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Abstract

Panel data, also known as longitudinal data, consist of a collection of time series. Each time series, 

which could itself be multivariate, comprises a sequence of measurements taken on a distinct unit. 

Mechanistic modeling involves writing down scientifically motivated equations describing the 

collection of dynamic systems giving rise to the observations on each unit. A defining 

characteristic of panel systems is that the dynamic interaction between units should be negligible. 

Panel models therefore consist of a collection of independent stochastic processes, generally 

linked through shared parameters while also having unit-specific parameters. To give the scientist 

flexibility in model specification, we are motivated to develop a framework for inference on panel 

data permitting the consideration of arbitrary nonlinear, partially observed panel models. We build 

on iterated filtering techniques that provide likelihood-based inference on nonlinear partially 

observed Markov process models for time series data. Our methodology depends on the latent 

Markov process only through simulation; this plug-and-play property ensures applicability to a 

large class of models. We demonstrate our methodology on a toy example and two 

epidemiological case studies. We address inferential and computational issues arising due to the 

combination of model complexity and dataset size. Supplementary materials for this article are 

available online.
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1. Introduction

Analyzing time series data on a collection of related units provides opportunities to study 

aspects of dynamic systems—their replicability, or dependence on properties of the units—

that cannot be revealed from measurements on a single unit. The units might be individual 

humans or animals, in an observational or experimental study. The units might also be 

spatial locations, giving a panel representation of spatiotemporal data. As a consequence of 

advances in data collection, scientists investigating dynamic systems have growing 

capabilities to obtain measurements of increasing length on increasingly many units. 

Statistical investigation of such data, known as panel data analysis, is therefore playing a 

growing role in the scientific process.

Mechanistic modeling of a dynamic system involves writing down equations describing the 

evolution of the system through time. Time series analysis using mechanistic models 

involves determining whether the model provides an adequate description of the system, and 

if so, identifying plausible values for unknown parameters (Bretó et al. 2009). Stochasticity, 

nonlinearity and noisy incomplete observations are characteristic features of many systems 

in the biological and social sciences (Bjørnstad and Grenfell 2001; Dobson 2014). Monte 

Carlo inference approaches have been developed that are effective for general classes of 

models with these properties. Such methods include iterated filtering (Ionides, Bretó, and 

King 2006; Ionides et al. 2015), particle Markov chain Monte Carlo (Andrieu, Doucet, and 

Holenstein 2010) and synthetic likelihood (Wood 2010). All these inference algorithms 

obtain their general applicability by enjoying the plug-and-play property, that is, they 

interface with the dynamic model only through simulation (Bretó et al. 2009; He, Ionides, 

and King 2010). However, these methodologies do not address the particular structure of 

panel models and the high-dimensional nature of panel data. Therefore, new methodology is 

required to analyze panel data when there is a need to consider models outside the linear, 

Gaussian paradigm. We proceed by building on the iterated filtering approach of Ionides et 

al. (2015), deriving a panel iterated filtering likelihood maximization algorithm. The panel 

iterated filtering algorithm, an associated convergence theorem, and a software 

implementation equipped with an appropriate domain-specific modeling language, all extend 

the existing theory and practice of iterated filtering.

Across the broad applications of nonlinear partially observed stochastic dynamic models for 

time series analysis (Douc, Moulines, and Stoffer 2014) one can anticipate many situations 

where multiple time series are available and give rise to the structure of panel data. In 

particular, panel data on dynamic systems arises in pharmacokinetics (Donnet and Samson 

2013), molecular biology (Chen et al. 2016), infectious disease transmission (Cauchemez et 

al. 2004; Yang et al. 2010, 2012), and microeconomics (Heiss 2008; Bartolucci, Farcomeni, 

and Pennoni 2012; Mesters and Koopman 2014). Our methodology differs from those 

employed by these authors in that it provides plug-and-play likelihood-based inference 

applicable to general nonlinear, non-Gaussian models. This scope of applicability also sets 

our goals apart from the extensive panel methodology literature building on a linear 

regression framework (e.g., Hsiao 2014).
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In Section 2, we present a basic panel iterated filtering algorithm, and in Section 3, we prove 

its convergence under appropriate regularity conditions. An issue arising for large panel 

datasets is scalability of statistical methodology, and we develop three techniques to address 

this issue in Sections 4.1–4.3. These scaling techniques are illustrated on a toy example in 

Section 5. Two scientifically motivated examples follow: modeling the transmission of polio 

in Section 6, and dynamic variation in human sexual contact rates in Section 7. In Section 8, 

we conclude by discussing relationships to other approaches and indicating some extensions.

2. Inference Methodology: Panel Iterated Filtering (PIF)

Units of a panel are labeled {1, 2, … , U}, which we write as 1: U. The Nu measurements 

collected on unit u are written as yu, 1:Nu
∗ = {yu, 1

∗ , … , yu, Nu
∗ } where yu, n∗  is collected at time 

tu,n with tu,1 < tu,2 < ⋯ < tu,Nu. These data are considered fixed and modeled as a realization 

of an observable stochastic process Yu,1:Nu. This observable process is constructed to be 

dependent on a latent Markov process {Xu(t), tu,0 ≤ t ≤ tu,Nu}, for some tu,0 ≤ tu,1. Further 

requiring that {Xu(t)} and {Yu,i, i ≠ n} are independent of Yu,n given Xu(tu,n), for each n ∈ 
1 : Nu, completes the structure required for a partially observed Markov process (POMP) 

model for unit u (Ionides et al. 2011; King, Nguyen, and Ionides 2016). If all units are 

modeled as independent, the model is called a PanelPOMP Although we can treat time as 

either continuous or discrete, our attention will focus on the latent process at the observation 

times, so we write Xu,n = Xu(tu,n). We suppose that Xu,n and Yu,n take values in arbitrary 

spaces Xu and Y u, respectively. We suppose that the joint density of Xu,0:Nu and Yu,1:Nu 

exists, with respect to some suitable measure, and is written as fXu,0:NuYu,1:Nu
 (xu,0:Nu, 

yu,1:Nu; θ), with dependence on an unknown parameter θ ∈ Θ ⊂ ℝdim(Θ). Each component of 

the vector θ may affect one, several or all units. This framework encompasses fixed effects 

(discussed in Section 4.2) and random effects (discussed in Section 8). The transition density 

fXu,n|Xu,n−1 (xu,n | xu,n−1; θ) and measurement density fYu,n|Xu,n (yu,n | xu,n; θ) are permitted 

to depend arbitrarily on u and n, allowing nonstationary models and the inclusion of 

covariate time series (illustrated in Section 6). The framework also includes continuous-time 

dynamic models (illustrated in Section 7) and discrete-time dynamic models (illustrated in 

Sections 5 and 6), for which Xu,0:Nu is specified directly without ever defining {Xu(t), tu,0 ≤ 

t ≤ tu,Nu}.

The marginal density of Yu,1:Nu at yu,1:Nu is fYu,1:Nu
 (yu,1:Nu ; θ) and the likelihood function 

for unit u is ℓu(θ) = fYu, 1:Nu(yu, 1:Nu
∗ ; θ). The likelihood for the entire panel is 

ℓ(θ) = ∏u = 1
U ℓu(θ), and any solution θ = arg max ℓ(θ) is a maximum likelihood estimate 

(MLE).

Algorithm PIF.

Panel iterated filtering

input:

Simulator of initial density, fXu,0 (xu,0; θ) for u in 1: U
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Simulator of transition density, fXu,n|Xu,n−1 (xu,n | xu,n−1 ; θ) for u in 1 : U, n in 1 : Nu

Evaluator of measurement density, fYu,n|Xu,n (yu,n | xu,n ; θ) for u in 1 : U, n in 1 : Nu

Data, yu, n∗  for u in 1 : U and n in 1 : Nu

Number of iterations, M

Number of particles, J

Starting parameter swarm, Θj
0 for j in 1: J

Simulator of perturbation density, hu,n(θ | φ ; σ) for u in 1: U, n in 0 : Nu

Perturbation sequence, σm for m in 1 : M

output:

Final parameter swarm, Θj
M for j in 1: J

For m in 1 : M

 Set Θ0, j
m = Θj

m − 1 for j in 1: J

 For u in 1 : U

  Set Θu, 0, j
F , m ∼ ℎu, 0(θ ∣ Θu − 1, j

m ; σm) for j in 1 : J

  Set Xu, 0, j
F , m ∼ fXu, 0(xu, 0; Θu, 0, j

F , m ) for j in 1 : J

  For n in 1 : Nu

   Θu, n, j
P , m ∼ ℎu, n(θ ∣ Θu, n − 1, j

F , m , σm) for j in 1 : J

   Xu, n, j
P , m ∼ FXu, n ∣ Xu, n − 1(xu, n ∣ Xu, n − 1, j

F , m ; Θu, n, j
P , m ) for j in 1 : J

    wu, n, jm = fYu, n ∣ Xu, n(yu, n∗ ∣ Xu, n, j
P , m ; Θu, n, j

P , m ) for j in 1 : J

    Draw k1:J with ℙ(kj = i) = wu, n, im ∕ ∑v = 1
J wu, n, vm  for i, j in 1 : J

    Θu, n, j
F , m = Θu, n, kj

P , m
 and Xu, n, j

F , m = Xu, n, kj
P , m

 for j in 1 : J

  End For

  Set Θu, j
m = Θu, Nu, j

F , m
 for j in 1: J

 End For

 Set Θj
m = ΘU, j

m
 for j in 1: J

End For

The PIF algorithm, represented by the pseudocode above, is an adaptation of the IF2 

algorithm (Ionides et al. 2015) to PanelPOMP models. Like previous iterated filtering 

algorithms (Ionides, Bretó, and King 2006; Ionides et al. 2015), PIF explores the space of 

unknown parameters by stochastically perturbing them and applying sequential Monte Carlo 

to filter the data seeking for parameter values that are concordant with the data. 

Perturbations are successively diminished over repeated filtering iterations, leading to 

convergence to an MLE. This general approach of iterated filtering needs some adaptation in 

order for it to be useful for PanelPOMP models.
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The number of computations required for PIF has order O(JMNU), where N is the mean of 

{N1, … , NU} and J and M are the number of particles and iterations, defined in the 

pseudocode. The pseudocode specifies unique labels for each quantity constructed to clarify 

the logical structure of the algorithm, and a literal implementation of this pseudocode 

therefore requires storing O(JMNU) particles. Each particle contains a perturbed parameter 

vector and so has size O(U) if dim(Θ) is O(U), leading to a total storage requirement of 

O(JMNU2). However, we only need to store the value of the latent process particles, 

Xu, n, 1:J
P , m  and Xu, n, 1:J

F , m , and perturbed parameter particles, Θu, n, 1:J
P , m  and Θu, n, 1:J

F , m , for the 

current unit, time point and PIF iteration. Taking advantage of this memory over-writing 

opportunity leads to a storage requirement that is O(JU).

The theoretical justification of PIF is based on the observation that a PanelPOMP model can 

be represented as a time-inhomogeneous POMP model. Algorithms for PanelPOMPs, and 

their theoretical support, can therefore be derived from previous approaches for POMPs. 

Here, we use a representation concatenating the time series for each unit, corresponding to a 

latent POMP process

X(t) = Xu tu, 0 + (t − Tu − 1
cum ) for Tu − 1

cum ≤ t ≤ Tu
cum − 1, (1)

where Tu
cum is a cumulative latent POMP process time for all panel units up to unit u, given 

by

Tu
cum = u + ∑

k = 1

u
(tk, Nk − tk, 0) (2)

and T0
cum = 0. We leave X(t) undefined for Tu

cum − 1 < t < Tu + 1
cum  to provide a formal 

separation between the latent processes for each unit. In (2) we have set the value of this 

time separation to one, though any positive number would suffice and the exact value is 

irrelevant on the discrete timescale consisting of the sequence of observation times. In the 

language of data manipulation, our representation converts wide panel data into a tall format 

(Wickham 2014). As we show subsequently, a POMP representation using a tall format 

preserves the theoretical justification for iterated filtering, while also taking advantage of 

favorable sequential Monte Carlo (SMC) stability properties for long time series. 

Conversely, a wide format POMP representation risks encountering the curse of 

dimensionality for SMC (Bengtsson, Bickel, and Li 2008).

This POMP representation of a PanelPOMP model is one of three noted by Romero-

Severson et al. (2015) and discussed further in the supplement (Section S1). Romero-

Severson et al. (2015) used a different algorithm—their approach was convenient to code 

and sufficient for their example but its computational feasibility quickly breaks down as the 

length of each panel time series increases so it is infeasible in situations such as our polio 

example in Section 6.
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3. Convergence of PIF

PIF investigates the parameter space using a particle swarm Θ1:J
m = {Θj

m, j ∈ 1:J}. With a 

sufficiently large number J of particles, each iteration m of PIF approximates a Bayes map 

that selects a particle j with probability proportional to the value of the likelihood function at 

Θj
m. Heuristically, repeated application of the Bayes map favors particles with high 

likelihood and should lead to convergence of the particle swarm to a neighborhood of the 

MLE. We state such a convergence theorem, followed by the technical assumptions we use 

to prove it.

Our theorem combines Theorems 1 and 2 of Ionides et al. (2015) in the context of the 

POMP representation of a PanelPOMP model in (1). Their Theorem 1 proved the existence 

of a limit distribution for an iterated perturbed Bayes map by taking advantage of its 

linearity under the Hilbert projective metric. In addition, they showed that sequential Monte 

Carlo can provide a uniform approximation of this limit distribution. Their Theorem 2 

bounded excursion probabilities under this iterated perturbed Bayes map to derive sufficient 

conditions for the limit distribution to concentrate around the MLE. Here, we combine these 

two theorems into a simpler statement.

Theorem 1. Let Θ1:J
M  be the output of PIF, with fixed perturbations σm = δ. Suppose 

regularity conditions A1–A6. For all ϵ > 0, there exists δ, M0 and C such that, for all M ≥ 

M0 and all j ∈ 1: J,

ℙ ∣ Θj
M − θ ∣ > ϵ < ϵ + C

J . (3)

To discuss the regularity conditions, we need to set up some more notation. We write Y = 

(Y1,1:N1, … , YU,1:NU) and consequently we write y* for a vector of the entire panel dataset. 

The likelihood function is ℓ(θ) = fY(y* ; θ) and we suppose the following regularity 

condition:

(A1) There is a unique MLE, and ℓ(θ) is continuous in a neighborhood of this MLE.

To allow us to talk about parameter perturbations, we define a perturbed parameter space,

Θ̆ = ΘN1 + 1 × ΘN2 + 1 × ⋯ × ΘNU + 1,

for which we write θ̆ ∈ Θ̆ as

θ̆ = (θ1, 0, θ1, 1, … , θ1, N1, θ2, 0, … , θ2, N2, … , θU, NU) . (4)

For compatibility with the POMP representation of a PanelPOMP in (1), perturbed 

parameters for each time point and each unit are concatenated in (4) with θu,n being a 

perturbed parameter for the nth observation on unit u. On the perturbed parameter space Θ̆, 

the extended likelihood function is defined as
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ℓ̆(θ̆) = ∏
u = 1

NU ∫ ⋯∫ dxu, 0…dxu, NU fXu, 0(xu, 0; θ̆u, 0) ∏
n = 1

Nu
fXu, n ∣ Xu, n − 1(xu, n

∣ xu, n − 1; θ̆u, n)fYu, n ∣ Xu, n(yu, n∗ ∣ xu, n; θ̆u, n) .
(5)

We suppose that the extended likelihood has a Lipschitz continuity property:

(A2) Set N̆ = ∑u = 1
U (Nu + 1), so that Θ̆ = ΘN̆. Write θ̆n for the nth of the N̆ terms in 

(4), so that θ̆ = θ̆1:N̆. There is a C1 such that

ℓ̆(θ̆) − ℓ(θ1, 0) < C1 ∑
n = 2

N̆
θ̆n − θ̆n − 1 . (6)

We also assume a uniformly positive measurement density:

(A3) There are constants C2 and C3 such that

0 < C2 < FYu, n ∣ Xu, n(yu, n∗ ∣ xu, n; θ) < C3 < ∞,

for all u ∈ 1 : U, n ∈ 1 : Nu, xu, n ∈ Xu and θ ∈ Θ.

This condition will usually require Θ and Xu to be compact, for all u ∈ 1 : U. Compactness 

of Θ is satisfied if there is some limit to the scientifically plausible values of each parameter. 

Compactness of Xu may not be satisfied in practice, but much previous theory for SMC has 

used this strong requirement (e.g., Del Moral and Guionnet 2001; Le Gland and Oudjane 

2004). The remaining conditions concern the perturbation transition density, hu,n(θ | φ ; σ). 

We suppose that hu,n(θ | φ ; σ) has bounded support on a normalized scale via the following 

condition:

(A4) There is a C4 such that hu,n(θ | φ ; σ) = 0 when |θ − φ| < C4σ for all u ∈ 1: U, n ∈ 
1: Nu and σ.

We also require some regularity of an appropriately rescaled limit of the Markov chain 

resulting from iterating the perturbation process. Define {Θ̆m, m ≥ 0} to be a Markov chain 

taking values in Θ with Θ̆0 drawn uniformly from the starting particles, Θ1:J
0 , and transition 

density given by

fΘ̆m ∣ Θ̆m − 1(θU, NU ∣ φ; σ) = ∫ ℎ1, 0(θ1, 0 ∣ φ; σ) ∏
u = 2

U
ℎu, 0(θu, 0 ∣ θu − 1, Nu − 1; σ)

dθu − 1, Nu − 1 ∏
u = 1

U
∏
n = 1

Nu
ℎu, n(θu, n ∣ θu, n − 1; σ) dθu, n − 1 .

(7)
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Thus, {Θ̆m} represents a random-walk-like process corresponding to combining the 

parameter perturbations of all units and all time points for one iteration of PIF. Now, let 

{Wσ(t), t ≥ 0} be a right-continuous, piecewise constant process taking values in Θ defined 

at its points of discontinuity by

W σ(kσ2) = Θ̆k . (8)

If hu,n(θ | φ ; σ) were a scale family of additive perturbations, then {Θ̆m} would be a random 

walk that scales to a Brownian diffusion. When Θ has a boundary, {Θ̆m} cannot be exactly a 

random walk, but similar diffusion limits can apply (Bossy, Gobet, and Talay 2004). We 

require that hu,n(θ | φ ; σ) is chosen to be sufficiently regular to have such a diffusion limit, 

via the following assumptions:

(A5) {Wσ(t), 0 ≤ t ≤ 1} converges weakly as σ → 0 to a diffusion {W(t), 0 ≤ t ≤ 1}, 

in the space of right-continuous functions with left limits equipped with the 

uniform convergence topology. For any open set A ⊂ Θ with positive Lebesgue 

measure and ϵ > 0, there is a δ(A, ϵ) > 0 such that 

ℙ[W (t) ∈ A for all ϵ ≤ t ≤ 1 ∣ W (0)] > δ.

(A6) For some t0(σ) and σ0 > 0, Wσ(t) has a positive density on Θ, uniformly over the 

distribution of W(0) for all t > t0 and σ < σ0.

Proof of Theorem 1. PIF is exactly the IF2 algorithm of Ionides et al. (2015) applied to the 

POMP representation of a PanelPOMP model in Equation (1). A1 is condition B3 of Ionides 

et al. (2015) together with a simplifying additional assumption that a unique MLE exists. A2 

is a rewriting of their B6. A3 and A4 are essentially their B4 and B5. A5 and A6 match their 

B1 and B2, respectively. Thus, we have established the conditions used for Theorems 1 and 

2 of Ionides et al. (2015) for this POMP representation of a PanelPOMP model. The 

statement of our Theorem 1 follows directly from these two previous results. □

The perturbation density hu,n(θ | φ ; σ) has usually been chosen to be Gaussian in 

implementations of the IF2 algorithm and its predecessor, the IF1 algorithm (Ionides, Bretó, 

and King 2006). The use of Gaussian perturbations requires the user to reparameterize 

boundaries in the parameter space. This may involve taking a logarithmic transformation of 

positive parameters and a logistic transform of interval-valued parameters (e.g., see Tables 

S-3 and S-4). To satisfy assumption A4, Gaussian perturbations must be truncated. Since the 

Gaussian distribution has short tails, ignoring truncation is practically equivalent to 

truncation at a large multiple of the standard deviation. Unlike an alternative theoretical 

framework using Stein’s lemma to approximate derivatives via perturbed parameters and 

SMC (Doucet, Jacob, and Rubenthaler 2015; Dai and Schön 2016) our justification for PIF 

does not require the choice of Gaussian perturbations.

4. Scalable Methodology for Large Panels

Theorem 1 provides an asymptotic Monte Carlo convergence guarantee for a dataset of fixed 

size as the Monte Carlo effort increases. In practice, reaching this Monte Carlo asymptotic 
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regime becomes increasingly difficult as the panel dataset grows, whether the number of 

units becomes large, or there are many observations per unit, or both. In this section, we 

consider some techniques that become important when using PIF for big datasets. We 

demonstrate the methodology on a toy model in Section 5. Subsequently, we demonstrate 

data analysis for mechanistic panel models using PIF via two examples, one investigating 

disease transmission of polio and another investigating dynamics of human sexual behavior.

4.1. Monte Carlo Adjusted Profile (MCAP) Confidence Intervals

PIF provides a Monte Carlo approach to maximizing the likelihood function for a 

PanelPOMP model. It is based on an SMC algorithm that can also provide an unbiased 

estimate of the maximized likelihood. Monte Carlo methods to evaluate and maximize the 

likelihood function provide a foundation for constructing confidence intervals via profile 

likelihood. When computational resources are sufficient to make Monte Carlo error small, 

its role in statistical inference may be negligible. With large datasets and complex models, 

we cannot ignore Monte Carlo error so instead we quantify it and draw statistical inferences 

that properly account for it. We use the Monte Carlo adjusted profile (MCAP) methodology 

of Ionides et al. (2017) which fits a smooth curve through Monte Carlo evaluations of points 

on a profile log-likelihood. MCAP then obtains a confidence interval using a cutoff on this 

estimated profile that is enlarged to give proper coverage despite Monte Carlo uncertainty in 

its construction. Monte Carlo variability in maximizing and evaluating the likelihood both 

lead to expected underestimation of the maximized log-likelihood. Despite such bias the 

MCAP methodology remains valid as long as this likelihood shortfall is slowly varying as a 

function of the profiled parameter (Ionides et al. 2017). Our toy example in Section 5 

demonstrates this phenomenon. For our subsequent examples, we applied the MCAP 

methodology described by Ionides et al. (2017) and demonstrated in several recent scientific 

analyses (Smith, Ionides, and King 2017; Ranjeva et al. 2017, 2018; Pons-Salort and Grassly 

2018). We used the R implementation of MCAP from Ionides et al. (2017) with an 

algorithmic smoothing parameter λloess = 0.9 determining the fraction of profile points used 

to construct the neighborhoods for locally weighted quadratic regression smoothing.

4.2. Unit-Specific Parameters and Marginal Maximization

The parameter space for a PanelPOMP model may be structured into unit-specific and 

shared parameters. To do this, we introduce a decomposition Θ = Φ × ΨU and θ = (ϕ, ψ1, 

ψ2, … , ψU) with the joint distribution of Xu,0:Nu and Yu,1:Nu, for each unit u, depending 

only on the shared parameter ϕ ∈ Φ ⊂ ℝdim(Φ) and the unit-specific parameter 

ψu ∈ Ψ ⊂ ℝdim(Ψ). The general PanelPOMP specification does not insist on the existence of 

unit-specific parameters. Correspondingly, the PIF algorithm does not require this structure 

and it does not play a role in the general theory. However, when it exists, we can use this 

additional structure to advantage within the general framework of PIF. One consequence of 

the presence of unit-specific parameters arises in a natural structure for the PIF perturbation 

densities: when PIF is filtering through panel unit u, only unit-specific parameters 

corresponding to unit u need to be perturbed. Another consequence is the existence of a 

block structure to the parameter space that can be exploited, as follows.
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When U is large, dim(Θ) = dim(Φ) + Udim(Ψ) also becomes large. For a fixed value of ϕ, 

the marginal likelihoods of ψ1:U can be maximized separately, due to independence between 

units. Formally, application of iterated filtering to each of these marginal optimizations is a 

special case of the PIF algorithm with U = 1. Thus, the convergence theory for PIF gives us 

freedom to alternate marginal optimization steps with joint optimization over Θ, following a 

block coordinate ascent approach. In practice, we demonstrate a simple two-step algorithm 

which first attempts to optimize over Θ and then refines the resulting estimates of the unit-

specific parameters by marginal searches for each unit. Figure 1 of Section 5 shows that this 

leads to considerable Monte Carlo variance reduction on an analytically tractable example.

4.3. Using Replications for Likelihood Maximization and Evaluation

Monte Carlo replication, with differing random number generator seed values, is a basic tool 

for obtaining and assessing Monte Carlo approximations to an MLE and its corresponding 

maximized likelihood. Replication is trivially parallelizable, so provides a simple strategy to 

take advantage of large numbers of computer processors. Repeated searches, from wide-

ranging starting values, provide a practical assessment of the success of global 

maximization. When many Monte Carlo searches have found a comparable maximized 

likelihood, and no searches have surpassed it, we have some confidence that the likelihood 

surface has been adequately investigated.

PIF requires an additional calculation to evaluate the likelihood at the proposed maximum. 

The PIF algorithm produces an estimate of the likelihood for the perturbed model, and if the 

perturbations are small this may provide a useful approximation to the likelihood, however, 

re-evaluation with the unperturbed model is appropriate for likelihood-based inference. 

Making R replicated Monte Carlo evaluations of the likelihood gives rise to estimates {ℓu
(r), r 

∈ 1 : R, u ∈ 1: U} for each replication and unit. One possible way to combine these is an 

estimate ℓ = 1
R∑r = 1

R ∏u = 1
U ℓu

(r). When computed via SMC, this estimate is unbiased 

(Theorem 7.4.2 on page 239 in Del Moral 2004). However, we use an alternative unbiased 

estimate, ℓ = ∏u = 1
U 1

R ∑r = 1
R ℓu

(r), which has lower variance (derived in Section S2).

5. A Toy Example: The Panel Gompertz Model

We consider a PanelPOMP constructed as a stochastic version of the discrete-time Gompertz 

model for biological population growth (Winsor 1932). We suppose that the density, Xu,n+1, 

of a population u at time n + 1 depends on the density, Xu,n, at time n according to

Xu, n + 1 = κu1 − e−ruXu, n
e−ruεu, n . (9)

In (9), κu is the carrying capacity of population u, ru is a positive parameter, and {εu,n, u ∈ 
1 : U, n ∈ 1 : Nu} are independent and identically-distributed lognormal random variables 

with log εu, n ∼ Normal(0, σG, u
2 ). We model the population density to be observed with errors 

in measurement that are lognormally distributed
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log Yu, n ∼ Normal (log Xu, n, τu2) .

The Gompertz model is a convenient toy nonlinear non-Gaussian model since it has a 

logarithmic transformation to a linear Gaussian process and therefore the exact likelihood is 

computable by the Kalman filter (King, Nguyen, and Ionides 2016). The simulation 

experiment is designed to have nonnegligible Monte Carlo error to test the effectiveness of 

the combined PIF and MCAP algorithms in this situation. As discussed in Section 4.1, we 

expect Monte Carlo estimates of profile log-likelihood functions to fall below the actual 

(usually unknown) value. This is in part because imperfect maximization can only reduce 

the maximized likelihood, and in part a consequence of Jensen’s inequality applied to the 

likelihood evaluation: the unbiased SMC likelihood evaluation has a negative bias on 

estimation of the log-likelihood. However, this bias produces a vertical shift in the estimated 

profile that may (and, in this example, does) have negligible effect on the resulting 

confidence interval.

For our experiment, we used Nu = 100 simulated observations for each of U = 50 panel 

units. For each u ∈ 1 : U, we fixed κu = 1 and Xu,0 = 1. We set σG,u = σG = 0.1 and ru = r = 

0.1. We estimated the shared parameters σG and r. We also estimated unit-specific 

parameters τ1:U with true values set to τu = 0.1. We profiled over the shared parameter σG, 

maximizing with respect to r and the 50 unit-specific parameters τ1:U. In Figure 1, the 

estimated profile using the marginal step has a log-likelihood shortfall of only approximately 

3.4/51 = 0.07 log units per parameter. By contrast, maximization using only the joint step 

has a shortfall of 28.1/51 = 0.6 per parameter and substantially greater Monte Carlo 

variability. This greater variability leads to a larger Monte Carlo adjusted profile cut-off than 

the asymptotic value of 1.92, and therefore typically produces a wider 95% confidence 

interval (Ionides et al. 2017).

6. Polio: State-Level Prevaccination Incidence in USA

The study of ecological and epidemiological systems poses challenges involving nonlinear 

mechanistic modeling of partially observed processes (Bjørnstad and Grenfell 2001). Here, 

we illustrate this class of models and data, in the context of panel data analysis, by analyzing 

state-level historic polio incidence data in USA. Although introduction of a pathogen into a 

host community requires contact between communities, the vast majority of infectious 

disease transmission events have infector and infectee within the same community 

(Bjørnstad, Finkenstädt, and Grenfell 2002). Therefore, for the purpose of understanding the 

dynamics of infectious diseases within communities, one may choose to model a collection 

of communities as independent conditional on a pathogen immigration process. For 

example, fitting a panel model to epidemic data on a collection of geographical regions 

could permit statistical identification of dynamic mechanisms that cannot readily be detected 

by the data available in any one region. Further, differences between regions (in terms of 

size, climate, and other demographic or geographic factors) may lead to varying disease 

dynamics that can challenge and inform a panel model.
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The massive efforts of the global polio eradication initiative have brought polio from a major 

global disease to the brink of extinction (Patel and Orenstein 2016). Finishing this task is 

proving hard, and an improved understanding of polio ecology might assist. Martinez-

Bakker, King, and Rohani (2015) investigated polio dynamics by fitting a mechanistic model 

to prevaccination era data from the USA consisting of monthly reports of acute paralysis 

from May 1932 through January 1953. Reports are available for the 48 contiguous US states 

and Washington D.C., so U = 49, and henceforth we refer to these units as states. A sample 

of the time series in this panel is plotted in the supplement. Martinez-Bakker, King, and 

Rohani (2015) fitted their model separately to each state which, in panel terminology, 

amounted to a decision to make all parameters unit-specific. Some parameters, such as 

duration of infection, might be well modeled as shared between all units. Other parameters, 

such as the model for seasonality of disease transmission, should intuitively be slowly 

varying geographically. Martinez-Bakker, King, and Rohani (2015) did not have access to 

panel inference methodology, and so here we reconsider their model and data and investigate 

what happens when some parameters become shared between units.

The model of Martinez-Bakker, King, and Rohani (2015) places each individual in the 

population into one of ten compartments: susceptible babies in each of six one-month birth 

cohorts (S1
B, … , S6

B), susceptible older individuals (SO), infected babies (IB), infected older 

individuals (IO), and individuals who have recovered with lifelong immunity (R). Our 

PanelPOMP version of their model has a latent process determining the number of 

individuals in each compartment at each time for each unit u ∈ 1 : U. We write

Xu(t) = (Su, 1
B (t), … , Su, 6

B (t), IuB(t), SuO(t), IuO(t), Ru(t)) .

The flows through the compartments are graphically represented in Figure 2. Births for each 

state u are treated as a covariate time series, known from census data (Martinez-Bakker et al. 

2014). Babies under six months are modeled as fully protected from paralytic polio, but 

capable of a gastro-intestinal polio infection. Infection of an older individual leads to a 

reported paralytic polio case with probability ρu.

Since duration of infection is comparable to the one-month reporting aggregation, a discrete 

time model may be appropriate. The model is therefore specified only at times tu,n = tn = 

1932 + (4 + n)/12 for n = 0, … , 249. We write

Xu, n = Xu(tn) = (Su, 1, n
B , … , Su, 6, n

B , Su, nO , Iu, nB , Iu, nO , Ru, n) .

The mean force of infection, in units of yr−1, is modeled as

λ‒u, n = βu, n
Iu, nO + Iu, nB

Pu, n
+ ψ ,

where Pu,n is a census population covariate for state u interpolated to time tn and seasonality 

of transmission is modeled as
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βu, n = exp ∑
k = 1

K
bu, kξk(tn) ,

with {ξk(t), k = 1, … , K} being a periodic B-spline basis. We set K = 6. The force of 

infection has a stochastic perturbation,

λu, n = λ‒u, nϵu, n,

where ϵu,n is a Gamma random variable with mean 1 and variance σenv, u2 + σdem, u
2 [λu, n]−1. 

These two terms capture variation on the environmental and demographic scales, 

respectively (Bretó et al. 2009). All compartments suffer a mortality rate, set at δ = [60 yr]−1 

for all states. Within each month, all susceptible individuals are modeled as having exposure 

to constant competing hazards of mortality and polio infection. The chance of remaining in 

the susceptible population when exposed to these hazards for one month is therefore

pu, n = exp −
δ + λu, n

12 ,

with the chance of polio infection being

qu, n = (1 − pu, n)
λu, n

λu, n + δ .

We employ a continuous population model: writing Bu,n for births in month n for state u, the 

full set of model equations is,

Iu, n + 1
B = qu, n ∑

k = 1

6
Su, k, n

B , Su, 1, n + 1
B = Bu, n + 1,

Su, k, n + 1
B = pu, nSu, k − 1, n

B for k ∈ 1:6,
Iu, n + 1

O = qu, nSu, nO , Su, n + 1
O = pu, n(Su, nO + Su, 6, n

B ) .

The model for the reported observations, conditional on the latent process, is a discretized 

normal distribution truncated at zero, with both environmental and Poisson-scale 

contributions to the variance

Yu, n = max{round(Zu, n), 0},

Zu, n ∼ Normal ρIu, nO , ρuIu, nO + τuIu, nO 2 ,

where round(x) obtains the integer closest to x. Additional parameters are used to specify 

initial values for the latent process at time t0 = 1932 + 4/12. We will suppose there are 

parameters (Su, 1, 0
B , … , Su, 6, 0

B , I u, 0
B , I u, 0

O , Su, 0
O ) that specify the population in each 

compartment at time t0 via
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Su, 1, 0
B = Su, 1, 0

B , … , Su, 6, 0
B = Su, 6, 0

B , Iu, 0
B = Pu, 0I u, 0

B ,

Su, 0
O = Pu, 0Su, 0

O , Iu, 0
O = Pu, 0I u, 0

O .

The initial conditions are simplified by ignoring infant infections at time t0. Thus, we set 

I u, 0
B = 0 and use monthly births in the preceding months (ignoring infant mortality) to fix 

Su, k, 0
B = Bu, 1 − k for k = 1, … , 6. The estimated initial conditions for state u are then 

defined by the two parameters I u, 0
O  and Su, 0

O , since the initial recovered population, Ru,0, is 

specified by subtraction of all the other compartments from the total initial population, Pu,0.

Figure 3 shows the profile likelihood for the shared reporting rate, ρ, evaluated across a wide 

interval to investigate large-scale features of the likelihood surface. Including a marginal 

maximization step in PIF leads to gains in agreement with the findings of Figure 1. Figure 3 

indicates an MLE around 0.02 and so this parameter range was studied further in a higher 

resolution profile in Figure 4. On this localized plot, we can see Monte Carlo error of order 

10 log units in the maximization and evaluation of the log-likelihood. Since construction of 

this plot employed 528.0 core days of computational effort, we had limited capacity for 

further reductions in Monte Carlo error by further increases in computation. Fortunately, 

MCAP methodology is able to handle Monte Carlo error on this scale: see, for example, the 

noisiest profile in Figure 1 using only joint maximization. The resulting 95% confidence 

interval from Figure 4 is (0.016, 0.020), which is consistent with estimates for the fraction of 

polio infections leading to acute paralysis in USA in this era (Melnick and Ledinko 1953). 

By contrast, Martinez-Bakker, King, and Rohani (2015) found point estimates ranging from 

0.0025 to 0.03 when analyzing each state separately, with wide confidence intervals evident 

from the profiles in their Figures S9–S17.

Likelihood-based inference for data on this scale (U = 49, Nu = 249) has been considered 

intractable for general nonlinear PanelPOMP models using previous methodology. Indeed, 

even for a single observed time series, inference for general nonlinear POMP models has 

only recently become routine (King, Nguyen, and Ionides 2016). Evidently, the difficulties 

are a result of model complexity as much as the sheer volume of data. The interaction of 

model complexity with a modest increase in data size is the current challenge.

7. Dynamic Variation in Sexual Contact Rates

We demonstrate PIF for analysis of panel data on sexual contacts, using the model and data 

of Romero-Severson et al. (2015). The data consist of many short time series, a common 

situation in classical longitudinal analysis. We show that PIF provides useful flexibility to 

permit consideration of scientifically relevant dynamic models including latent dynamic 

variables.

Basic population-level disease transmission models suppose equal contact rates for all 

individuals in a population (Keeling and Rohani 2008). Sometimes these models are 

extended to permit heterogeneity between individuals. Heterogeneity within individuals over 
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time has rarely been considered, yet, there have been some indications that dynamic 

behavioral change plays a substantial role in the HIV epidemic. Romero-Severson et al. 

(2015) quantified dynamic changes in sexual behavior by fitting a model for dynamic 

variation in sexual contact rates to panel data from a large cohort study of HIV-negative gay 

men (Vittinghoff et al. 1999). Here, weanalyzethedataon totalsexual contacts over Nu = 4 

consecutive 6-month periods for the U = 882 men in the study who had no missing 

observations. A sample of the time series in this panel is plotted in the supplement.

For behavioral studies, we interpret “mechanistic model” broadly to mean a mathematical 

model describing phenomena of interest via interpretable parameters. In this context, we 

want a model that can describe (i) differences between individuals; (ii) differences within 

individuals over time; (iii) flexible relationships between mean and variance of contact rates. 

Romero-Severson et al. (2015) developed a PanelPOMP model capturing these phenomena. 

Suppose that each individual u ∈ 1 : U has a latent time-varying rate Λu(t) of making a 

sexual contact. Each data point, yu, n∗ , is the number of reported contacts for individual u 

between time tu,n−1 and tu,n. Integrating the unobserved process {Λu(t)} gives the 

conditional expected value in (10) of contacts for individual u in reporting interval n, via

Cu, n = αn − 1∫tu, n − 1

tu, n
Λu(t) dt,

where α is an additional secular trend that accounts for the observed decline in reported 

contacts. A basic stochastic model for homogeneous count data would model yu, n∗  as a 

Poisson random variable with mean and variance equal to Cu,n (Keeling and Rohani 2008). 

However, the variance in the data is much higher than the mean (Romero-Severson et al. 

2012). Negative binomial processes provide a route to modeling dynamic overdispersion 

(Bretó and Ionides 2011). Here, we suppose that

Y u, n ∣ Cu, n, Du ∼ NegBin (Cu, n, Du), (10)

a conditional negative binomial distribution with mean Cu,n and variance Cu, n + Cu, n
2 [Du]−1. 

Here, Du is called the dispersion parameter, with the Poisson model being recovered in the 

limit as Du becomes large. The dispersion, Du, can model increased variance compared to 

the Poisson distribution for individual contacts, but does not result in autocorrelation 

between measurements on an individual over time, which is observed in the data. To model 

this autocorrelation, we suppose that individual u has behavioral episodes of exponentially 

distributed duration within which {Λu(t)} is constant, but the individual enters new 

behavioral episodes at rate μR. At the start of each episode, {Λu(t)} takes a new value drawn 

from a Gamma distribution with mean μX and standard deviation σX. Therefore, at each time 

t,

Λu(t) ∼ Gamma(μX, σX) .

To complete the model, we also assume Du ~ Gamma(μD, σD). The parameter vector is θ = 

(μX, σX, μD, σD, μR, α).
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Figure 5 constructs a profile likelihood confidence interval for μR. This result is comparable 

to Web Figure 1 of Romero-Severson et al. (2015), however, here we have shown how this 

example fits into a general methodological framework. The profile demonstrates an 

intermediate level of computational challenge between the relatively simple Gompertz 

example of Section 5 and the extensive data, complex model, and correspondingly larger 

Monte Carlo computations of Section 6. Figure 5 took 68.7 core days to compute. No 

marginal maximization was necessary for this example, since all parameters were shared 

between all units.

8. Discussion

When panel data are short, relative to the complexity of the model under consideration, there 

may be little information in the data about each unit-specific parameter. In such cases, it can 

be appropriate to replace some unit-specific parameters by latent random variables. By 

analogy with linear regression analysis, these unit-specific latent random variables are called 

random effects, and unit-specific parameters treated as unknown constants are called fixed 
effects. Models with random effects are also called hierarchical models, since an additional 

hierarchy of modeling is required to describe the additional latent variables, and parameters 

of the random effect distribution are consequently termed hyperparameters. From the 

perspective of statistical inference, using random effects reduces the number of fitted 

parameters, at the expense of adding additional modeling assumptions. From the perspective 

of computation, random effects reduce the dimensionality of the likelihood optimization 

challenge, while increasing the dimensionality of the latent space which must be integrated 

over to evaluate the likelihood. The use of random effects provides an opportunity for the 

estimation of individual unit-specific effects to borrow strength from other panel units, via 

estimation of the hyperparameters. Therefore, random effects can have particular value if 

one is interested in estimating the unit-specific effects. However, when the research question 

is focused on shared parameters or higher-level model structure decisions such as whether a 

parameter should be included in the model, the individual unit-specific parameters can be a 

distraction. Rather than spending time developing and justifying a distribution for the 

random effects, simpler statistical reasoning can be obtained by avoiding these issues and 

employing fixed effects.

The sexual contact model has random effects Du and has no fixed effects. As discussed 

above, this is appropriate for panel data with very short time series. By contrast, the polio 

data are relatively long time series, enabling the use of fixed effects.

Panel time series analysis shares similarities with functional data analysis (Ramsay and 

Silverman 1997). Within functional data analysis, a representation of dynamic mechanisms 

can be incorporated via principal differential analysis (Ramsay 1996). Partially observed 

stochastic dynamic models are not within the usual scope of the field of functional data 

analysis, though there is no need for a hard line separating functional data analysis from 

panel data analysis.

We wrote an R package panelPomp (available at https://github.com/cbreto/panelPomp) that 

provides a software environment for developing methodology and data analysis tools for 
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PanelPOMP models extending the pomp package (King, Nguyen, and Ionides 2016). The 

implementation of PIF in panelPomp was used for the results of this article. PIF and the 

panelPomp package have already proved useful for scientific investigations (Ranjeva et al. 

2017, 2018).

Iterated filtering algorithms provide an approach to plug-and-play full-information 

likelihood-based inference that has been applied in challenging nonlinear mechanistic time 

series analyses, especially in epidemiology (reviewed by Bretó 2018). Reduced information 

methods, such as those using simulations to compare the data with a collection of summary 

statistics, can lead to substantial losses in statistical efficiency (Fasiolo, Pya, and Wood 

2016; Shrestha, King, and Rohani 2011). Particle Markov chain Monte Carlo (Andrieu, 

Doucet, and Holenstein 2010) provides a route to plug-and-play full-information Bayesian 

inference, but the methodology requires computational feasibility of log-likelihood estimates 

with a standard error of around 1 log unit (Doucet et al. 2015). PIF is the first plug-and-play 

full-information likelihood-based approach demonstrated to be applicable on general 

partially observed nonlinear stochastic dynamic models for panel data analysis on the scale 

we have considered.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Profile log-likelihood of σG for a panel of size U = 50 for the Gompertz model. Blue line 

(dashes): exact profile. Red points and line (circles): profile computed with PIF, including 

marginal maximization for unit-specific parameters. Black points and line (squares): profile 

computed with PIF using onlyjoint maximization. The horizontal bars show 95% MCAP 

confidence intervals with a small filled circle marking the MLE obtained with algorithmic 

parameters in Table S-1 in the supplement.
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Figure 2. 
Flow diagram for the polio panel model. Each individual resides in exactly one of the 

compartments denoted by square boxes. Solid arrows represent possible transitions into a 

new compartment. Circles represent observed variables: the reported incidence, Yu, and 

births, Bu. The dependence of Yu on Iu
O is denoted by a dashed arrow. Colors and rows 

representdisease status: unexposed isgreen (top row); infected is red (middle row); recovered 

is purple (bottom row). The panel structure is indicated by the replication of this model over 

u ∈ 1 : U. The shared parameter vector ϕ = (ρ, σdem, ψ, τ) and unit-specific parameter ψu = 

(bu,1:6, σenv,u, Su, 0
O , I u, 0

O ) are identified in the gray ellipse.
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Figure 3. 
Profile log-likelihood of ρ for the polio model, computed with marginal maximization for 

unit-specific parameters (red circles and line) and without (black squares and line) with 

algorithmic parameters in Table S-1 in the supplement. Figure 4 gives a closer look in a 

neighborhood of the maximum and constructs a confidence interval.
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Figure 4. 
Profile log-likelihood of ρ for the polio model, computed in a neighborhood of the MLE. 

The horizontal bar shows a 95% MCAP confidence interval with a small filled circle 

marking the MLE obtained with algorithmic parameters in Table S-1 in the supplement.
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Figure 5. 
Profile log-likelihood of μR for a panel of size U = 882 for the contacts model. The 

horizontal bar shows a 95% MCAP confidence interval with a small filled circle marking the 

MLE obtained with algorithmic parameters in Table S-1 in the supplement.
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