 × 126 

Conv3 5 × 5, stride = 1 32 × 122 × 122 

MP 3 2 × 2, stride = 2 32 × 61 × 61 

Conv4 13 × 13, stride = 1 32 × 114 × 114 

MP 4 2 × 2, stride = 2 32 × 57 × 57 

Block 2 [ 
(5 × 5) 

(13 × 13) 
] , stride = 1 32 × 61 × 61 

Conv5 5 × 5, stride = 1 64 × 57 × 122 

MP 5 2 × 2, stride = 2 64 × 28 × 28 

Conv6 13 × 13, stride = 1 64 × 49 × 49 

MP 6 2 × 2, stride = 2 64 × 24 × 24 

Block 3 [ 
(5 × 5) 

(13 × 13) 
] , stride = 1 64 × 28 × 28 

Conv7 5 × 5, stride = 1 128 × 24 × 24 

MP 7 2 × 2, stride = 2 128 × 12 × 12 

Conv8 13 × 13, stride = 1 128 × 16 × 16 

MP 8 2 × 2, stride = 2 128 × 8 × 8 

Concatenation – 256 × 12 × 12 

Conv9 1 × 1, stride = 1 64 × 12 × 12 

MP 9 2 × 2, stride = 2 64 × 6 × 6 

Flatten – (1 × 2304) 

FC1 + ReLU – (1 × 768) 

FC2 + ReLU – (1 × 512) 

FC3 + Softmax – (1 × 3) 

Fig. 2. Illustration of the proposed block. Inputs x are connected to the output of 

their layers, and added to the inputs of other levels. . 
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. Experimental setup 

In this section, we describe the dataset used in this study and

e detail the distribution of images to train, validation and test

et; as well as we assess by different evaluation metrics the per-

ormance of our proposed model, CVDNet, to classify patients af-

ected with COVID-19 from viral pneumonia patients and healthy

ersons using chest x-ray images. 

.1. Dataset description 

In this study, we used chest x-ray images obtained from Kag-

le’s COVID-19 Radiography Database [26] . This dataset was cre-

ted for three different types of images classified as chest x-ray

mages belonging to patients infected with COVID-19, chest x-ray

mages of cases with viral pneumonia and Chest x-ray images of

ealthy parsons (Normal). Out of 2905 chest x-ray images, there

re 219 COVID-19 images, 1345 viral pneumonia images and 1341

ormal. Fig. 3 shows some images of this dataset and shows the

ifference between COVID-19, viral pneumonia and normal case
mages. The following findings are observed in the x-ray images

f COVID-19 patients. 

• Ground-glass opacities (peripheral, bilateral, subpleural, multi- 

focal, posterior, basal and medial). 
• Air space consolidation. 
• Bronchovascular thickening (in the lesion). 
• A crazy paving appearance. (GGOs and inter-/intra-lobular sep-

tal thickening). 
• Traction bronchiectasis. 

Similarly, the following findings are observed in the x-ray im-

ges of pneumonia patients 

• Reticular opacity 
• Ground-glass opacities (GGO) central distribution, unilateral 
• Distribution more along the bronchovascular bundle 
• Vascular thickening 
• Bronchial wall thickening 

The COVID-19 data is publically available on Kaggle’s website

nd it’s collected from different databases: chest x-ray images with

OVID-19 were taken from Italian Society of Medical and Interven-

ional Radiology COVID1-19 Database (SIRM) [27] and from Novel

orona Virus 2019 Dataset which is developed by Cohen et al. in

ithub [28] , as well as from different recently published articles.

he viral pneumonia and normal images were collected from Kag-

le’s Chest X-Ray pneumonia dataset [29] . 

.2. Results and discussion 

In this section we perform experiments to assess the perfor-

ance of the proposed CVDNet, which is trained to classify chest

-ray images into three categories: Normal, COVID-19 and Viral

neumonia. The efficiency of the proposed model is evaluated us-

ng the five- fold cross-validation approach for (3-class) classifica-

ion problem. The dataset used was divided into 5 independent
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Fig. 3. Example of chest X-ray images: (a) COVID-19 chest x-ray image, (b) normal chest x-ray image, (c) viral pneumonia chest x-ray image. 

Fig. 4. Schematic diagram of training, validation and test set used in the 5-fold cross-validation. 

Table 3 

Details of training, validation and test set. 

Class Number of images Training Validation Test 

COVID-19 219 158 18 43 

Viral pneumonia 1345 969 107 269 

Normal 1341 965 107 269 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Precision, F1-score and recall values in fold 1 for Normal, 

COVID-19 and pneumonia classes of the proposed CVDNet. 

Class Precision (%) Recall (%) F1-score (%) 

COVID-19 97.67 97.67 97.67 

Normal 97.39 97.03 97.21 

Pneumonia 97.04 97.40 97.22 

Table 5 

Precision, F1-score and recall values in fold 2 for Normal, 

COVID-19 and pneumonia classes of the proposed CVDNet. 

Class Precision (%) Recall (%) F1-score (%) 

COVID-19 100 95.35 97.62 

Normal 98.50 97.40 97.94 

Pneumonia 96.72 98.51 97.61 

Table 6 

Precision, F1-score and recall values in fold 3 for Normal, 

COVID-19 and pneumonia classes of the proposed CVDNet. 

Class Precision (%) Recall (%) F1-score (%) 

COVID-19 100 95.35 97.62 

Normal 97.72 95.54 96.62 

Pneumonia 95.67 98.51 97.07 

A

R

F

and equal sets. Four out of five sets were used to train and vali-

date our model whereas the remaining set was employed for the

test (i.e. 70% of chest X-ray images are used for training, 10% for

validation and 20% for testing). More details, 219 COVID-19 chest

x-ray images were used, where 158 out of 219 were randomly se-

lected for training, 18 images for validation and 43 images for test-

ing. Moreover, 1341 normal chest x-ray images were used, where

965 out of 1341 were randomly selected for training set, 107 im-

ages for validation and remaining 269 images for testing as well

as 1345 viral pneumonia chest x-ray images were used, where 969

out of 1345 were randomly selected for training, 107 images for

validation and remaining 269 images for testing. The strategy of

split dataset was repeated five times as illustrated in Fig. 4 and

the distribution of chest x-ray images from sub-sets were summa-

rized in Table 3 . All experiments were implemented in Tensorflow

and the proposed CVDNet was trained for 20 epochs with a batch

size of 8. 

The performance of CVDNet for 3-class classification was mea-

sured for each fold using confusion matrix (CM) and top metrics

given below such as precision, recall, accuracy, and F1-score. The

overlapped and each separate CM are shown in Fig. 5 . Furthermore,

Overall precision, recall, accuracy, and F1-score computed for each

class (COVID-19, Normal and viral pneumonia) as well as for each

fold are presented in Tables 4 , 5 , 6 , 7 , 8 and 9 . 

Precision = 

Sum of all T rue Positi v es ( T P ) 

Sum of all T rue Positi v es ( T P ) + Al l F al se Positi v es ( F P ) 
ccuracy = 

No. of images correctl y cl assi f ied 

Total no. of images 

ecal l = 

Sum of al l T rue Positi v es ( T P ) 

Sum of al l T rue Positi v es ( T P ) + Al l F al se Negati v es ( F N ) 

 1 − score = 

2 ∗ Pr ecision ∗ Re call 

Pr ecision + Re call 
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Fig. 5. Confusion matrix results of our CVDNet for 3-class Classification. (a) overlapped CM, (b) Fold-1 CM, (c) Fold-2 CM, (d) Fold-3 CM, (e) Fold-4 CM, and (f) Fold-5 CM. 

Table 7 

Precision, F1-score and recall values in fold 4 for Normal, 

COVID-19 and pneumonia classes of the proposed CVDNet. 

Class Precision (%) Recall (%) F1-score (%) 

COVID-19 100 97.67 98.82 

Normal 90.57 100 95.05 

Pneumonia 100 89.96 94.72 

Table 8 

Precision, F1-score and recall values in fold 5 for Normal, 

COVID-19 and pneumonia classes of the proposed CVDNet. 

Class Precision (%) Recall (%) F1-score (%) 

COVID-19 84.31 100 91.49 

Normal 99.60 93.68 96.55 

Pneumonia 95.67 98.51 97.07 

 

w

Table 9 

Performance of the proposed CVDNet on each fold. 

Folds Precision (%) Accuracy (%) Recall (%) F1-score (%) 

Fold 1 97.37 97.25 97.37 97.37 

Fold 2 98.40 97.76 97.09 97.72 

Fold 3 97.80 96.90 96.47 97.10 

Fold 4 96.86 95.18 95.88 96.20 

Fold 5 93.20 96.39 97.40 95.04 

Average 96.72 96.69 96.84 96.68 

 

F  

p  

m  

v  

c  

p  

p  

p  
In the following, we detail the performance of our model and

e discuss the obtained results. 
It can be observed from the confusion matrix reported in

ig. 5 that the proposed model has detected in fold-1 42 out of 43

atients with COVID-19 as having COVID-19, 261 out of 269 nor-

al patients as normal patient and 262 out of 269 patients with

iral pneumonia as having viral pneumonia infection; and it mis-

lassified one patient with COVID-19 as normal patient, 8 normal

atients as having viral pneumonia infection, one patient with viral

neumonia infection as having COVID-19 and 6 patients with viral

neumonia infection as normal patients. In fold-2, the proposed
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CVDNet has detected 41 out of 43 patients with COVID-19 as hav-

ing COVID-19, 262 out of 269 normal patients as normal patient

and 265 out of 269 patients with viral pneumonia as having vi-

ral pneumonia infection; and it misidentified 7 normal patients as

having viral pneumonia infection and 4 patients with viral pneu-

monia infection as normal patients. In fold-3, CVDNet has achieved

an accuracy of 95.35%, 95.54% and 98.51% to classify COVID-19,

normal and viral pneumonia infection, respectively. In fold-4, CVD-

Net has achieved an accuracy of 97.68%, 100% and 89.96% to clas-

sify COVID-19, normal and viral pneumonia infection, respectively.

In fold-5, our CVDNet has detected 43 patients with COVID-19 as

having COVID-19, 252 out of 269 normal patients as normal pa-

tient and 265 out of 269 patients with viral pneumonia as having

viral pneumonia infection; and it misidentified 5 normal patients

as having COVID-19 infection, 12 normal patients as having viral

pneumonia infection, 3 patients with viral pneumonia infection as

COVID-19 infection and one patient with viral pneumonia infection

as normal patients. In overall, our model achieved an average ac-

curacy of 97.20%, 96.73% and 96.58% to classify COVID-19, normal

and viral pneumonia infection, respectively. 

From Table 4 , it can be noted that our CVDNet has achieved

in fold-1 a precision of 97.67%, 97.39% and 97.04% for COVID-19,

Normal and pneumonia classes, respectively and a recall of 97.67%,

97.03% and 97.40% for COVID-19, Normal and pneumonia classes,

respectively as well as a F1- score of 97.67%, 97.21% and 97.22%

for COVID-19, Normal and pneumonia classes, respectively. From

Table 5 , it can be seen that CVDNet has achieved in fold-2 a

precision of 100%, 98.50% and 96.72% for COVID-19, Normal and

pneumonia classes, respectively and a recall of 95.35%, 97.40% and

98.51% for COVID-19, Normal and pneumonia classes, respectively

as well as a F1- score of 97.62%, 97.94% and 97.61% for COVID-

19, Normal and pneumonia classes, respectively. From Table 6 , it

can be observed that our model has achieved a precision of 100%,

97.72% and 95.67% for COVID-19, Normal and pneumonia classes,

respectively and a recall of 95.35%, 95.54% and 98.51% for COVID-

19, Normal and pneumonia classes, respectively as well as a F1-

score of 95.67%, 98.51% and 97.07% for COVID-19, Normal and

pneumonia classes, respectively. From Table 7 , it can be observed

that our model has achieved a precision of 84.31%, 99.60% and

95.67% for COVID-19, Normal and pneumonia classes, respectively

and a recall of 100%, 93.68% and 98.51% for COVID-19, Normal and

pneumonia classes, respectively as well as a F1- score of 91.49%,

96.55% and 97.07% for COVID-19, Normal and pneumonia classes,

respectively. From Table 8 , it can be observed that our model has

achieved a precision of 100%, 90.57% and 100% for COVID-19, Nor-

mal and pneumonia classes, respectively and a recall of 97.67%,

100% and 89.96% for COVID-19, Normal and pneumonia classes, re-

spectively as well as a F1-score of 98.82%, 95.05% and 94.72% for

COVID-19, Normal and pneumonia classes, respectively. Therefore,

the proposed CVDNet reaches an average precision, accuracy, recall

and F1-score of 96.72%, 96.69, 96.84% and 96.68%, respectively for

3- class classification as shown in Table 9 . 

In summary, the main advantages of the proposed CVDNet are

as follows: 

- Our model performed remarkably well in detecting COVID-19

for three class classification problem using chest x-ray images. 

- The model successful in classifying COVID-19 class with an ac-

curacy of 97.20%. 

- It is an effective model that can assist radiologists in the diag-

nosis of COVID-19. 

In overall, the results obtained showed that our CVDNet model

outperforms the studies reported in the Table 1 in terms of ac-

curacy for 3-class classification task (COVID-19 vs. normal vs. vi-

ral pneumonia). These results represent promising and encourag-

ing performances in the detection of COVID-19 from chest x-ray
mages. This will greatly assist radiologists in overcoming load on

ospitals and the medical system. 

. Conclusion and future work 

In this paper, we proposed a novel deep convolutional neural

etwork (CVDNet) model for the detection of COVID-19 cases, in

rder to distinguish more precisely the patients affected by COVID-

9 from healthy persons and viral pneumonia patients using chest

-ray images. Our model has been trained on a small dataset

f few images of various COVID-19, viral pneumonia and normal

ases from publically available database. Moreover, the classifica-

ion efficiency of our CVDNet was measured using k- fold cross-

alidation. It was observed that CVDNet achieved an average accu-

acy of 97.20% for detecting COVID-19 and an average accuracy of

6.69% for three-class classification (COVID-19 vs. normal vs. viral

neumonia), which exhibit superior and promising performance in

lassifying COVID-19 cases. Based on these encouraging results, our

VDNet model is an interesting tool that can help clinicians to di-

gnose and detect COVID-19 infection in a very short time. In the

uture research direction, we will work to develop our CVDNet in

rder to detect COVID-19 cases from other lung diseases. Moreover,

e intend to validate the proposed model by using more images

oming from different hospitals and to address CT images for the

etection of COVID-19 and to compare the obtained results with

ur CVDNet trained using X-ray images. 
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